A Novel Method for the Processing of Optical Frequency Domain Reflectometry Traces
Abstract
1. Introduction
2. Experimental Setup and Basic Signal Processing
- Distortion of Fresnel reflection peaks.
- Attenuation coefficient on a non-reflecting event.
- Signal dispersion on a monotonous segment.
- Displacement of the Rayleigh scattering region after processing.
2.1. Empirical Mode Decomposition
- After the Fourier transform was performed in the previous stage, all local maxima and minima of the original OFDR trace are searched for.
- Using the found extrema, the upper envelope (by connecting the maxima of the smooth curve) and the lower envelope (by connecting the minimum values) are constructed.
- The average value is calculated by averaging the values of the upper and lower envelopes at each point of the signal.
- Then the difference between the original signal and the average value is calculated, and this way, the first IMF is obtained. This process is repeated recursively until one of the two process termination conditions occurs:
- -
- The residual component becomes practically constant or a monotonic function.
- -
- The number of extracted IMFs reaches a predetermined maximum.
2.2. The AFDA Method
2.3. Elliptical Arc Fitting (EAF) Method
- The source data is digitized into an array of real variables P with a bit depth corresponding to the bit depth of the analog-to-digital converter (in this study, 16 bits).
- A two-dimensional array of coordinates is created from the trace, with one cell in the array corresponding to a single point in the trace. One cell of the array contains two values (abscissa, ordinate—[i, P]).
- A procedure is applied to each coordinate in the array that counts the number of other points in the array within a specified radius of the current coordinate. This procedure uses a formula to determine whether a point is within the specified radius of another point and increments a counter variable M for each such point. The condition for the points to fall into the specified area is determined using the following formula:
- 4.
- When all the elements within the scan window have been updated, it advances one position to the right (in the direction of incrementing the element number), until the end of the array is reached.
3. Results and Discussion
3.1. Main Results
3.2. The EAF Method Compared to the Other Ones
3.2.1. Distortion of Fresnel Reflection Peaks
3.2.2. The Attenuation Coefficient on a Non-Reflecting Event
3.2.3. Signal Dispersion on a Monotonous Segment
3.2.4. Displacement of Rayleigh Scattering Region After Processing
4. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sosunov, A.V.; Petukhov, I.V.; Kichigin, V.I.; Ponomarev, R.S.; Mololkin, A.A.; Kuneva, M. The Impact of Various Factors on the Surface of X-Cut Lithium Niobate and Properties of Proton-Exchanged Waveguides. Ferroelectrics 2024, 618, 1300–1312. [Google Scholar] [CrossRef]
- Petrov, A.; Golovchenko, A.; Bisyarin, M.; Ushakov, N.; Kotov, O. Intermodal Fiber Interferometer with Spectral Interrogation and Fourier Analysis of Output Signals for Sensor Application. Photonics 2024, 11, 423. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Z.; Xiao, K.; Ushakov, N.; Kumar, S.; Li, X.; Min, R. Portable Optical Fiber Biosensors Integrated with Smartphone: Technologies, Applications, and Challenges. Biomed. Opt. Express 2024, 15, 1630. [Google Scholar] [CrossRef]
- Zhirnov, A.A.; Choban, T.V.; Stepanov, K.V.; Koshelev, K.I.; Chernutsky, A.O.; Pnev, A.B.; Karasik, V.E. Distributed Acoustic Sensor Using a Double Sagnac Interferometer Based on Wavelength Division Multiplexing. Sensors 2022, 22, 2772. [Google Scholar] [CrossRef] [PubMed]
- Moskalev, D.; Voblikov, E.; Kozlov, A.; Salgaeva, U.; Maximenko, V.; Krishtop, V. Model of Anisotropic Ring Resonator Based on Coupled Mode Theory. Opt. Contin. 2025, 4, 210. [Google Scholar] [CrossRef]
- Lobach, I.A.; Fotiadi, A.A.; Yatseev, V.A.; Konstantinov, Y.A.; Barkov, F.L.; Claude, D.; Kambur, D.A.; Belokrylov, M.E.; Turov, A.T.; Korobko, D.A. Newest Methods and Approaches to Enhance the Performance of Optical Frequency-Domain Reflectometers. Sensors 2024, 24, 5432. [Google Scholar] [CrossRef]
- Krivosheina, D.A.; Tkachenko, A.Y.; Lobach, I.A.; Kablukov, S.I. Coherent Optical Frequency Reflectometer Based on a Self-Sweeping Fiber Laser for Distributed Measurements. Bull. Lebedev Phys. Inst. 2023, 50 (Suppl. S3), S305–S313. [Google Scholar] [CrossRef]
- Liang, C.; Bai, Q.; Wang, Y.; Gao, Y.; Zhang, H.; Jin, B. Spatial Resolution Enhancement in OFDR Using Margenau Hill Spectrogram. J. Light. Technol. 2024, 42, 3399–3408. [Google Scholar] [CrossRef]
- Ogu, R.; Tanimura, D.; Zhang, C.; Ito, F.; Yoshimura, Y.; Aoshika, H.; Imai, M. Long Range Static and Dynamic Strain Measurement by Using Phase-Noise-Compensated OFDR. J. Light. Technol. 2024, 42, 6240–6245. [Google Scholar] [CrossRef]
- Guo, Z.; Yan, J.; Han, G.; Yu, Y.; Greenwood, D.; Marco, J. High-Resolution Φ-OFDR Using Phase Unwrap and Nonlinearity Suppression. J. Light. Technol. 2023, 41, 2885–2891. [Google Scholar] [CrossRef]
- Wosniok, A.; Krebber, K. Distributed Fiber Optic Radiation Sensors. Saf. Nucl. Waste Dispos. 2021, 1, 15–16. [Google Scholar] [CrossRef]
- Poorghasem, S.; Shah, H.A.; Meng, W.; Bao, Y. Measuring Early-Age Shrinkage of Concrete Incorporating Shrinkage Reducing Admixtures Using Distributed Fiber Optic Sensors. Measurement 2025, 246, 116763. [Google Scholar] [CrossRef]
- Tan, X.; Poorghasem, S.; Huang, Y.; Feng, X.; Bao, Y. Monitoring of Pipelines Subjected to Interactive Bending and Dent Using Distributed Fiber Optic Sensors. Autom. Constr. 2024, 160, 105306. [Google Scholar] [CrossRef]
- Balbier, C.; Bucks, S.; Scurti, F.; Lee, S. High-Temperature Fiber Optic Sensor Performance for Heat Pipe Instrumentation. IEEE Sens. J. 2025, 25, 17117–17127. [Google Scholar] [CrossRef]
- Romanet, M.; Rochat, É.; Beugnot, J.-C.; Phan Huy, K. Extended-Range and Faster Photon-Counting Brillouin Optical Time Domain Reflectometer. Optica 2025, 12, 564. [Google Scholar] [CrossRef]
- Wang, H.; Fratta, D. Fiber Optic Monitoring in Mines. In Proceedings of the 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, CO, USA, 23–26 June 2024; ARMA: Golden, CO, USA, 2024; p. D021S012R001. [Google Scholar] [CrossRef]
- Hong, C.; Xu, C.; Chen, W.; Liu, J.; Tan, J. Monitoring Excavation-Induced Deformation of a Secant Pile Wall Using Distributed Fiber Optic Sensors. Sensors 2025, 25, 254. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhou, J.; Sun, C.; Zhang, X.; Ansari, F. Theoretical and Experimental Investigations into Crack Detection with BOTDR-Distributed Fiber Optic Sensors. J. Eng. Mech. 2013, 139, 1797–1807. [Google Scholar] [CrossRef]
- Bogachkov, I.V.; Gorlov, N.I. Experimental Investigations into Characteristics of Mandelshtam–Brillouin Scattering in Single-Mode Optical Fiber of Various Types. Instrum. Exp. Tech. 2023, 66, 775–781. [Google Scholar] [CrossRef]
- Li, C.; Li, Y. Fitting of Brillouin Spectrum Based on LabVIEW. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing China, 24 September 2009; IEEE: Beijing, China, 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Lourakis, M.L.A.; Argyros, A.A. Is Levenberg-Marquardt the Most Efficient Optimization Algorithm for Implementing Bundle Adjustment? In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Online, 17–21 October 2005; IEEE: Beijing, China, 2005; Volume 2, pp. 1526–1531. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, S.; Li, X.; Zhang, R.; Kong, M. Optimization of the Moving Averaging–Moving Differential Algorithm for Φ-OTDR. Appl. Opt. 2022, 61, 5633. [Google Scholar] [CrossRef]
- Jabidin, H.Z.; Ibrahim, S.A.; Kalilur Raheem, M.M.; Mansoor, A.; Zan, M.S.D.; Bakar, A.A.A.; Abdul-Rashid, H.A. Analysis of Combined Moving-Average Moving-Differential Algorithms to Enhance SNR in Distributed Optical Fiber Acoustic Sensors. Results Eng. 2025, 26, 105268. [Google Scholar] [CrossRef]
- Kwon, Y.-S.; Naeem, K.; Jeon, M.Y.; Kwon, I. Effect of Parameters in Moving Average Method for Event Detection Enhancement Using Phase Sensitive OTDR. In Proceedings of the 25th Optical Fiber Sensors Conference (OFS), Jeju, Republic of Korea, 28 April 2017. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Q.; He, Z. Phase-Detection Distributed Fiber-Optic Vibration Sensor without Fading-Noise Based on Time-Gated Digital OFDR. Opt. Express 2017, 25, 8315. [Google Scholar] [CrossRef]
- Fu, C.; Li, P.; Sui, R.; Peng, Z.; Zhong, H.; Yin, X.; Wang, Y. High-Spatial-Resolution OFDR Distributed Temperature Sensor Based on Step-by-Step and Image Wavelet Denoising Methods. Sensors 2022, 22, 9972. [Google Scholar] [CrossRef] [PubMed]
- Alsahlanee, A.T. Convergence Rate for Low-Pass Infinite Impulse Response Digital Filter. J. Phys. Conf. Ser. 2021, 1963, 012103. [Google Scholar] [CrossRef]
- Belokrylov, M.E.; Kambur, D.A.; Konstantinov, Y.A.; Claude, D.; Barkov, F.L. An Optical Frequency Domain Reflectometer’s (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing. Sensors 2024, 24, 1253. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Turov, A.T.; Barkov, F.L.; Konstantinov, Y.A.; Korobko, D.A.; Lopez-Mercado, C.A.; Fotiadi, A.A. Activation Function Dynamic Averaging as a Technique for Nonlinear 2D Data Denoising in Distributed Acoustic Sensors. Algorithms 2023, 16, 440. [Google Scholar] [CrossRef]
- Goswami, O.P.; Shukla, A.; Kumar, M.; Bhargava, A. Optimal Design of Digital Low-Pass Filters Using Multiverse Optimization. J. Electr. Eng. 2024, 75, 253–257. [Google Scholar] [CrossRef]
- Turulin, I.I.; Mogheer, H.S. Method and Algorithm for Synthesis of Controlled Digital Low-Pass Butterworth Filters on the Example of A 4th Order Filter. In Proceedings of the International Ural Conference on Electrical Power Engineering (UralCon), Magnitogorsk, Russia, 23–25 September 2022; IEEE: Magnitogorsk, Russia, 2022; pp. 336–340. [Google Scholar] [CrossRef]
- Singh, D.S.; Kumar, M. Design and Implementation of Third Order Low Pass Digital FIR Filter Using Pipelining Retiming Technique. IJEAT 2021, 10, 178–184. [Google Scholar] [CrossRef]
- Darak, S.J.; Prasad, V.A.; Lai, E.M.-K. Efficient Implementation of Reconfigurable Warped Digital Filters with Variable Low-Pass, High-Pass, Bandpass, and Bandstop Responses. IEEE Trans. VLSI Syst. 2013, 21, 1165–1169. [Google Scholar] [CrossRef]
- Guo, Z.; Han, G.; Yan, J.; Greenwood, D.; Marco, J.; Yu, Y. Ultimate Spatial Resolution Realisation in Optical Frequency Domain Reflectometry with Equal Frequency Resampling. Sensors 2021, 21, 4632. [Google Scholar] [CrossRef]
- Zhao, S.; Cui, J.; Tan, J. Nonlinearity Correction in OFDR System Using a Zero-Crossing Detection-Based Clock and Self-Reference. Sensors 2019, 19, 3660. [Google Scholar] [CrossRef]
- Sakhabutdinov, A.J.; Morozov, O.G.; Ivanov, A.A.; Misbakhov, R.S. Multiple Frequencies Analysis in FBG Based Instantaneous Frequency Measurements. In Proceedings of the 2018 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 20–21 March 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Bazzo, J.P.; Pipa, D.R.; Martelli, C.; Vagner Da Silva, E.; Cardozo Da Silva, J.C. Improving Spatial Resolution of Raman DTS Using Total Variation Deconvolution. IEEE Sens. J. 2016, 16, 4425–4430. [Google Scholar] [CrossRef]
- Rosolem, J.B.; Bassan, F.R.; De Freitas, D.E.; Salgado, F.C. Raman DTS Based on OTDR Improved by Using Gain-Controlled EDFA and Pre-Shaped Simplex Code. IEEE Sens. J. 2017, 17, 3346–3353. [Google Scholar] [CrossRef]
Parameter/Method | AFDA | FF | EMD | EAF | Raw |
---|---|---|---|---|---|
Distortion of Fresnel reflection peaks, % | 14.2 | 53.8 | 42.6 | 0.0 | 0.0 |
Attenuation coefficient on a non-reflecting event, dB | 4.4 | 2.0 | 2.1 | 2.4 | 2.0 |
Signal dispersion on a monotonous segment, dB2 | 0.12 | 0.12 | 2.0 | 0.9 | 56 |
Displacement of the Rayleigh scattering region after processing, % | 67.3 | 36.2 | 27.2 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivosheev, A.; Kambur, D.; Turov, A.; Belokrylov, M.; Konstantinov, Y.; Agliullin, T.; Lipatnikov, K.; Barkov, F. A Novel Method for the Processing of Optical Frequency Domain Reflectometry Traces. Optics 2025, 6, 40. https://doi.org/10.3390/opt6030040
Krivosheev A, Kambur D, Turov A, Belokrylov M, Konstantinov Y, Agliullin T, Lipatnikov K, Barkov F. A Novel Method for the Processing of Optical Frequency Domain Reflectometry Traces. Optics. 2025; 6(3):40. https://doi.org/10.3390/opt6030040
Chicago/Turabian StyleKrivosheev, Anton, Dmitriy Kambur, Artem Turov, Max Belokrylov, Yuri Konstantinov, Timur Agliullin, Konstantin Lipatnikov, and Fedor Barkov. 2025. "A Novel Method for the Processing of Optical Frequency Domain Reflectometry Traces" Optics 6, no. 3: 40. https://doi.org/10.3390/opt6030040
APA StyleKrivosheev, A., Kambur, D., Turov, A., Belokrylov, M., Konstantinov, Y., Agliullin, T., Lipatnikov, K., & Barkov, F. (2025). A Novel Method for the Processing of Optical Frequency Domain Reflectometry Traces. Optics, 6(3), 40. https://doi.org/10.3390/opt6030040