Functional Optical Balance in Cataract Surgery: A Review
Abstract
1. Introduction
2. Methods
Quality Assessment
3. Review
3.1. Background
3.1.1. Depth of Focus and Optical Aberrations
3.1.2. IOL Optical Profiles and Visual Range
3.1.3. Binocular Summation and Ocular Dominance
3.1.4. Neural Adaptation
3.1.5. Evidence from the Literature
3.1.6. Mix-and-Match vs. Bilateral Identical IOLs
3.1.7. Hybrid Monovision (Monofocal + Multifocal)
3.1.8. Blending Different Add Powers or Designs
Visual Outcomes of Mix-and-Match Presbyopia-Correcting IOL Strategies (Asymmetric Combination vs. Bilateral Same IOL) | ||||||
Study (Year) | IOL Combination Compared | Distance VA | Intermediate VA | Near VA | Patient Satisfaction | Dysphotopsias/Side Effects |
[5] | Bilateral trifocal vs. Blended bifocals (+2.5 D & +3.0 D) | ~20/20 both eyes | ~20/20 both trifocal slightly better 2 m–67 cm range | ~20/25 both | High in both groups; no difference in NEI VFQ or overall QoV scores (trifocal group noted better vision at dashboard distance) | Low overall; trifocal group had more patients reporting visual disturbances as “bothersome” (halos) despite similar incidence. |
[26] | Bilateral low-add (+2.5) vs. Mixed adds (+2.5/+3.0 D bifocal mix) | ~20/20 both groups | ~20/20 both groups | Slightly better in mixed-add (improved near acuity vs. bilateral low-add) | High in both groups; mild asymmetry did not compromise satisfaction | Minimal in both; no increase in halos with mixed adds (trend toward fewer complaints in mix). |
[27] | Bilateral trifocal vs. Hybrid EDOF + bifocal (Symfony EDOF in one eye, diffractive bifocal in other) | ~20/20 | 20/20 | Trifocal ~20/20; hybrid slightly reduced (≈20/30) near acuity | High in both; hybrid group noted better night-vision confidence | Hybrid combo had fewer halos and night halos/glare complaints compared to bilateral trifocal. |
[29] | Bilateral trifocal (AT LISA) vs. Mix & match (EDOF AT LARA in dominant eye + trifocal AT LISA in other) | ~20/20 both groups | Better in mix: e.g., 20/20 vs. 20/25 at 60 cm | ~20/20 both | Very high in both; mixed IOL group rated night driving vision significantly higher | Mixed group had fewer halos and better mesopic contrast sensitivity than bilateral trifocal. |
[30] | Two mix-and-match trifocal + EDOF combos (FineVision Triumf + HP vs. ZEISS AT LARA + AT LISA) | ~20/20 (both combinations) | Both provided functional ~20/20 intermediate; one mix (AT LARA-LISA) slightly better −1.0 to −1.5 D (intermediate range) | Both ~20/20; the other mix (FineVision) slightly better at −3.0 to −4.0 D (near range) | High in both groups (binocular spectacle independence achieved in all cases—retrospective study) | No significant differences reported between the two mix-and-match regimens; asymmetric trifocal + EDOF provided good far/intermediate/near with minimal photic complaints. |
[31] | Bilateral trifocal vs. Blended bifocals (+3.0 D & +4.0 D in opposite eyes) | ~20/20 both groups | ~20/20 both | ~20/25 both | High in both; blended-group patients reported slightly greater reading comfort | Similar low incidence of halos; blended adds group had marginally less near strain (subjective reports). |
Visual Outcomes of Hybrid Monovision Strategies (Monofocal in One Eye Combined with Multifocal/EDOF in Fellow Eye) | ||||||
Study (Year) | IOL Combination (Hybrid vs. Control) | Distance VA | Intermediate VA | Near VA | Patient Satisfaction | Dysphotopsias/Notes |
[7] | Monofocal (dominant) + Multifocal (non-dom); vs. bilateral monofocal or multifocal (historical) | ~20/20 (dominant eye provides crisp distance) | ~20/30 (functional at intermediate distances) | ~20/30–20/40 (significantly improved near vs. bilateral mono) | High-greater spectacle independence than bilateral monofocal; patients preferred hybrid to needing reading glasses | Fewer halos and better contrast than bilateral multifocal; hybrid monovision seen as an ideal compromise for those intolerant of full multifocality. |
[6] | Monovision vs. Multifocal IOLs (systematic review data) | ~20/20 (monovision eye targets distance) | ~20/40 (monovision eye can target intermediate with mini-monovision) | ~20/40 (non-dominant eye targeted for near in monovision) | Monovision: ~80% success/satisfaction (high spectacle independence); Multifocal IOLs: high near satisfaction but more complaints | Monovision: minimal halos/glare; reduced stereopsis at larger anisometropia. Multifocal IOLs: more halos/glare. Hybrid monovision is highlighted as balancing these effects. |
[13] | Mix: Enhanced monofocal (Eyhance) + Diffractive EDOF (Synergy) vs. Bilateral Synergy trifocals | ~20/20 both groups | ~20/20 both (no sig. difference in defocus to −2.0 D) | Near advantage with bilateral trifocals: ~20/25 at 40–50 cm vs. ~20/32 with mix | Good in both: slightly higher “completely satisfied” rate in bilateral trifocal group (owing to sharper near vision) | Halos/glare: significantly more in bilateral trifocal group; mix combo had milder night halos at the cost of a little near clarity. |
[12] | Extended Monovision: Monofocal (dominant eye) + Asymmetric refractive EDOF (Lentis Comfort MF15) at −1.25 D target (non-dom) | 20/22 | 20/15 | 20/20 | High: 83% overall satisfaction; ~89% reported no glasses needed for daily tasks | Low dysphotopsias: Halo intensity was mild (asymmetric refractive design); patients showed strong neuroadaptation. Study proposes this combo as a promising alternative to diffractive multifocals. |
3.1.9. Patient-Reported Outcomes and Subjective Visual Quality
3.1.10. Limitations and Gaps in the Current Evidence
3.1.11. Preoperative Evaluation and Candidate Selection
3.1.12. Surgical Planning and Staged Customization
3.1.13. Postoperative Assessment and Refinement
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
D | Diopter |
EDOF | Extended Depth of Focus |
EMV | Enhanced Monovision Lens (Rayner) |
FOB | Functional Optical Balance |
IOL | Intraocular Lens |
IOLMaster | Intraocular Lens Biometry Device (Carl Zeiss) |
LASIK | Laser-Assisted In Situ Keratomileusis |
Symfony | Extended Depth Focus Intraocular Lens (Johnson & Johnson) |
Tecnis | Brand Family of Intraocular Lenses (Johnson & Johnson) |
Vivity | Extended Depth of Focus Intraocular Lens (Alcon) |
Eyhance | Enhanced Monofocal Intraocular Lens (Johnson & Johnson) |
AT LISA | Trifocal Intraocular Lens (Carl Zeiss) |
AT LARA | Extended Depth-of-Focus Intraocular Lens (Carl Zeiss) |
References
- Amaral, D.C.; Cheidde, L.; Ferreira, B.F.A.; Júnior, P.P.L.; Menezes, I.; Gomes, V.; Esporcatte, B.L.B.; Alves, M.R.; Monteiro, M.L.R.; Yamamoto, J.H.; et al. Cataract in HIV Patients: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e72370. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.M.; Alves, R.V.E.; Cunha, A.D.; Goldfarb, C.L.; do Rêgo Castro, C.E.; Jaime, G.; Noguera, L.R.; Carricondo, P.C. The use of cold saline solutions in cataract surgery by phacoemulsification: A systematic review and meta-analysis of randomized controlled trials. Expert Rev. Ophthalmol. 2025, 20, 133–140. [Google Scholar] [CrossRef]
- Guedes, J.; Pereira, S.F.; Amaral, D.C.; Hespanhol, L.C.; Faneli, A.C.; Oliveira, R.D.C.; Mora-Paez, D.J.; Fontes, B.M. Phaco-Chop versus Divide-and-Conquer in Patients Who Underwent Cataract Surgery: A Systematic Review and Meta-Analysis. Clin. Ophthalmol. 2024, 18, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Kanclerz, P.; Toto, F.; Grzybowski, A.; Alio, J.L. Extended Depth-of-Field Intraocular Lenses: An Update. Asia. Pac. J. Ophthalmol. 2020, 9, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, K.G.; Potvin, R. Comparison of visual outcomes and subjective visual quality after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of apodized diffractive bifocal intraocular lenses. Clin. Ophthalmol. 2016, 10, 805–811. [Google Scholar] [CrossRef]
- Labiris, G.; Toli, A.; Perente, A.; Ntonti, P.; Kozobolis, V.P. A systematic review of pseudophakic monovision for presbyopia correction. Int. J. Ophthalmol. 2017, 10, 992–1000. [Google Scholar] [CrossRef]
- Iida, Y.; Shimizu, K.; Ito, M. Pseudophakic monovision using monofocal and multifocal intraocular lenses: Hybrid monovision. J. Cataract. Refract. Surg. 2011, 37, 2001–2005. [Google Scholar] [CrossRef]
- Zhu, M.; Fan, W.; Zhang, G. Visual outcomes and subjective experience with three intraocular lenses based presbyopia correcting strategies in cataract patients. Sci. Rep. 2022, 12, 19625. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, D.; Wang, Y.; Chen, W.; Xiao, W.; Xiang, Y.; Zhu, Y.; Chen, C.; Dong, X.; Liu, Y.; et al. Comparison of Visual Neuroadaptations After Multifocal and Monofocal Intraocular Lens Implantation. Front. Neurosci. 2021, 15, 648863. [Google Scholar] [CrossRef]
- Woodward, M.A.; Randleman, J.B.; Stulting, R.D. Dissatisfaction after multifocal intraocular lens implantation. J. Cataract. Refract. Surg. 2009, 35, 992–997. [Google Scholar] [CrossRef]
- Fernández, J.; Ribeiro, F.J.; Rodríguez-Vallejo, M.; Dupps, W.J.; Werner, L.; Srinivasan, S.; Kohnen, T. Standard for collecting and reporting outcomes of IOL-based refractive surgery: Update for enhanced monofocal, EDOF, and multifocal IOLs. J. Cataract. Refract. Surg. 2022, 48, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, D.; Tappeiner, C.; Blaha, A.; Goldblum, D.; Kyroudis, D. Outcome of a Mix-and-Match Approach with a Monofocal Aspherical and a Bifocal Extended Depth-of-Focus Intraocular Lens to Achieve Extended Monovision in Cataract Patients. Klin. Monbl. Augenheilkd. 2025, 242, 372–378. [Google Scholar] [CrossRef]
- Hida, W.T.; Moscovici, B.K.; Cortez, C.M.; Colombo-Barboza, G.N.; Tzelikis, P.F.M.; Motta, A.F.P.; De Medeiros, A.L.; Nose, W.; Carricondo, P.C. Comparison of visual outcomes of bilateral dual-technology diffractive intraocular lens vs blended enhanced monofocal with dual-technology intraocular lens. J. Cataract. Refract. Surg. 2024, 50, 401–406. [Google Scholar] [CrossRef]
- Nanavaty, M.A.; Mukhija, R.; Ashena, Z.; Bunce, C.; Spalton, D.J. Incidence and factors for pseudoaccommodation after monofocal lens implantation: The Monofocal Extended Range of Vision study. J. Cataract. Refract. Surg. 2023, 49, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Miret, J.J.; Camps, V.J.; García, C.; Caballero, M.T.; Gonzalez-Leal, J.M. Analysis and comparison of monofocal, extended depth of focus and trifocal intraocular lens profiles. Sci. Rep. 2022, 12, 8654. [Google Scholar] [CrossRef]
- McCabe, C.M.; Peterson, R.; Hull, J.; Bala, C. Impact of Aspheric Monofocal Intraocular Lens Implantation on Uncorrected Intermediate Visual Acuity: A Combined Analysis. Clin. Ophthalmol. 2024, 18, 1491–1501. [Google Scholar] [CrossRef] [PubMed]
- Mencucci, R.; Morelli, A.; Cennamo, M.; Roszkowska, A.M.; Favuzza, E. Enhanced Monofocal Intraocular Lenses: A Retrospective, Comparative Study between Three Different Models. J. Clin. Med. 2023, 12, 3588. [Google Scholar] [CrossRef]
- Kohnen, T.; Petermann, K.; Böhm, M.; Hemkeppler, E.; Ahmad, W.; Hinzelmann, L.; Pawlowicz, K.; Jandewerth, T.; Lwowski, C. Nondiffractive wavefront-shaping extended depth-of-focus intraocular lens: Visual performance and patient-reported outcomes. J. Cataract. Refract. Surg. 2022, 48, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Friedman, D.S.; Jin, S.; Yusufu, M.; Zhang, J.; Wang, J.; Hou, S.; Zhu, G.; Wang, B.; Xiong, Y.; et al. Multifocal versus monofocal intraocular lenses for age-related cataract patients: A system review and meta-analysis based on randomized controlled trials. Surv. Ophthalmol. 2019, 64, 647–658. [Google Scholar] [CrossRef]
- Sverdlichenko, I.; Mandelcorn, M.S.; Issashar Leibovitzh, G.; Mandelcorn, E.D.; Markowitz, S.N.; Tarita-Nistor, L. Binocular visual function and fixational control in patients with macular disease: A review. Ophthalmic Physiol. Opt. 2022, 42, 258–271. [Google Scholar] [CrossRef]
- Song, T.; Duan, X. Ocular dominance in cataract surgery: Research status and progress. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 33–41. [Google Scholar] [CrossRef]
- Martins Rosa, A.; Silva, M.F.; Ferreira, S.; Murta, J.; Castelo-Branco, M. Plasticity in the human visual cortex: An ophthalmology-based perspective. Biomed. Res. Int. 2013, 2013, 568354. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, K.G.; Potvin, R. Comparative visual performance with monofocal and multifocal intraocular lenses. Clin. Ophthalmol. 2013, 7, 1979–1985. [Google Scholar] [CrossRef]
- Hayashi, K.; Yoshida, M.; Manabe, S.; Hayashi, H. Optimal amount of anisometropia for pseudophakic monovision. J. Refract. Surg. 2011, 27, 332–338. [Google Scholar] [CrossRef]
- Stokkermans, T.J.; Day, S.H. Aniseikonia. [Updated 8 August 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK585108/ (accessed on 1 May 2025).
- Nuijts, R.M.; Jonker, S.M.; Kaufer, R.A.; Lapid-Gortzak, R.; Mendicute, J.; Martinez, C.P.; Schmickler, S.; Kohnen, T. Bilateral implantation of +2.5 D multifocal intraocular lens and contralateral implantation of +2.5 D and +3.0 D multifocal intraocular lenses: Clinical outcomes. J. Cataract. Refract. Surg. 2016, 42, 194–202. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, A.L.; de Araújo Rolim, A.G.; Motta, A.F.P.; Ventura, B.V.; Vilar, C.; Chaves, M.A.P.D.; Carricondo, P.C.; Hida, W.T. Comparison of visual outcomes after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of an extended depth of focus intraocular lens with a diffractive bifocal intraocular lens. Clin. Ophthalmol. 2017, 11, 1911–1916. [Google Scholar] [CrossRef]
- Hayashi, K.; Sato, T.; Igarashi, C.; Yoshida, M. Comparison of visual outcomes between bilateral trifocal intraocular lenses and combined bifocal intraocular lenses with different near addition. Jpn. J. Ophthalmol. 2019, 63, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Acar, B.; Nurozler Tabakci, B. Clinical outcome comparison: Bilateral trifocal vs. mix-match extended depth of focus and trifocal intraocular lenses. Int. Ophthalmol. 2021, 41, 3675–3686. [Google Scholar] [CrossRef]
- Kim, J.W.; Eom, Y.; Park, W.; Song, J.S.; Jeong, J.W.; Park, S.K.; Kim, H.M. Comparison of visual outcomes after two types of mix-and-match implanted trifocal extended-depth-of-focus and trifocal intraocular lenses. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 3275–3283. [Google Scholar] [CrossRef]
- Vilar, C.; Hida, W.T.; de Medeiros, A.L.; Magalhães, K.R.P.; de Moraes Tzelikis, P.F.; Chaves, M.A.P.D.; Motta, A.F.P.; Carricondo, P.C.; Alves, M.R.; Nosé, W. Comparison between bilateral implantation of a trifocal intraocular lens and blended implantation of two bifocal intraocular lenses. Clin. Ophthalmol. 2017, 11, 1393–1397. [Google Scholar] [CrossRef]
- Passi, S.F.; Thompson, A.C.; Gupta, P.K. Comparison of agreement and efficiency of a swept source-optical coherence tomography device and an optical low-coherence reflectometry device for biometry measurements during cataract evaluation. Clin. Ophthalmol. 2018, 12, 2245–2251. [Google Scholar] [CrossRef]
- Schuster, A.K.; Tesarz, J.; Vossmerbaeumer, U. Ocular wavefront analysis of aspheric compared with spherical monofocal intraocular lenses in cataract surgery: Systematic review with metaanalysis. J. Cataract. Refract. Surg. 2015, 41, 1088–1097. [Google Scholar] [CrossRef]
- Qi, Y.; Lin, J.; Leng, L.; Zhao, G.; Wang, Q.; Li, C.; Hu, L. Role of angle κ in visual quality in patients with a trifocal diffractive intraocular lens. J. Cataract. Refract. Surg. 2018, 44, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Louzada, R.N.; Alves, M.R. Sobre a necessidade de políticas nacionais de educação em saúde ocular no Brasil. eOftalmo 2024, 10, 1–4. [Google Scholar] [CrossRef]
- Martínez Palmer, A.; Gómez Faiña, P.; España Albelda, A.; Comas Serrano, M.; Nahra Saad, D.; Castilla Céspedes, M. Visual function with bilateral implantation of monofocal and multifocal intraocular lenses: A prospective, randomized, controlled clinical trial. J. Refract. Surg. 2008, 24, 257–264. [Google Scholar] [CrossRef]
- Azen, S.P.; Varma, R.; Preston-Martin, S.; Ying-Lai, M.; Globe, D.; Hahn, S. Binocular visual acuity summation and inhibition in an ocular epidemiological study: The Los Angeles Latino Eye Study. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1742–1748. [Google Scholar]
- Barbot, A.; Pirog, J.T.; Ng, C.J.; Yoon, G. Neural adaptation to the eye’s optics through phase compensation. bioRxiv 2024. [Google Scholar] [CrossRef]
- Frampton, G.; Harris, P.; Cooper, K.; Lotery, A.; Shepherd, J. The clinical effectiveness and cost-effectiveness of second-eye cataract surgery: A systematic review and economic evaluation. Health Technol. Assess. 2014, 18, 1–206. [Google Scholar] [CrossRef] [PubMed]
- Tarib, I.; Kasier, I.; Herbers, C.; Hagen, P.; Breyer, D.; Kaymak, H.; Klabe, K.; Lucchesi, R.; Teisch, S.; Diakonis, V.F.; et al. Comparison of Visual Outcomes and Patient Satisfaction After Bilateral Implantation of an EDOF IOL and a Mix-and-Match Approach. J. Refract. Surg. 2019, 35, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.R.; Pineda, R. Intraoperative aberrometry: An update on applications and outcomes. Curr. Opin. Ophthalmol. 2023, 34, 48–57. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, D.C.; Magalhães, P.L.M.; Sá, A.G.; Neto, A.B.d.C.; de Medeiros, F.M.T.; Alves, M.R.; Guedes, J.; Louzada, R.N. Functional Optical Balance in Cataract Surgery: A Review. Optics 2025, 6, 36. https://doi.org/10.3390/opt6030036
Amaral DC, Magalhães PLM, Sá AG, Neto ABdC, de Medeiros FMT, Alves MR, Guedes J, Louzada RN. Functional Optical Balance in Cataract Surgery: A Review. Optics. 2025; 6(3):36. https://doi.org/10.3390/opt6030036
Chicago/Turabian StyleAmaral, Dillan Cunha, Pedro Lucas Machado Magalhães, Alex Gonçalves Sá, Alexandre Batista da Costa Neto, Flávio Moura Travassos de Medeiros, Milton Ruiz Alves, Jaime Guedes, and Ricardo Noguera Louzada. 2025. "Functional Optical Balance in Cataract Surgery: A Review" Optics 6, no. 3: 36. https://doi.org/10.3390/opt6030036
APA StyleAmaral, D. C., Magalhães, P. L. M., Sá, A. G., Neto, A. B. d. C., de Medeiros, F. M. T., Alves, M. R., Guedes, J., & Louzada, R. N. (2025). Functional Optical Balance in Cataract Surgery: A Review. Optics, 6(3), 36. https://doi.org/10.3390/opt6030036