Previous Issue
Volume 4, June

Fire, Volume 4, Issue 3 (September 2021) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Concept Paper
Transcending Parallel Play: Boundary Spanning for Collective Action in Wildfire Management
Fire 2021, 4(3), 41; https://doi.org/10.3390/fire4030041 (registering DOI) - 30 Jul 2021
Abstract
A key challenge in the United States is how to manage wildfire risk across boundaries and scales, as roles, responsibilities, and ability to act are distributed among actors in ways that do not always incentivize collective action. In this review paper, we provide [...] Read more.
A key challenge in the United States is how to manage wildfire risk across boundaries and scales, as roles, responsibilities, and ability to act are distributed among actors in ways that do not always incentivize collective action. In this review paper, we provide several conceptual contributions to the understanding of wildfire management through the application of boundary spanning frameworks. This includes: (1) a characterization of four major types of boundaries in managing wildfire risk; (2) a review of major boundary spanning features and frameworks that integrate them; and (3) consideration of current and potential applications of the boundary spanning construct to the domain of wildfire management. Our goal is to advance knowledge of how actors in this arena may overcome “parallel play” to more collectively address wildfire risk. We generate new thinking about wildfire management, and offer potential implications and questions for future research, policy, and management. Full article
(This article belongs to the Collection Rethinking Wildland Fire Governance: A Series of Perspectives)
Case Report
UAV Assisted Spatiotemporal Analysis and Management of Bushfires: A Case Study of the 2020 Victorian Bushfires
Fire 2021, 4(3), 40; https://doi.org/10.3390/fire4030040 - 26 Jul 2021
Viewed by 246
Abstract
Australia is a regular recipient of devastating bushfires that severely impacts its economy, landscape, forests, and wild animals. These bushfires must be managed to save a fortune, wildlife, and vegetation and reduce fatalities and harmful environmental impacts. The current study proposes a holistic [...] Read more.
Australia is a regular recipient of devastating bushfires that severely impacts its economy, landscape, forests, and wild animals. These bushfires must be managed to save a fortune, wildlife, and vegetation and reduce fatalities and harmful environmental impacts. The current study proposes a holistic model that uses a mixed-method approach of Geographical Information System (GIS), remote sensing, and Unmanned Aerial Vehicles (UAV)-based bushfire assessment and mitigation. The fire products of Visible Infrared Imager Radiometer Suite (VIIRS) and Moderate-resolution Imaging Spectroradiometer (MODIS) are used for monitoring the burnt areas within the Victorian Region due to the 2020 bushfires. The results show that the aggregate of 1500 m produces the best output for estimating the burnt areas. The identified hotspots are in the eastern belt of the state that progressed north towards New South Wales. The R2 values between 0.91–0.99 indicate the fitness of methods used in the current study. A healthy z-value index between 0.03 to 2.9 shows the statistical significance of the hotspots. Additional analysis of the 2019–20 Victorian bushfires shows a widespread radius of the fires associated with the climate change and Indian Ocean Dipole (IOD) phenomenon. The UAV paths are optimized using five algorithms: greedy, intra route, inter route, tabu, and particle swarm optimization (PSO), where PSO search surpassed all the tested methods in terms of faster run time and lesser costs to manage the bushfires disasters. The average improvement demonstrated by the PSO algorithm over the greedy method is approximately 2% and 1.2% as compared with the intra route. Further, the cost reduction is 1.5% compared with the inter-route scheme and 1.2% compared with the intra route algorithm. The local disaster management authorities can instantly adopt the proposed system to assess the bushfires disasters and instigate an immediate response plan. Full article
Show Figures

Figure 1

Article
Towards Understanding Fire Causes in Informal Settlements Based on Inhabitant Risk Perception
Fire 2021, 4(3), 39; https://doi.org/10.3390/fire4030039 - 23 Jul 2021
Viewed by 239
Abstract
Informal settlements (ISs) are a high-risk environment in which fires are often seen. In 2019 alone, 5544 IS fires were reported in South Africa. One of the main problems, when investigating an IS fire, is determining the fire cause. In the last 15 [...] Read more.
Informal settlements (ISs) are a high-risk environment in which fires are often seen. In 2019 alone, 5544 IS fires were reported in South Africa. One of the main problems, when investigating an IS fire, is determining the fire cause. In the last 15 years, approximately 40% of the fire causes were classified as ‘undetermined’ in South Africa. Furthermore, the cases where the fire causes have been determined, do not provide the necessary information to comprehend why the fire started. This paper seeks to gain better insight with respect to fire causes by analysing the fire risk perception of IS inhabitants. To this end, a survey that was conducted in 2017, consisting of data from 2178 IS households, that were affected by a large-scale fire, was analysed. The survey consisted of questions relating to the fire risk perception with regards to the settlement in general, to the inhabitants’ own household, and about measures that could reduce fire risk. The analysis suggests that (a) the survey’s risk target had a strong influence on risk perception, (b) the inhabitants’ fire risk perception of their settlement is similar to that of firefighters in previous research, (c) the risk mitigation demands are more focused on decreasing the consequences of the fire than on the occurrence of a fire event, (d) the national fire statistics are not capturing the causes of real fire incidents, and (e) improvements to the documentation process after a fire event could provide critical information for the implementation of prevention measures. Full article
(This article belongs to the Special Issue Fire in Human Landscapes)
Show Figures

Figure 1

Article
Hotspot Analysis of Structure Fires in Urban Agglomeration: A Case of Nagpur City, India
Fire 2021, 4(3), 38; https://doi.org/10.3390/fire4030038 - 21 Jul 2021
Viewed by 230
Abstract
Fire Service is the fundamental civic service to protect citizens from irrecoverable, heavy losses of lives and property. Hotspot analysis of structure fires is essential to estimate people and property at risk. Hotspot analysis for the peak period of last decade, using a [...] Read more.
Fire Service is the fundamental civic service to protect citizens from irrecoverable, heavy losses of lives and property. Hotspot analysis of structure fires is essential to estimate people and property at risk. Hotspot analysis for the peak period of last decade, using a GIS-based spatial analyst and statistical techniques through the Kernel Density Estimation (KDE) and Getis-Ord Gi* with Inverse Distance Weighted (IDW) interpolation is performed, revealing fire risk zones at the city ward micro level. Using remote sensing, outputs of hotspot analysis are integrated with the built environment of Land Use Land Cover (LULC) to quantify the accurate built-up areas and population density of identified fire risk zones. KDE delineates 34 wards as hotspots, while Getis-Ord Gi* delineates 17 wards within the KDE hotspot, the central core areas having the highest built-up and population density. A temporal analysis reveals the maximum fires on Thursday during the hot afternoon hours from 12 noon to 5 p.m. The study outputs help decision makers for effective fire prevention and protection by deploying immediate resource allocations and proactive planning reassuring sustainable urban development. Furthermore, updating the requirement of the National Disaster Management Authority (NDMA) to build urban resilient infrastructure in accord with the Smart City Mission. Full article
(This article belongs to the Special Issue Performance-Based Design in Structural Fire Engineering)
Show Figures

Figure 1

Article
Facilitating Prescribed Fire in Northern California through Indigenous Governance and Interagency Partnerships
Fire 2021, 4(3), 37; https://doi.org/10.3390/fire4030037 - 16 Jul 2021
Viewed by 784
Abstract
Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed [...] Read more.
Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed burning in California. Despite this, fire-dependent American Indian communities such as the Karuk and Yurok peoples, stalwartly advocate for expanding prescribed burning as a part of their efforts to revitalize their culture and sovereignty. To examine the political ecology of prescribed burning in Northern California, we coupled participant observation of prescribed burning in Karuk and Yurok territories (2015–2019) with 75 surveys and 18 interviews with Indigenous and non-Indigenous fire managers to identify political structures and material conditions that facilitate and constrain prescribed fire expansion. Managers report that interagency partnerships have provided supplemental funding and personnel to enable burning, and that decentralized prescribed burn associations facilitate prescribed fire. However, land dispossession and centralized state regulations undermine Indigenous and local fire governance. Excessive investment in suppression and the underfunding of prescribed fire produces a scarcity of personnel to implement and plan burns. Where Tribes and local communities have established burning infrastructure, authorities should consider the devolution of decision-making and land repatriation to accelerate prescribed fire expansion. Full article
(This article belongs to the Collection Rethinking Wildland Fire Governance: A Series of Perspectives)
Show Figures

Figure 1

Article
Non-Destructive Fuel Volume Measurements Can Estimate Fine-Scale Biomass across Surface Fuel Types in a Frequently Burned Ecosystem
Fire 2021, 4(3), 36; https://doi.org/10.3390/fire4030036 - 14 Jul 2021
Viewed by 334
Abstract
Measuring wildland fuels is at the core of fire science, but many established field methods are not useful for ecosystems characterized by complex surface vegetation. A recently developed sub-meter 3D method applied to southeastern U.S. longleaf pine (Pinus palustris) communities captures [...] Read more.
Measuring wildland fuels is at the core of fire science, but many established field methods are not useful for ecosystems characterized by complex surface vegetation. A recently developed sub-meter 3D method applied to southeastern U.S. longleaf pine (Pinus palustris) communities captures critical heterogeneity, but similar to any destructive sampling measurement, it relies on separate plots for calculating loading and consumption. In this study, we investigated how bulk density differed by 10-cm height increments among three dominant fuel types, tested predictions of consumption based on fuel type, height, and volume, and compared this with other field measurements. The bulk density changed with height for the herbaceous and woody litter fuels (p < 0.001), but live woody litter was consistent across heights (p > 0.05). Our models predicted mass well based on volume and height for herbaceous (RSE = 0.00911) and woody litter (RSE = 0.0123), while only volume was used for live woody (R2 = 0.44). These were used to estimate consumption based on our volume-mass predictions, linked pre- and post-fire plots by fuel type, and showed similar results for herbaceous and woody litter when compared to paired plots. This study illustrates an important non-destructive alternative to calculating mass and estimating fuel consumption across vertical volume distributions at fine scales. Full article
(This article belongs to the Special Issue Advances in the Measurement of Fuels and Fuel Properties)
Show Figures

Figure 1

Article
Ignition of Fuel Beds by Cigarettes: A Conceptual Model to Assess Fuel Bed Moisture Content and Wind Velocity Effect on the Ignition Time and Probability
Fire 2021, 4(3), 35; https://doi.org/10.3390/fire4030035 - 06 Jul 2021
Viewed by 648
Abstract
A conceptual model based on the balance of energy in a system composed of a burning cigarette, ambient flow and a porous fuel bed is proposed to study the burning of a single cigarette and the process of fuel bed dehydration, pyrolysis and [...] Read more.
A conceptual model based on the balance of energy in a system composed of a burning cigarette, ambient flow and a porous fuel bed is proposed to study the burning of a single cigarette and the process of fuel bed dehydration, pyrolysis and its eventual ignition or combustion extinction. Model predictions of time to ignition and of the probability of ignition as a function of fuel bed moisture content and ambient flow velocity are compared with results obtained in laboratory ignition tests of straw fuel beds for various ambient conditions. According to this study, the main parameters influencing the models developed are the fuel bed and tobacco moisture content, as well as the flow velocity. Full article
(This article belongs to the Special Issue Advances in the Measurement of Fuels and Fuel Properties)
Show Figures

Figure 1

Article
Assessing Wildfire Regimes in Indigenous Lands of the Brazilian Savannah-Like Cerrado
Fire 2021, 4(3), 34; https://doi.org/10.3390/fire4030034 - 05 Jul 2021
Viewed by 397
Abstract
The Brazilian savannah-like Cerrado is classified as a fire-dependent biome. Human activities have altered the fire regimes in the region, and as a result, not all fires have ecological benefits. The indigenous lands (ILs) of the Brazilian Cerrado have registered the recurrence of [...] Read more.
The Brazilian savannah-like Cerrado is classified as a fire-dependent biome. Human activities have altered the fire regimes in the region, and as a result, not all fires have ecological benefits. The indigenous lands (ILs) of the Brazilian Cerrado have registered the recurrence of forest fires. Thus, the diagnosis of these events is fundamental to understanding the burning regimes and their consequences. The main objective of this paper is to evaluate the fire regimes in Cerrado’s indigenous lands from 2008 to 2017. We used the Landsat time series, at 30 m spatial resolution, available in the Google Earth Engine platform to delineate the burned areas. We used precipitation data from a meteorological station to define the rainy season (RS), early dry season (EDS), middle dry season (MDS), and late dry season (LDS) periods. During 2008–2017, our results show that the total burned area in the indigenous lands and surrounding area was 2,289,562 hectares, distributed in 14,653 scars. Most fires took place between June and November, and the annual burned area was quite different in the years studied. It was also possible to identify areas with high fire recurrence. The fire regime patterns described here are the first step towards understanding the fire regimes in the region and establishing directions to improve management strategies and guide public policies. Full article
Show Figures

Figure 1

Article
Energy Recovery of Shrub Species as a Path to Reduce the Risk of Occurrence of Rural Fires: A Case Study in Serra da Estrela Natural Park (Portugal)
Fire 2021, 4(3), 33; https://doi.org/10.3390/fire4030033 - 30 Jun 2021
Viewed by 312
Abstract
The accumulation of biomass fuels resulting from the growth of heliophilous shrubs and small tree species at the edge of forests and on scrub and pasture lands contributes to the increased risk of rural fires in Mediterranean climate regions. This situation has been [...] Read more.
The accumulation of biomass fuels resulting from the growth of heliophilous shrubs and small tree species at the edge of forests and on scrub and pasture lands contributes to the increased risk of rural fires in Mediterranean climate regions. This situation has been managed with a set of legislative measures launched with the objective of promoting cleaning and the control of these species. Areas of scrub and pasture already constitute the largest part of the annually burnt area in Portugal, resulting in high-intensity fires. In the present study, shrubs and small tree species were characterized in the laboratory. Thermogravimetric, chemical and calorimetric analyses for the evaluation of the potential for the energy recovery of the selected species were carried out. It was observed that energetic valorization (i.e., to enhance the value by planned actions) of these species is difficult because they present high levels of ash and metals, becoming prone to the occurrence of fouling and slagging phenomena. Thus, the creation of value chains that justify the incorporation of these materials becomes very difficult, except if used in non-certified, small-scale and locally based processes. The possibility of recovery through thermochemical conversion processes, such as torrefaction, pyrolysis or gasification, must be studied so that more efficient and feasible recovery alternatives can be found, allowing for the creation of value chains for these residual materials to promote their sustainable management and, thus, mitigate the risk of rural fires occurring. Full article
Show Figures

Figure 1

Article
Demographic Effects of Severe Fire in Montane Shrubland on Tasmania’s Central Plateau
Fire 2021, 4(3), 32; https://doi.org/10.3390/fire4030032 - 24 Jun 2021
Viewed by 389
Abstract
Australian montane sclerophyll shrubland vegetation is widely considered to be resilient to infrequent severe fire, but this may not be the case in Tasmania. Here, we report on the vegetative and seedling regeneration response of a Tasmanian non-coniferous woody montane shrubland following a [...] Read more.
Australian montane sclerophyll shrubland vegetation is widely considered to be resilient to infrequent severe fire, but this may not be the case in Tasmania. Here, we report on the vegetative and seedling regeneration response of a Tasmanian non-coniferous woody montane shrubland following a severe fire, which burned much of the Great Pine Tier in the Central Plateau Conservation Area during the 2018–2019 fire season when a historically anomalously large area was burned in central Tasmania. Our field survey of a representative area burned by severe crown fire revealed that more than 99% of the shrubland plants were top-killed, with only 5% of the burnt plants resprouting one year following the fire. Such a low resprouting rate means the resilience of the shrubland depends on seedling regeneration from aerial and soil seedbanks or colonization from plants outside the burned area. Woody species’ seedling densities were variable but generally low (25 m2). The low number of resprouters, and reliance on seedlings for recovery, suggest the shrubland may not be as resilient to fire as mainland Australian montane shrubland, particularly given a warming climate and likely increase in fire frequency. Full article
(This article belongs to the Special Issue Bushfire in Tasmania)
Show Figures

Figure 1

Article
Air Quality Impacts during the 2015 Rough Fire in Areas Surrounding the Sierra Nevada, California
Fire 2021, 4(3), 31; https://doi.org/10.3390/fire4030031 - 22 Jun 2021
Viewed by 360
Abstract
The Rough Fire started on 31 July 2015 from a lightning strike, spread to over 61,000 ha and burned parts of the Sierra and Sequoia National Forests and the Sequoia & Kings Canyon National Parks, in California. Health advisories for smoke were issued [...] Read more.
The Rough Fire started on 31 July 2015 from a lightning strike, spread to over 61,000 ha and burned parts of the Sierra and Sequoia National Forests and the Sequoia & Kings Canyon National Parks, in California. Health advisories for smoke were issued in rural areas around the fire and in urban areas of the Central Valley. PM2.5 concentrations in rural and urban areas were used to assess the air quality impacts from the fire. Before the Rough Fire, 24-h PM2.5 concentrations for all sites ranged from 1 µg m−3o 50 µgm−3. During the wildfire, the 24-h PM2.5 concentrations ranged from 2 µgm−3 to 545 µgm−3, reaching hazardous levels of the federal Air Quality Index (AQI). The results indicate that the largest PM2.5 smoke impacts occurred at locations closer to and downwind of the fire in mountain communities of the Sierra Nevada, while the smoke impacts were lower in the urban areas. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop