Next Issue
Volume 7, June
Previous Issue
Volume 6, December
 
 

Physics, Volume 7, Issue 1 (March 2025) – 8 articles

Cover Story (view full-size image): Using the example of a Bessel beam, it is shown that a beam with initial circular polarization, propagating through an optically active medium devoid of linear birefringence, generates an optical vortex in the orthogonally polarized component. It is shown that a medium with true optical activity allows the mutual transformation of beams with radial and azimuthal polarization distributions, and that a sufficiently weak perturbation of a medium with true optical activity by linear birefringence leads to the destruction of an isotropic point. In the vicinity of this point, optical activity is suppressed by linear birefringence, so that a medium with a combined type of anisotropy reacts as a medium with true linear birefringence. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 1056 KiB  
Article
Quantum Mechanical Numerical Model for Interaction of Dark Atom with Atomic Nucleus of Matter
by Timur Bikbaev, Maxim Khlopov and Andrey Mayorov
Physics 2025, 7(1), 8; https://doi.org/10.3390/physics7010008 - 7 Mar 2025
Viewed by 453
Abstract
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with [...] Read more.
Within the framework of the XHe hypothesis, the positive results of the DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles can be explained by the annual modulation of the radiative capture of dark atoms into low-energy bound states with sodium nuclei. Since this effect is not observed in other underground WIMP (weakly interacting massive particle) search experiments, it is necessary to explain these results by investigating the possibility of the existence of low-energy bound states between dark atoms and the nuclei of matter. Numerical modeling is used to solve this problem, since the study of the XHe–nucleus system is a three-body problem and leaves no possibility of an analytical solution. To understand the key properties and patterns underlying the interaction of dark atoms with the nuclei of baryonic matter, we develop the quantum mechanical description of such an interaction. In the numerical quantum mechanical model presented, takes into account the effects of quantum physics, self-consistent electromagnetic interaction, and nuclear attraction. This approach allows us to obtain a numerical model of the interaction between the dark atom and the nucleus of matter and interpret the results of direct experiments on the underground search for dark matter, within the framework of the dark atom hypothesis. Thus, in this paper, for the first time, steps are taken towards a consistent quantum mechanical description of the interaction of dark atoms, with unshielded nuclear attraction, with the nuclei of atoms of matter. The total effective interaction potential of the OHe–Na system has therefore been restored, the shape of which allows for the preservation of the integrity and stability of the dark atom, which is an essential requirement for confirming the validity of the OHe hypothesis. Full article
(This article belongs to the Special Issue Beyond the Standard Models of Physics and Cosmology: 2nd Edition)
Show Figures

Figure 1

18 pages, 1341 KiB  
Article
Performance Analysis for High-Dimensional Bell-State Quantum Illumination
by Jeffrey H. Shapiro
Physics 2025, 7(1), 7; https://doi.org/10.3390/physics7010007 - 3 Mar 2025
Viewed by 579
Abstract
Quantum illumination (QI) is an entanglement-based protocol for improving LiDAR/radar detection of unresolved targets beyond what a classical LiDAR/radar of the same average transmitted energy can do. Originally proposed by Seth Lloyd as a discrete-variable quantum LiDAR, it was soon shown that his [...] Read more.
Quantum illumination (QI) is an entanglement-based protocol for improving LiDAR/radar detection of unresolved targets beyond what a classical LiDAR/radar of the same average transmitted energy can do. Originally proposed by Seth Lloyd as a discrete-variable quantum LiDAR, it was soon shown that his proposal offered no quantum advantage over its best classical competitor. Continuous-variable, specifically Gaussian-state, QI has been shown to offer a true quantum advantage, both in theory and in table-top experiments. Moreover, despite its considerable drawbacks, the microwave version of Gaussian-state QI continues to attract research attention. A recent QI study by Armanpreet Pannu, Amr Helmy, and Hesham El Gamal (PHE), however, has: (i) combined the entangled state from Lloyd’s QI with the channel models from Gaussian-state QI; (ii) proposed a new positive operator-valued measurement for that composite setup; and (iii) claimed that, unlike Gaussian-state QI, PHE QI achieves the Nair–Gu lower bound on QI target-detection error probability at all noise brightnesses. PHE’s analysis was asymptotic, i.e., it presumed infinite-dimensional entanglement. The current paper works out the finite-dimensional performance of PHE QI. It shows that there is a threshold value for the entangled-state dimensionality below which there is no quantum advantage, and above which the Nair–Gu bound is approached asymptotically. Moreover, with both systems operating with error-probability exponents 1 dB lower than the Nair–Gu bound, PHE QI requires enormously higher entangled-state dimensionality than does Gaussian-state QI to achieve useful error probabilities in both high-brightness (100 photons/mode) and moderate-brightness (1 photon/mode) noise. Furthermore, neither system has an appreciable quantum advantage in low-brightness (much less than 1 photon/mode) noise. Full article
(This article belongs to the Section Atomic Physics)
Show Figures

Figure 1

12 pages, 3533 KiB  
Article
Bessel Beams in Gyroanisotropic Crystals with Optical Activity
by Yuriy Egorov, Bogdan Sokolenko, Aziz Aliev, Ruslan Dzhemalyadinov, Ervin Umerov and Alexander Rubass
Physics 2025, 7(1), 6; https://doi.org/10.3390/physics7010006 - 10 Feb 2025
Viewed by 592
Abstract
Using a Bessel beam as an example, it is shown that such a beam with the initial circular polarization, propagating through an optically active medium devoid of linear birefringence, generates an optical vortex in the orthogonally polarized component. It is shown that a [...] Read more.
Using a Bessel beam as an example, it is shown that such a beam with the initial circular polarization, propagating through an optically active medium devoid of linear birefringence, generates an optical vortex in the orthogonally polarized component. It is shown that a medium with genuine optical activity allows the mutual conversion of beams with radial and azimuthal polarization distributions. It is also shown that a considerably weak perturbation of a medium with genuine optical activity by linear birefringence leads to the destruction of an isotropic point. In the vicinity of this point, the optical activity is suppressed by linear birefringence, so that a medium with a combined type of anisotropy responds as a medium with genuine linear birefringence. The structure of the fields of the eigenmodes of Bessel beams in a birefringent uniaxial crystal with optical activity is similar to the structure of the modes of a medium with genuine optical activity. The findings of the current study are believed to expand the understanding of physical processes in the developing field of polarization and the phase profilometry of materials. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

17 pages, 541 KiB  
Article
Non-Extensive Aspects of Gluon Distribution and the Implications for QCD Phenomenology
by Lucas S. Moriggi and Magno V. T. Machado
Physics 2025, 7(1), 5; https://doi.org/10.3390/physics7010005 - 5 Feb 2025
Viewed by 649
Abstract
This study presents new insights into gluon transverse momentum distributions through non-extensive statistical mechanics, addressing their implications for QCD phenomenology. The saturation physics and scaling laws present in high-energy collision data are investigated as a consequence of gluon distribution modification in a high-density [...] Read more.
This study presents new insights into gluon transverse momentum distributions through non-extensive statistical mechanics, addressing their implications for QCD phenomenology. The saturation physics and scaling laws present in high-energy collision data are investigated as a consequence of gluon distribution modification in a high-density regime. This analysis explores how these modifications influence observables across different collision systems, such as proton–proton, proton–nucleus, and relativistic heavy-ion collisions. Both particle high- and low-transverse-momentum regions are successfully described in hadron production. Full article
(This article belongs to the Special Issue Complexity in High Energy and Statistical Physics)
Show Figures

Figure 1

28 pages, 7293 KiB  
Article
Integration of p-Type PdPc and n-Type SnZnO into Hybrid Nanofibers Using Simple Chemical Route for Enhancement of Schottky Diode Efficiency
by A. Al-Sayed, Miad Ali Siddiq and Elsayed Elgazzar
Physics 2025, 7(1), 4; https://doi.org/10.3390/physics7010004 - 23 Jan 2025
Viewed by 1323
Abstract
Palladium phthalocyanine (PdPc) and palladium phthalocyanine integrated with tin–zinc oxide (PdPc:SnZnO) were prepared using a simple chemical approach, and their structural and morphological properties were identified using X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, and transmission electron microscopy techniques. The PdPc:SnZnO [...] Read more.
Palladium phthalocyanine (PdPc) and palladium phthalocyanine integrated with tin–zinc oxide (PdPc:SnZnO) were prepared using a simple chemical approach, and their structural and morphological properties were identified using X-ray diffraction, energy dispersive X-ray analysis, scanning electron microscopy, and transmission electron microscopy techniques. The PdPc:SnZnO nanohybrid revealed a polycrystalline structure combining n-type metal oxide SnZnO nanoparticles with p-type organic PdPc molecules. The surface morphology exhibited wrinkled nanofibers decorated with tiny spheres and had a large aspect ratio. The thin film revealed significant optical absorption within the ultraviolet and visible spectra, with narrow band gaps measured at 1.52 eV and 2.60 eV. The electronic characteristics of Al/n-Si/PdPc/Ag and Al/n-Si/PdPc:SnZnO/Ag Schottky diodes were investigated using the current–voltage dependence in both the dark conditions and under illumination. The photodiodes displayed non-ideal behavior with an ideality factor greater than unity. The hybrid diode showed considerably high rectification ratio of 899, quite a low potential barrier, substantial specific photodetectivity, and high enough quantum efficiency, found to be influenced by dopant atoms and the unique topological architecture of the nanohybrid. The capacitance/conductance–voltage dependence measurements revealed the influence of alternative current signals on trapped centers at the interface state, leading to an increase in charge carrier density. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

20 pages, 4250 KiB  
Article
Exploring the Optoelectronic Properties and Solar Cell Performance of Cs2SnI6−xBrx Lead-Free Double Perovskites: Combined DFT and SCAPS Simulation
by B. Rezini, T. Seddik, M. Batouche, H. Ben Abdallah, W. Ouerghui, Mostafa M. Salah, Muhammad Ahsan, Ahmed Shaker, Tahani I. Al-Muhimeed, Ahmed Saeed and Mohamed Mousa
Physics 2025, 7(1), 3; https://doi.org/10.3390/physics7010003 - 17 Jan 2025
Viewed by 1477
Abstract
This paper presents detailed results regarding the physical behavior of Cs2SnI6−xBrx alloys for their potential use in photovoltaic applications. Numerical computations based on density functional theory (DFT) revealed that Br substitution at I sites significantly influenced the electronic [...] Read more.
This paper presents detailed results regarding the physical behavior of Cs2SnI6−xBrx alloys for their potential use in photovoltaic applications. Numerical computations based on density functional theory (DFT) revealed that Br substitution at I sites significantly influenced the electronic structure of Cs2SnI6, resulting in an increase in bandgap values from 1.33 eV to 2.24 eV. Additionally, we analyzed the optical properties, including the absorption coefficient, which exhibited high values in the visible light region, highlighting the material’s excellent light-trapping abilities. Moreover, Cs2SnI6−xBrx compounds were employed as absorber materials in an fluorine-doped tin oxide (FTO) TiO2/Cs2SnI6/P3HT/Ag perovskite solar cell (PSC) to investigate its performance. The simulation process consisted of two interconnected steps: (i) the DFT calculations to derive the material properties and (ii) the SCAPS–1D (one-dimensional (1D) solar cell capacity simulator) simulation to model device performance. To ensure reliability, the SCAPS–1D simulation was calibrated against experimental data. Following this, Cs2SnI6−xBrx compound with various ratios of Br content, ranging from 0 to 6, was investigated to propose an efficient solar cell design. Furthermore, the cell structure was optimized, resulting in a development in the power conversion efficiency (PCE) from 0.47% to 3.07%. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

22 pages, 826 KiB  
Article
Josephson Junction Dynamics as a Ride on a Roller Coaster
by Ciro Nappi, Carlo Camerlingo and Roberto Cristiano
Physics 2025, 7(1), 2; https://doi.org/10.3390/physics7010002 - 16 Jan 2025
Viewed by 804
Abstract
We discuss the dynamics of a roller coaster cart driven by a constant force along the suspended track of a winding roller coaster. The track is assumed to be arbitrarily long and specially shaped. It is composed of semicircular track portions, in the [...] Read more.
We discuss the dynamics of a roller coaster cart driven by a constant force along the suspended track of a winding roller coaster. The track is assumed to be arbitrarily long and specially shaped. It is composed of semicircular track portions, in the form of valleys and hills, standing vertically in the same plane. This is a mechanical analog of Josephson junction electrodynamics. To demonstrate the explanatory potential of this analogy, we focus particularly on the conditions of de-trapping of the cart from one of the valleys of the track. This mechanical process has its analog in non-noise-generated premature switching to the finite voltage state of a Josephson junction. Full article
(This article belongs to the Section Physics Education)
Show Figures

Figure 1

17 pages, 854 KiB  
Article
Non-Stationary Flow of a Viscous Incompressible Electrically Conductive Liquid on a Rotating Plate in the Presence of Media Injection (Suction), Considering Induction and Diffusion Effects
by Anatoly A. Gurchenkov and Ivan A. Matveev
Physics 2025, 7(1), 1; https://doi.org/10.3390/physics7010001 - 10 Jan 2025
Viewed by 800
Abstract
The branch of physics known as magnetohydrodynamics (MHD) emerged in the middle of the 20th century. MHD models, being substantially nonlinear, are quite challenging for theoretical study and allow nontrivial consideration only in particular limited cases. Thus, due to the exceptional growth of [...] Read more.
The branch of physics known as magnetohydrodynamics (MHD) emerged in the middle of the 20th century. MHD models, being substantially nonlinear, are quite challenging for theoretical study and allow nontrivial consideration only in particular limited cases. Thus, due to the exceptional growth of calculation power, research on MHD is now primarily concentrated on numerical modeling. The achievements are considerable; however, there is a possibility of overlooking some phenomena or missing an optimal approach to modeling and calculating that could be identified with theoretical guidance. The paper presents a theoretical study of a particular class of boundary and initial conditions. The flow of a viscous, electrically conductive fluid on a rotating plate in the presence of a magnetic field is considered. The fluid and the bounding plate rotate together with a constant angular velocity around an axis that is not perpendicular to the plane. The flow is induced by sudden longitudinal vibrations of the plate, injection (suction) of the medium through the plate, and an applied magnetic field directed normal to the plate. The full equation of magnetic induction is used, taking into account both the induction effect and energy dissipation due to the flow of electric currents. An analytical solution of three-dimensional magnetohydrodynamics equations in a half-space bounded by a plate is presented. The solution is given in the form of a superposition of plane waves propagating with certain wave numbers along the y-coordinate axis. For certain regions of system parameters, the vibration of the bounding plate does not cause waves in the media. Full article
(This article belongs to the Section Classical Physics)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop