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1. Other Applications of the Method

Although our method was developed for fire occurrence prediction (FOP) model out-
puts, we believe that many of the features and principles can be useful for other applica-
tions in fire management and beyond. The design options of the method are in retrospect
simple and logical. For example, where appropriate, use:

e Truncation, where resolution is not needed at the end(s) of the range

¢ Nonlinear category boundaries, to have relatively higher resolution in some
part(s) of the range

e Colours, to show the data clearly, and colour psychology, to draw suitable
attention to them

The design options, their interactions and the need to make trade-offs among their
effects seem generally applicable to many different datasets. The specific design options
chosen would of course depend entirely on the specific application.

Applications of our method to other fire management decision support model out-
puts are shown in Figure S1. All these examples use roughly the same design options as
for FOP, but with different truncations and parameter settings for the paper’s Equation 1.
In all cases, decision-makers are more sensitive to differences at low values of the indica-
tors than at high values, so the class boundaries are smaller at the low end than at the high
end. In all cases, the same colour sequence is used, although with different adjective de-
scriptors in some cases. Figure Sla shows data which indicate the potential impact to re-
sources and assets if they were burned by high-intensity fire [1]. The highest impacts are
in dense urban areas. This and the following indicators are described in detail in their
respective cited references. Figure S1b shows data that indicate the value of seeing cells
by aerial detection today [2]. The indicator’s driving factors include FOP, the potential
impact in Figure Sla, fire intensity and the probability of public detection. Figure Slc
shows data indicative of the degree to which the factors indicate that the initial response
objective for a fire will be complete containment rather than partial or nil containment [3].
The indicator’s driving factors include the potential impact in Figure Sla, fuel moisture
conditions as the end of the fire season approaches and a surrogate for the response cost.
Figure S1d shows data that indicate the relative speed and weight of initial attack for a
fire, given a full-response objective [3]. The indicator’s driving factors include the poten-
tial impact in Figure Sla and the fire intensity.

To illustrate the effect of our method, we show examples of the evolution over sev-
eral years of our classification and colouring schemes (Figure S2a—d). Figure S2a is an
early prototype of the holdover lightning-caused fire occurrence prediction map. Of the
four categories, the red (Extreme) category is relatively rare, and the blue-green-yellow
sequence draws progressively less attention to the rising level of concern. Figure S2b is an
early prototype of a combined human- and lighting-caused map with 10 classes using the
traditional green—yellow—orange-red sequence and the inconsistent scaling shown in the
paper’s Figure 6. That caused the human-caused, lighting-caused and total fire maps to
have different colouring for any given FOP magnitude. Figure S2c used the same

Fire 2021, 4, 50. https://doi.org/10.3390/fire4030050

www.mdpi.com/journal/fire



Fire 2021, 4, 50 2 of 8

categories and scaling as Figure S2b, but with a colour palette that accommodates some
types of colour vision deficiency, and alludes to being a “heat map” for the level of con-
cern. Figure 52d is an example of the current classification and colouring scheme.

(0) (d)

Figure S1. Examples of other model outputs that we categorized and coloured using the method
presented in this paper: (a) indicator of the potential impact to resources and assets, if burned by a
high-intensity fire [1]; (b) indicator of the value of seeing cells by aerial detection today [2]; (c)
indicator of the degree to which factors indicate that the initial response objective for a fire will be
complete containment rather than partial or nil containment [3]; (d) indicator of the speed and
weight of initial attack for a fire, given a full-response objective [3].

2. Classification of Numbers for Operational Significance

The principle of simplifying information for speed of understanding can be applied
to numerical data that are not necessarily coloured and mapped. For example, there may
be no operational significance for differences of 5, 10 or more points for some Fire Weather
Index (FWI) System [4] outputs in some parts of their ranges—for example, when the
Drought Code (DC) gets into the hundreds. Decision-makers routinely look at tables that
have hundreds of observed and forecast weather and FWI System outputs. As a demon-
stration, scan the following sample of 10 DC values. The first row is given in the usual
precision of the nearest integer, and the second row is rounded to the nearest 10. Given
that DC is associated with depth of burn and difficulty of extinguishment, which is faster
and easier to absorb and use in this context?

e Stationn A B C D E F G H I ]
¢ DC: 146 179 257 272 294 323 222 325 326 178
¢ DC: 150 180 260 270 290 320 220 330 330 180

Note that displaying DC to integers has the benefit of showing the dynamic behav-
iour of the model—for example, that the DC rises by 4-6 points without precipitation,
depending on other conditions.
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Figure S2. Examples of earlier classification and colouring schemes that show the evolution of our
method: (a) a 4-category scheme; (b) a 10-category scheme with the traditional green—yellow—or-
ange-red sequence; (c) the same categories and scaling as for Figure S2b, but with colouring that
accommodates some types of colour vision deficiency; (d) the current scheme.

3. Additional Considerations for the Spatial Display of Data

We noted that our case study used maps with a predetermined 20 km x 20 km reso-
lution. We did not test other resolutions, but resolution seems to affect the results and
should be considered. We illustrate with an example how the spatial resolution can affect
the appearance of the mapped information. Figure S3 shows the same underlying data—
the Fire Behaviour Prediction System’s [5] fuel type—mapped at four different resolu-
tions. Each gives a distinctly different impression about the landscape. There is no perfect
resolution; they are all approximations. What is best for a particular application will likely
depend on (1) the meaning and purpose of the data being displayed and (2) the nature
and scale of decisions being informed.

We used a different dataset to demonstrate the averaging of fine-scale, heterogeneous
data to the coarse-scale grid. Figure S4 shows data from a model of the potential impacts
to resources and assets, if burned by a high-intensity fire [1]; at 100 m x 100 m (1 ha) and
20 km x 20 km (40,000 ha) resolutions. The high spatial variation within cells is understood
by decision-makers but not seen in the coarse grid. This averaging is a necessary simplifi-
cation for the decision-makers to be able to use the vast amount of information for prov-
ince-wide preparedness planning. This highlights the need to design visualizations for the
decision-making scale, for example, regional preparedness vs response to specific fires.
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Figure S3. Mapping of the same underlying fuel type data at four different resolutions: 1, 10, 20
and 40 km. The fuel types are defined in [5], but those details are not relevant for the demonstra-
tion that each resolution gives a distinctly different impression about the landscape.

In this context, it is important to remember another consideration in designing the
display of spatial data. The above cases involved simplifying spatial information when
there is too much spatial data, i.e., reducing resolution by averaging. In contrast, interpo-
lation involves the opposite case, where there is too little spatial data, so gaps are filled
using interpolation. The reminder is to use appropriate interpolation methods, as demon-
strated by [6]. Operational maps can look significantly different when the data are inter-
polated differently. We showed the use of the point data in combination with interpola-
tion in fire operations for FWI System outputs (see the paper’s Figure 1b). In addition to
overcoming the coarseness of categorization, showing the data points arguably addresses
the limitations of interpolation and highlights some of the uncertainty between the data
points. A detailed review of the current FWI classification methods is outlined in [7].

A final consideration is that there are alternatives to the choropleth maps used so far.
The nonlinear scale used to categorize FOP maps was customized for the needs of detec-
tion planning and other decisions, where actions vary relatively less at the higher FOP
magnitudes. In contrast, when planning for heavy initial attack workloads, low FOP mag-
nitudes are of lower concern, while high magnitudes are critical. For that decision, it may
be useful to design a separate FOP map with a different scale and colouring to draw at-
tention accordingly. Alternatively, different visualizations, such as simulated three-
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dimensional maps (Figure S5), may be effective for highlighting peak FOP areas of con-
cern. It may be necessary, however, to make three-dimensional maps interactive, since the
parts of the map may be obscured by three-dimensional imagery “in front”, necessitating
a change in the viewing angle. See [8] for an example of this when visualizing daily time
series of FWI over multiple years.
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Figure S4. Comparison of the impact factor at different spatial resolutions—20 km x 20 km (40,000
ha) and 100 m x 100 m (1 ha)—using the same numerical and colouring scales for display. A 20 km
x 20 km cell that has a moderate average impact has many areas within it that have impacts rang-
ing from low to extreme.

The additional considerations outlined in this section are beyond the scope of our
method, but merit at least an ad hoc inclusion in the design process.
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Figure S5. An example of a total human- and lightning-caused fire occurrence prediction displayed using a simulated 3-
dimensional map. This may be an effective alternative to choropleth maps for displaying peaks of concern.

4. Larger Versions of Maps

Figures S6, S7 and S8 are larger versions of the maps in the paper’s Figure 7a—c.
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Figure S6. A larger version of the paper’s Figure 7a.
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Figure S7. A larger version of the paper’s Figure 7b.
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Figure S8. A larger version of the paper’s Figure 7c.
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