Previous Issue
Volume 6, June
 
 

Optics, Volume 6, Issue 3 (September 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 483 KiB  
Article
Effect of Localized Surface Plasmons on the Nonlinear Optical Properties in the Semi-Parabolic Quantum Well
by Shusen Chen and Kangxian Guo
Optics 2025, 6(3), 29; https://doi.org/10.3390/opt6030029 - 2 Jul 2025
Viewed by 183
Abstract
In this paper, the effects of localized surface plasmons on the nonlinear optical properties of a composite system are studied. The system operates by placing a metal nanoparticle next to a semi-parabolic quantum well under a terahertz laser field. Firstly, the energy expression [...] Read more.
In this paper, the effects of localized surface plasmons on the nonlinear optical properties of a composite system are studied. The system operates by placing a metal nanoparticle next to a semi-parabolic quantum well under a terahertz laser field. Firstly, the energy expression of the semi-parabolic well in the terahertz laser field is derived via a Kramers–Henneberger transformation, and then the new energy levels and wave functions are solved by the finite difference method. Next, optical absorption coefficients and refraction index changes are derived according to quantum theory. Finally, the study shows that localized surface plasmons can cause a redshift in the peak position, while simultaneously weakening the peak value of optical absorption coefficients. The results confirm that the desired performance can be obtained by adjusting the radius of the particle, the distance between the particle and the quantum well, or the natural frequency of the quantum well. Full article
Show Figures

Figure 1

8 pages, 759 KiB  
Article
Impact of Portable Radiometers on Irradiance Measurements of LED Photocuring Units
by Matías Mederos, Guillermo Grazioli, Elisa de León Cáceres, Andrés García, José Alejandro Rivera-Gonzaga, Rim Bourgi and Carlos Enrique Cuevas-Suárez
Optics 2025, 6(3), 28; https://doi.org/10.3390/opt6030028 - 30 Jun 2025
Viewed by 180
Abstract
Purpose: The aim of this in vitro study was to evaluate the influence of different models of commercially available portable dental radiometers on the measurement of light irradiance emitted by light-emitting diode (LED) photocuring units. Materials and Methods: Eight LED photocuring units, all [...] Read more.
Purpose: The aim of this in vitro study was to evaluate the influence of different models of commercially available portable dental radiometers on the measurement of light irradiance emitted by light-emitting diode (LED) photocuring units. Materials and Methods: Eight LED photocuring units, all emitting light in a single-wavelength spectrum, were tested. Light irradiance (mW/cm2) was measured using six portable dental radiometers: four digital models (D1–D4) and two analog models (A1, A2). Digital model D1 was used as the reference (control). All measurements were conducted under standardized conditions, and each LED–radiometer combination was tested in triplicate. Data were analyzed using Sigma Plot 12.0 (Palo Alto, CA, USA) to verify the assumptions of normality and homogeneity of variances. A one-way analysis of variance (ANOVA) was used to assess the effect of the radiometer model on irradiance values, followed by Tukey’s post hoc test for multiple comparisons. The significance level was set at α < 0.05. Results: No statistically significant difference in irradiance was found between D1 (control) and D2. However, significantly lower values were recorded with A2, while D3, D4, and A1 produced significantly higher irradiance values compared to the control (p < 0.05). Conclusion: Irradiance measurements can vary significantly depending on the radiometer model used. Clinicians should be aware of this variability and are encouraged to regularly check the irradiance of the light-curing units used in daily practice, ensure their proper maintenance, and implement periodic monitoring to maintain effective clinical performance. Full article
(This article belongs to the Special Issue Advanced Optical Imaging for Biomedicine)
Show Figures

Figure 1

Previous Issue
Back to TopTop