Previous Issue
Volume 3, June

Table of Contents

Smart Cities, Volume 3, Issue 3 (September 2020) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
From a Comprehensive Pool to a Project-Specific List of Key Performance Indicators for Monitoring the Positive Energy Transition of Smart Cities—An Experience-Based Approach
Smart Cities 2020, 3(3), 705-735; https://doi.org/10.3390/smartcities3030036 (registering DOI) - 14 Jul 2020
Viewed by 133
Abstract
As cities grow rapidly and energy needs increase, shaping an effective energy transition is a top priority towards urban sustainability and smart development. This study attempts to answer three key research questions that can help city authorities, planners and interested agents simplify and [...] Read more.
As cities grow rapidly and energy needs increase, shaping an effective energy transition is a top priority towards urban sustainability and smart development. This study attempts to answer three key research questions that can help city authorities, planners and interested agents simplify and increase the transparency of Key Performance Indicators (KPIs) selection for smart city and communities (SCC) projects focusing on energy transition and creation of Positive Energy Districts (PEDs): Question 1: “What resources are available for extracting such KPIs?”; Question 2: “Which of those KPIs are the most suitable for assessing the energy transition of smart city projects and PED-related developments?” and Question 3: “How can a project-specific shortlist of KPIs be developed?”. Answering these questions can also serve as a major first step towards a “universal” KPI selection procedure. In line with this purpose, an experiential approach is presented, capitalizing on knowledge and lessons learned from an ongoing smart city project in Europe (POCITYF) that focuses on PED deployment. Under this framework, a) a review of smart city KPI frameworks has been conducted, resulting in a pool of 258 indicators that can potentially be adopted by smart city projects; b) eight key dimensions of evaluations were extracted, setting a holistic performance framework relevant to SCCs; c) a detailed evaluation process including pre-determined criteria and city-needs feedback was applied to shortlist the KPI pool, leading to a ready-to-be-used, project-specific list of 63 KPIs and d) KPIs were sorted and analyzed in different granularity levels to further facilitate the monitoring procedure. The experiential procedure presented in this study can be easily adapted to the needs of every smart city project, serving as a recommendation guide. Full article
(This article belongs to the Special Issue Feature Papers for Smart Cities)
Open AccessArticle
Towards an Integrated Framework to Measure Smart City Readiness: The Case of Iranian Cities
Smart Cities 2020, 3(3), 676-704; https://doi.org/10.3390/smartcities3030035 (registering DOI) - 10 Jul 2020
Viewed by 192
Abstract
This paper introduces an indicator system to measure and assess smart city readiness. Analyzing smart city initiatives in Iran as case studies, the theoretical framework we present reflects on how cities explore the possibility of becoming smart, and prepare themselves to begin implementing [...] Read more.
This paper introduces an indicator system to measure and assess smart city readiness. Analyzing smart city initiatives in Iran as case studies, the theoretical framework we present reflects on how cities explore the possibility of becoming smart, and prepare themselves to begin implementing the transition towards becoming a smart city. This theoretical framework is then applied to four Iranian cities aspiring to become smart and that already possess credible smart city brands. The findings reveal that the most significant difficulty in Iran is associated with the political context. The changing urban governance model is the most important factor in Iranian smart cities’ readiness. Utilization of open data policies and data sharing, as well as making reforms in government structures are all considered a sine qua non to gain momentum. Based on the results of our empirical analysis a Theory of Change is developed to address the cities’ technological, socio-economic, and political readiness vis-à-vis the desired transition. The framework for measuring smart city readiness and the Theory of Change provide practical guidelines to developing systematic roadmaps for developing and implementing smart city policies. Full article
Open AccessArticle
Big Data Analytics in Australian Local Government
Smart Cities 2020, 3(3), 657-675; https://doi.org/10.3390/smartcities3030034 - 09 Jul 2020
Viewed by 150
Abstract
Australian governments at all three levels—local (council), state, and federal—are beginning to exploit the massive amounts of data they collect through sensors and recording systems. Their aim is to enable Australian communities to benefit from “smart city” initiatives by providing greater efficiencies in [...] Read more.
Australian governments at all three levels—local (council), state, and federal—are beginning to exploit the massive amounts of data they collect through sensors and recording systems. Their aim is to enable Australian communities to benefit from “smart city” initiatives by providing greater efficiencies in their operations and strategic planning. Increasing numbers of datasets are being made freely available to the public. These so-called big data are amenable to data science analysis techniques including machine learning. While there are many cases of data use at the federal and state level, local councils are not taking full advantage of their data for a variety of reasons. This paper reviews the status of open datasets of Australian local governments and reports progress being made in several student and other projects to develop open data web services using machine learning for smart cities. Full article
Show Figures

Figure 1

Open AccessArticle
Power Supply Solution for Ultrahigh Speed Hyperloop Trains
Smart Cities 2020, 3(3), 642-656; https://doi.org/10.3390/smartcities3030033 - 09 Jul 2020
Viewed by 145
Abstract
The paper analyses the alternatives for the power supply of a Hyperloop type railway transport. The particular case of the technology of the Spanish company ZELEROS was studied. Based on previous technical specifications related to both the first prototype and a commercial system, [...] Read more.
The paper analyses the alternatives for the power supply of a Hyperloop type railway transport. The particular case of the technology of the Spanish company ZELEROS was studied. Based on previous technical specifications related to both the first prototype and a commercial system, different options were analyzed. We selected the use of a linear motor driven by a single power electronic converter, a distribution scheme comprising different sections along the acceleration area of the track, and an energy storage system based on supercapacitors for the energy supply. The power/energy ratio and the cycle capability are the reasons to become a feasible and competitive solution. A preliminary design methodology for the energy storage requirements is presented in the paper. Once the type of linear motor was selected, the power supply scheme was presented, based on a motor-side power electronic converter and a DC/DC converter which connects to the energy storage devices. An additional low power grid-tie converter for the recharge of the energy storage system was also used. Different track sections were defined, connected to the power electronic converter through corresponding switches, being supplied sequentially when the capsule presence is detected along the track. The particular characteristics of this application, with relatively short traction track area, as well as the high energy recuperation ratio due to the low losses, make more suitable the use of energy storage systems as the source of power supply than the direct connection to the grid. Full article
(This article belongs to the Special Issue Mobility and IoT for the Smart Cities)
Show Figures

Graphical abstract

Open AccessArticle
The Nexus between Market Needs and Value Attributes of Smart City Solutions towards Energy Transition. An Empirical Evidence of Two European Union (EU) Smart Cities, Evora and Alkmaar
Smart Cities 2020, 3(3), 604-641; https://doi.org/10.3390/smartcities3030032 - 06 Jul 2020
Viewed by 180
Abstract
This study presents an experiential process and a market-oriented approach for realizing cities’ energy transition through smart solutions. The aim of this study is twofold: (a) present a process for defining a repository of innovative solutions that can be applied at building, district, [...] Read more.
This study presents an experiential process and a market-oriented approach for realizing cities’ energy transition through smart solutions. The aim of this study is twofold: (a) present a process for defining a repository of innovative solutions that can be applied at building, district, or city level, for two European Union cities, Evora and Alkmaar, and support the deployment of positive energy districts enabling a sustainable energy transition, and (b) understand in a systematic way the attributes of value offered by energy-related smart city solutions, in order to facilitate the development of sustainable value propositions that can successfully address city needs. The repository is assessed against four elements of value, which include social impact, life-changing, emotional, and functional attributes, according to the value pyramid of Maslow. Results show that the value attributes of quality, motivation, integration, cost reduction, information, and organization are highly relevant to the proposed smart solutions. The results presented in this study are useful for city planners, decision-makers, public bodies, citizens, and businesses interested in designing their energy transition strategy and defining novel technologies that promote urban energy sustainability. Full article
(This article belongs to the Special Issue Feature Papers for Smart Cities)
Show Figures

Figure 1

Open AccessArticle
Shortening the Last Mile in Urban Areas: Optimizing a Smart Logistics Concept for E-Grocery Operations
Smart Cities 2020, 3(3), 585-603; https://doi.org/10.3390/smartcities3030031 - 02 Jul 2020
Viewed by 221
Abstract
Urbanization, the corresponding road traffic, and increasing e-grocery markets require efficient and at the same time eco-friendly transport solutions. In contrast to traditional food procurement at local grocery stores, e-grocery, i.e., online ordered goods, are transported directly to end customers. We develop and [...] Read more.
Urbanization, the corresponding road traffic, and increasing e-grocery markets require efficient and at the same time eco-friendly transport solutions. In contrast to traditional food procurement at local grocery stores, e-grocery, i.e., online ordered goods, are transported directly to end customers. We develop and discuss an optimization approach to assist the planning of e-grocery deliveries in smart cities introducing a new last mile concept for the urban food supply chain. To supply city dwellers with their ordered products, a network of refrigerated grocery lockers is optimized to temporarily store the corresponding goods within urban areas. Customers either collect their orders by themselves or the products are delivered with electric cargo bicycles (ECBs). We propose a multi-echelon optimization model that minimizes the overall costs while consecutively determining optimal grocery locker locations, van routes from a depot to opened lockers, and ECB routes from lockers to customers. With our approach, we present an advanced concept for grocery deliveries in urban areas to shorten last mile distances, enhancing sustainable transportation by avoiding road traffic and emissions. Therefore, the concept is described as a smart transport system. Full article
(This article belongs to the Special Issue Smart Cities and Data-driven Innovative Solutions)
Show Figures

Figure 1

Open AccessReview
Worldwide Coverage Mobile Systems for Supra-Smart Cities Communications: Featured Antennas and Design
Smart Cities 2020, 3(3), 556-584; https://doi.org/10.3390/smartcities3030030 - 01 Jul 2020
Viewed by 198
Abstract
Current terrestrial mobile communications networks can’t provide worldwide coverage. Satellite communications are expensive, and terminals are large and heavy. Worldwide mobile coverage requires the use of satellites providing an appropriate QoS, including polar regions. The analysis of the potential satellite constellations demonstrates that [...] Read more.
Current terrestrial mobile communications networks can’t provide worldwide coverage. Satellite communications are expensive, and terminals are large and heavy. Worldwide mobile coverage requires the use of satellites providing an appropriate QoS, including polar regions. The analysis of the potential satellite constellations demonstrates that LEO one is the best solution. A new generation of low cost, small size, lightweight and global mobile coverage LEO satellites is emerging. The main limitation of the terminals is the antenna size factor, and innovative antennas must be developed to meet this goal. This paper investigates the technologies and techniques for designing and developing antennas aimed at LEO satellite communications in Smart Cities and beyond, which are especially beneficial for mobile communications in areas without 4G/5G coverage. The paper focuses on the terrestrial segment and future mobile devices, remarking the design constraints. In this scenario, the paper reviews the most relevant technologies and techniques used to design suitable antennas. The investigation analyses the state-of-the-art and most recent advances in the design of antennas operating in the Ku-band. The main contribution of the authors is a novel antenna design approach based on SIW technology. The antenna features are compared with other approaches, highlighting the benefits, advantages and drawbacks. As a conclusion, the proposed antenna demonstrates to be a good solution to meet the design constraints for such an application: light, low cost, small size factor. Full article
(This article belongs to the Special Issue Feature Papers for Smart Cities)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop