Optical Characterization of the Interplay Between Carrier Localization and Carrier Injection in Self-Assembled GaSb/GaAs Quantum Dots
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QD | Quantum dot |
WL | Wetting layer |
PL | Photoluminescence |
TRPL | Time-resolved photoluminescence |
MBE | Molecular beam epitaxy |
RHEED | Reflective high-energy electron diffraction |
AFM | Atomic force microscope |
IBSC | Intermediate-band solar cells |
XTEM | Cross-sectional Transmission Electron Microscopy |
CW | Continuous-wave |
CB | Conduction band |
References
- Michler, P. (Ed.) Single Quantum Dots: Fundamentals, Applications, and New Concepts; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 90, pp. 1–86. ISSN 0303-4216. [Google Scholar]
- Bimberg, D.; Grundmann, M.; Ledentsov, N.N. Quantum Dot Heterostructures; Wiley: New York, NY, USA, 1998; pp. 1–19. [Google Scholar]
- Yuan, Z.; Kardynal, B.E.; Stevenson, R.M.; Shields, A.J.; Lobo, C.J.; Cooper, K.; Beattie, N.S.; Ritchie, D.A.; Pepper, M. Electrically driven single-photon source. Science 2002, 295, 102. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Ghosh, S.; Stiff-Roberts, A.D. Quantum dot opto-electronic devices. Annu. Rev. Mater. Res. 2004, 34, 1–40. [Google Scholar] [CrossRef]
- Hatami, F.; Ledentsov, N.N.; Grundmann, M.; Böhrer, J.; Heinrichsdorff, F.; Beer, M.; Bimberg, D.; Ruvimov, S.S.; Werner, P.; Gosele, U.; et al. Radiative recombination in type-II GaSb/GaAs quantum dots. Appl. Phys. Lett. 1995, 67, 656. [Google Scholar] [CrossRef]
- Sun, C.-K.; Wang, G.; Bowers, J.E.; Brar, B.; Blank, H.-R.; Kroemer, H.; Pilkuhn, M.H. Optical investigations of the dynamic behavior of GaSb/GaAs quantum dots. Appl. Phys. Lett. 1996, 68, 1543. [Google Scholar] [CrossRef]
- Couto, D.D., Jr.; Almeida, P.T.d.; Santos, G.E.d.; Balanta, M.A.G.; Andriolo, H.F.; Brum, J.A.; Brasil, M.J.S.P.; Iikawa, F.; Liang, B.L.; Huffaker, D.L. Carrier dynamics dictated by bimolecular recombination in type-II quantum dots coupled to quantum wells. J. Appl. Phys. 2016, 120, 084305. [Google Scholar] [CrossRef]
- Yuan, Q.; Liang, B.L.; Luo, S.P.; Wang, Y.; Yan, Q.G.; Wang, S.F.; Fu, G.S.; Mazur, Y.I.; Maidaniuk, Y.; Ware, M.E.; et al. Type-II GaSb quantum dots grown on InAlAs/InP (001) by droplet epitaxy. Nanotechnology 2020, 31, 315701. [Google Scholar] [CrossRef]
- Geller, M.; Kapteyn, C.; Müller-Kirsch, L.; Heitz, R.; Bimberg, D. 450 meV hole localization in GaSb/GaAs quantum dots. Appl. Phys. Lett. 2003, 82, 2706. [Google Scholar] [CrossRef]
- Shoji, Y.; Tamaki, R.; Okada, Y. Temperature Dependence of Carrier Extraction Processes in GaSb/AlGaAs Quantum Nanostructure Intermediate-Band Solar Cells. Nanomaterials 2021, 11, 344. [Google Scholar] [CrossRef]
- Laghumavarapu, R.B.; Liang, B.L.; Bittner, Z.; Navruz, T.S.; Hubbard, S.; Huffaker, D.L. GaSb/InGaAs quantum dot-well hybrid structures as active regions in solar cells. Sol. Energy Mater. Sol. Cells 2013, 114, 165. [Google Scholar] [CrossRef]
- Lin, W.-H.; Tseng, C.-C.; Chao, K.-P.; Mai, S.-C.; Kung, S.-Y.; Wu, S.-Y. High-Temperature Operation GaSb/GaAs Quantum-Dot Infrared Photodetectors. IEEE Photonics Technol. Lett. 2011, 23, 106. [Google Scholar] [CrossRef]
- Ramiro, I.; Antolın, E.; Hwang, J.Y.; Teran, A.; Martin, A.J.; Linares, P.G.; Millunchick, J.; Phillips, J.; Marti, A.; Luque, A. Three-bandgap absolute quantum efficiency in GaSb/GaAs quantum dot intermediate band solar cells. IEEE J. Photovolt. JPV 2017, 7, 508. [Google Scholar] [CrossRef]
- Shoji, Y.; Tamaki, R.; Okada, Y. Multi-stacked GaSb/GaAs type-II quantum nanostructures for application to intermediate band solar cells. AIP Adv. 2017, 7, 065305. [Google Scholar] [CrossRef]
- Ramiro, I.; Villa, J.; Tablero, C.; Antolín, E.; Luque, A.; Martí, A.; Hwang, J.; Phillips, J.; Martin, A.J.; Millunchick, J. Analysis of the intermediate-band absorption properties of type-II GaSb/GaAs quantum-dot photovoltaics. Phys. Rev. B 2017, 96, 125422. [Google Scholar] [CrossRef]
- Michl, J.; Peniakov, G.; Pfenning, A.; Hilska, J.; Chellu, A.; Bader, A.; Guina, M.; Höfling, S.; Hakkarainen, T.; HuberLoyola, T. Strain-Free GaSb quantum dots as single-photon sources in the telecom S-band. Adv. Quantum Technol. 2023, 6, 2300180. [Google Scholar] [CrossRef]
- Baik, M.; Kyhm, J.H.; Kang, H.K.; Jeong, K.S.; Kim, J.S.; Cho, M.H.; Song, J.D. Optical characteristics of type-II hexagonal-shaped GaSb quantum dots on GaAs synthesized using nanowire self-growth mechanism from Ga metal droplet. Sci. Rep. 2021, 11, 7699. [Google Scholar] [CrossRef] [PubMed]
- Komolibus, K.; Piwonski, T.; Reyner, C.J.; Liang, B.L.; Huyet, G.; Huffaker, D.L.; Viktorov, E.A.; Houlihan, J. Absorption dynamics of type-II GaSb/GaAs quantum dots. Opt. Mater. Express 2017, 7, 1424. [Google Scholar] [CrossRef]
- Li, Z.-F.; Lu, W.; Liu, X.-Q.; Chen, X.-S.; Shen, S.C.; Fu, Y.; Willander, M.; Tan, H.H.; Jagdish, C. Determination of Carrier-Transfer Length from Side-Wall Quantum Well to Quantum Wire by Micro-Photoluminescence Scanning. J. Electron. Mater. 2003, 32, 913. [Google Scholar] [CrossRef]
- Niemeyer, M.; Ohlmann, J.; Walker, A.W.; Kleinschmidt, P.; Lang, R.; Hannappel, T.; Dimroth, F.; Lackner, D. Minority carrier diffusion length, lifetime and mobility in p-type GaAs and GaInAs. J. Appl. Phys. 2017, 122, 115702. [Google Scholar] [CrossRef]
- Kawazu, T.; Mano, T.; Noda, T.; Sakak, H. Optical properties of GaSb/GaAs type-II quantum dots grown by droplet epitaxy. Appl. Phys. Lett. 2009, 94, 081911. [Google Scholar] [CrossRef]
- Hatami, F.; Grundmann, M.; Ledentsov, N.N.; Heinrichsdorff, F.; Heitz, R.; Böhrer, J.; Bimberg, D.; Ruvimov, S.S.; Werner, P.; Ustinov, V.M.; et al. Carrier dynamics in type-II GaSb/GaAs quantum dots. Phys. Rev. B 1998, 57, 4635. [Google Scholar] [CrossRef]
- Alonso-Álvarez, D.; Alén, B.; García, J.M.; Ripalda, J.M. Optical investigation of type II GaSb/GaAs self-assembled quantum dots. Appl. Phys. Lett. 2007, 91, 263103. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.H.; Xie, H.; Lin, H.Y.; Lu, H.B.; Wang, C.; Sun, Y.; Dai, N. Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy. Infrared Phys. Tech. 2018, 91, 68. [Google Scholar] [CrossRef]
- Gao, X.; Wei, Z.; Zhao, F.; Yang, Y.; Chen, R.; Fang, X.; Tang, J.; Fang, D.; Wang, D.; Li, R.; et al. Investigation of localized states in GaAsSb epilayers grown by molecular beam epitaxy. Sci. Rep. 2016, 6, 29112. [Google Scholar] [CrossRef] [PubMed]
- Motlan; Goldys, E.M. Photoluminescence of multilayer GaSb/GaAs self-assembled quantum dots grown by metalorganic chemical vapor deposition at atmospheric pressure. Appl. Phys. Lett. 2001, 79, 2976. [Google Scholar]
- Klenovský, P.; Steindl, P.; Geffroy, D. Excitonic structure and pumping power dependent emission blueshift of type-II quantum dots. Sci. Rep. 2017, 7, 45568. [Google Scholar] [CrossRef]
- Gradkowski, K.; Ochalski, T.J.; Williams, D.P.; Healy, S.B.; Tatebayashi, J.; Balakrishnan, G.; O’Reilly, E.P.; Huyet, G.; Huffaker, D.L. Coulomb effects in type-II Ga(As)Sb quantum dots. Phys. Stat. Sol. (b) 2009, 246, 752. [Google Scholar] [CrossRef]
- Zhou, X.L.; Chen, Y.H.; Jia, C.H.; Ye, X.L.; Xu, B.; Wang, Z.G. Interplay effects of temperature and injection power on photoluminescence of InAs/GaAs quantum dot with high and low areal density. J. Phys. D Appl. Phys. 2010, 43, 485102. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liang, B.L.; Guo, Q.L.; Wang, S.F.; Fu, G.S.; Mazur, Y.I.; Ware, M.E.; Salamo, G.J. Interplay effect of excitation and temperature on carrier transfer between vertically aligned InAs/GaAs quantum dot pairs. Crystals 2016, 6, 144. [Google Scholar] [CrossRef]
- Hayne, M.; Maes, J.; Bersier, S.; Moshchalkov, V.V.; Schliwa, A.; Müller-Kirsch, L.; Kapteyn, C.; Heitz, R.; Bimberg, D. Electron localization by self-assembled GaSb/GaAs quantum dots. Appl. Phys. Lett. 2003, 82, 4355. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Guo, Y.N.; Wang, S.F.; Fu, G.S.; Mazur, Y.I.; Ware, M.E.; Salamo, G.J.; Liang, B.L. Complex exciton dynamics with elevated temperature in a GaAsSb/GaAs quantum well heterostructure. Appl. Phys. Lett. 2023, 122, 173105. [Google Scholar] [CrossRef]
- Lourenço, S.A.; Dias, I.F.L.; Duarte, J.L.; Laureto, E.; Aquino, V.M.; Harmand, J.C. Temperature-dependent photoluminescence spectra of GaAsSb/AlGaAs and GaAsSbN/GaAs single quantum wells under different excitation intensities. Braz. J. Phys. 2007, 37, 1212. [Google Scholar] [CrossRef]
- Dyksik, M.; Motyka, M.; Weih, R.; Hoefling, S.; Kamp, M.; Sek, G.; Misiewicz, J. Carrier transfer between confined and localized states in Type II InAs/GaAsSb quantum wells. Opt. Quantum Electron. 2017, 49, 59. [Google Scholar] [CrossRef]
- Liang, B.L.; Lin, A.; Pavarelli, N.; Reyner, C.J.; Tatebayashi, J.; Nunna, K.; He, J.; Ochalski, T.J.; Huyet, G.; Huffaker, D.L. GaSb/GaAs type-II quantum dots grown by droplet epitaxy. Nanotechnology 2009, 20, 455604. [Google Scholar] [CrossRef] [PubMed]
- Mazur, Y.I.; Wang, Z.M.; Tarasov, G.G.; Xiao, M.; Salamo, G.J.; Tomm, J.W.; Talalaev, V.; Kissel, H. Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures. Appl. Phys. Lett. 2005, 86, 063102. [Google Scholar] [CrossRef]
- Sun, M.; Simmonds, P.J.; Laghumavarapu, R.B.; Lin, A.; Reyner, C.J.; Duan, H.-S.; Liang, B.L.; Huffaker, D.L. Effects of GaAs(Sb) cladding layers on InAs/AlAsSb quantum dots. Appl. Phys. Lett. 2013, 102, 023107. [Google Scholar] [CrossRef]
- An, C.S.; Jang, Y.D.; Lee, H.; Lee, D.; Song, J.D.; Choi, W.J. Delayed emission from InGaAs/GaAs quantum dots grown by migration-enhanced epitaxy due to carrier localization in a wetting layer. J. Appl. Phys. 2013, 113, 173503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.-Y.; Wang, Y.; Mazur, Y.I.; Ware, M.E.; Salamo, G.J.; Liang, B.L. Optical Characterization of the Interplay Between Carrier Localization and Carrier Injection in Self-Assembled GaSb/GaAs Quantum Dots. Optics 2025, 6, 33. https://doi.org/10.3390/opt6030033
Ma S-Y, Wang Y, Mazur YI, Ware ME, Salamo GJ, Liang BL. Optical Characterization of the Interplay Between Carrier Localization and Carrier Injection in Self-Assembled GaSb/GaAs Quantum Dots. Optics. 2025; 6(3):33. https://doi.org/10.3390/opt6030033
Chicago/Turabian StyleMa, Si-Yuan, Ying Wang, Yuriy I. Mazur, Morgan E. Ware, Gregory J. Salamo, and Bao Lai Liang. 2025. "Optical Characterization of the Interplay Between Carrier Localization and Carrier Injection in Self-Assembled GaSb/GaAs Quantum Dots" Optics 6, no. 3: 33. https://doi.org/10.3390/opt6030033
APA StyleMa, S.-Y., Wang, Y., Mazur, Y. I., Ware, M. E., Salamo, G. J., & Liang, B. L. (2025). Optical Characterization of the Interplay Between Carrier Localization and Carrier Injection in Self-Assembled GaSb/GaAs Quantum Dots. Optics, 6(3), 33. https://doi.org/10.3390/opt6030033