Previous Issue
Volume 8, March
 
 

Plasma, Volume 8, Issue 2 (June 2025) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 66642 KiB  
Article
Counterintuitive Particle Confinement in a Helical Force-Free Plasma
by Adam D. Light, Hariharan Srinivasulu, Christopher J. Hansen and Michael R. Brown
Plasma 2025, 8(2), 20; https://doi.org/10.3390/plasma8020020 - 26 May 2025
Abstract
The force-free magnetic field solution formed in a high-aspect ratio cylinder is a non-axisymmetric (m=1), closed magnetic structure that can be produced in laboratory experiments. Force-free equilibria can have strong field gradients that break the usual adiabatic invariants associated [...] Read more.
The force-free magnetic field solution formed in a high-aspect ratio cylinder is a non-axisymmetric (m=1), closed magnetic structure that can be produced in laboratory experiments. Force-free equilibria can have strong field gradients that break the usual adiabatic invariants associated with particle motion, and gyroradii at measured conditions can be large relative to the gradient scale lengths of the magnetic field. Individual particle motion is largely unexplored in force-free systems without axisymmetry, and it is unclear how the large gradients influence confinement. To understand more about how particles remain confined in these configurations, we simulate a thermal distribution of protons moving in a high-aspect-ratio force-free magnetic field using a Boris stepper. The particle loss is logarithmic in time, which suggests trapping and/or periodic orbits. Many particles do remain confined in particular regions of the field, analogous to trapped particles in other magnetic configurations. Some closed flux surfaces can be identified, but particle orbits are not necessarily described by these surfaces. We show examples of orbits that remain on well-defined surfaces and discuss the statistical properties of confined and escaping particles. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

15 pages, 4724 KiB  
Article
Absorption of FD-150 in Brain Endothelial Cells by Cold Atmospheric Microplasma
by Md Jahangir Alam, Abubakar Hamza Sadiq, Jaroslav Kristof, Mahedi Hasan, Farhana Begum, Yamano Tomoki and Kazuo Shimizu
Plasma 2025, 8(2), 19; https://doi.org/10.3390/plasma8020019 - 12 May 2025
Viewed by 239
Abstract
The blood–brain barrier (BBB) limits drug delivery to the brain, particularly for large or hydrophilic molecules. Brain microvascular endothelial cells (bEND.3), which form part of the BBB, play a critical role in regulating drug uptake. This study investigates the use of cold atmospheric [...] Read more.
The blood–brain barrier (BBB) limits drug delivery to the brain, particularly for large or hydrophilic molecules. Brain microvascular endothelial cells (bEND.3), which form part of the BBB, play a critical role in regulating drug uptake. This study investigates the use of cold atmospheric microplasma (CAM) to enhance membrane permeability and facilitate drug delivery in bEND.3 cells. CAM generates reactive oxygen species (ROS) that modulate membrane properties. We exposed bEND.3 cells to CAM at varying voltages (3, 3.5, 4, and 4.5 kV) and measured drug uptake using the fluorescent drug FD-150, fluorescence intensity, ROS levels, membrane lipid order, and membrane potential. The results showed a significant increase in fluorescence intensity and drug concentration in the plasma-treated cells compared to controls. ROS production, measured by DCFH-DA staining, was higher in the plasma-treated cells, supporting the hypothesis that CAM enhances membrane permeability through ROS-induced changes. Membrane lipid order, assessed using the LipiORDER probe, shifted from the liquid-ordered (Lo) to liquid-disordered (Ld) phase, indicating increased membrane fluidity. Membrane depolarization was detected with DisBAC2(3) dye, showing increased fluorescence in the plasma-treated cells. Cell viability, assessed by trypan blue and LIVE/DEAD™ assays, revealed transient damage at higher voltages (≥4 kV), with recovery after 24 h. These results suggest that CAM enhances drug delivery in bEND.3 cells by modulating membrane properties via ROS production and changes in membrane potential. CAM offers a promising strategy for improving drug delivery to the brain, with potential applications in brain-targeted therapies. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

30 pages, 4647 KiB  
Review
Recent Advances in Cold Atmospheric Pressure Plasma for E. coli Decontamination in Food: A Review
by Muhammad Waqar Ahmed, Kainat Gul and Sohail Mumtaz
Plasma 2025, 8(2), 18; https://doi.org/10.3390/plasma8020018 - 7 May 2025
Viewed by 321
Abstract
Cold atmospheric plasma (CAP) acts as a powerful antibacterial tool in the food industry, effectively eliminating E. coli and a wide range of pathogens, including bacteria, viruses, fungi, spores, and biofilms in meat and vegetables. Unlike traditional bactericidal methods, CAP leverages an arsenal [...] Read more.
Cold atmospheric plasma (CAP) acts as a powerful antibacterial tool in the food industry, effectively eliminating E. coli and a wide range of pathogens, including bacteria, viruses, fungi, spores, and biofilms in meat and vegetables. Unlike traditional bactericidal methods, CAP leverages an arsenal of reactive species, including reactive oxygen species (ROS) such as ozone (O3) and hydroxyl radicals (OH•), and reactive nitrogen species (RNS) like nitric oxide (NO•), alongside UV radiation and charged particles. These agents synergistically dismantle E. coli’s cell membranes, proteins, and DNA, achieving high degradation rates without thermal or chemical damage to processed food. This non-thermal, eco-friendly technology preserves food’s nutritional and sensory integrity, offering a transformative edge over conventional approaches. It emphasizes the critical need to optimize treatment parameters (exposure time, gas composition, power) to unlock CAP’s full potential. This review explores CAP’s effectiveness in degrading E. coli, emphasizing the optimization of treatment parameters for practical food industry applications and its potential as a scalable food safety solution. It is crucial to conduct further studies to enhance its implementation, establishing CAP as a fundamental element of advanced food processing technologies and a key measure for protecting public health. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2025)
Show Figures

Figure 1

30 pages, 705 KiB  
Article
Strong, Weak and Merging Lines in Atomic Spectra
by Jean-Christophe Pain
Plasma 2025, 8(2), 17; https://doi.org/10.3390/plasma8020017 - 29 Apr 2025
Viewed by 342
Abstract
We present analytical estimates for the maximum line strength in a transition array, as well as for the numbers of strong and weak lines. For that purpose, two main assumptions are used as concerns the line strength distribution. The first one, due to [...] Read more.
We present analytical estimates for the maximum line strength in a transition array, as well as for the numbers of strong and weak lines. For that purpose, two main assumptions are used as concerns the line strength distribution. The first one, due to Porter and Thomas, is more suitable for JJ sets, where J is the total atomic angular momentum, and the second one, based on a decreasing-exponential modeling of the line-amplitude distribution, is more relevant for an entire transition array. We also review the different approximations of overlapping and blanketing (band model), insisting on the computation and properties of the Elsasser function. We compare different approximations of the Ladenburg–Reiche function giving the equivalent width of an ensemble of lines in a frequency bin and discuss the possibility of using statistical indicators, such as the Chernoff bound or the Gini coefficient (initially introduced in economics for the measurement of income inequality), in the statistical characterization of transition arrays. Full article
Show Figures

Graphical abstract

14 pages, 488 KiB  
Article
A Theoretical Study of the Ionization States and Electrical Conductivity of Tantalum Plasma
by Shi Chen, Qishuo Zhang, Qianyi Feng, Ziyue Yu, Jingyi Mai, Hongping Zhang, Lili Huang, Chengjin Huang and Mu Li
Plasma 2025, 8(2), 16; https://doi.org/10.3390/plasma8020016 - 28 Apr 2025
Viewed by 230
Abstract
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization [...] Read more.
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization composition and electrical conductivity of tantalum plasma across a wide range of densities and temperatures is essential. In this study, we calculate the densities of ionization species and the electrical conductivity of partially ionized, nonideal tantalum plasma based on a simplified theoretical model that accounts for high ionization states up to the atomic number of the element and the lowering of ionization energies. A comparison of the ionization compositions between tantalum and copper plasmas highlights the significant role of ionization energies in determining species populations. Additionally, the average electron–neutral momentum transfer cross-section significantly influences the electrical conductivity calculations, and calibration with experimental measurements offers a method for estimating this atomic parameter. The impact of electrical conductivity in the intermediate-density range on the laser absorption coefficient is discussed using the Drude model. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

15 pages, 4340 KiB  
Article
Voltage Dependent Effect of Spiral Wound Plasma Discharge on DBC1.2 Cellular Integrity
by Abubakar Hamza Sadiq, Md Jahangir Alam, Mahedi Hasan, Farhana Begum, Tomoki Yamano, Jaroslav Kristof and Kazuo Shimizu
Plasma 2025, 8(2), 15; https://doi.org/10.3390/plasma8020015 - 12 Apr 2025
Viewed by 382
Abstract
Low temperature plasmas (LTPs) generated at atmospheric pressure and room temperature have gained increasing attention in biomedical research due to their ability to control cellular behavior through the production of reactive oxygen and nitrogen species (RONS), electric fields, and UV radiation. Among several [...] Read more.
Low temperature plasmas (LTPs) generated at atmospheric pressure and room temperature have gained increasing attention in biomedical research due to their ability to control cellular behavior through the production of reactive oxygen and nitrogen species (RONS), electric fields, and UV radiation. Among several LTP configurations, dielectric barrier discharge (DBD) plasma has been extensively studied for its ability to stimulate controlled biological effects while maintaining low gas temperature, making it suitable for cell-based applications. This study designed a novel spiral-wound DBD plasma device to investigate the voltage-dependent effects of plasma discharge on DBC1.2 epithelial cells. Plasma was applied at 2 kVp-p, 3 kVp-p, and 4 kVp-p to evaluate its effect on cellular permeability, mitochondrial activity, viability, and apoptosis. FITC-dextran-70 (FD-70, MW: 70 kDa) was used as a model permeation marker to assess cellular uptake. The results showed a voltage-dependent increase in FD-70 uptake, suggesting improved plasma-assisted drug delivery. The cell mitochondrial activity, evaluated with a MT-1 MitoMP detection kit, revealed that plasma exposure at 2 kVp-p and 3 kVp-p slightly enhanced mitochondrial membrane potential (MMP), signifying increased metabolic and mitochondrial activity, whereas exposure at 4 kVp-p led to a reduction in MMP, suggesting oxidative stress and early apoptosis. Early and late apoptosis was further assessed using FITC Annexin-V and propidium iodide (PI). The results showed enhanced cell viability and a reduced apoptotic cell at 2 kVp-p and 3 kVp-p plasma exposure when compared to the control. However, at 4 kV, there was a decline in cell viability and an increase in apoptosis, suggesting a shift towards plasma-induced cytotoxicity. This study established a safe plasma exposure threshold for DBC1.2 cells and explored the potential use of a spiral-wound DBD plasma device for biomedical applications, particularly in drug delivery and cell modulation. Full article
(This article belongs to the Special Issue Recent Advances of Dielectric Barrier Discharges)
Show Figures

Graphical abstract

15 pages, 3975 KiB  
Article
Decomposition Mechanisms of Lignin-Related Aromatic Monomers in Solution Plasma
by Takaki Miyamoto, Jeanielle Amurao, Eiji Minami and Haruo Kawamoto
Plasma 2025, 8(2), 14; https://doi.org/10.3390/plasma8020014 - 10 Apr 2025
Viewed by 376
Abstract
Lignin is a natural aromatic macromolecule present in wood and an abundant resource on Earth, yet it is hardly used. In this study, an aqueous solution plasma treatment was investigated for the catalyst-free production of valuable chemicals from lignin. To elucidate the decomposition [...] Read more.
Lignin is a natural aromatic macromolecule present in wood and an abundant resource on Earth, yet it is hardly used. In this study, an aqueous solution plasma treatment was investigated for the catalyst-free production of valuable chemicals from lignin. To elucidate the decomposition mechanism, the aqueous solution plasma treatment was applied to the fundamental lignin aromatic model compounds—phenol, guaiacol, and syringol. The results showed that the decomposition rate followed the order syringol > guaiacol > phenol, indicating that electron-donating methoxy groups enhance reactivity. These aromatic model compounds underwent hydroxylation at the ortho and para positions, oxidative ring cleavage, and fragmentation, leading to the formation of various dicarboxylic acids, primarily oxalic acid. All these reactions were promoted by hydroxyl radicals generated from water. Ultimately, decarbonylation and decarboxylation of carboxyl groups resulted in gasification, mainly producing H2, CO, and CO2. These results provide fundamental insights into lignin decomposition and demonstrate that aqueous solution plasma is a promising method for producing dicarboxylic acids from lignin under mild conditions without catalysts. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

17 pages, 3091 KiB  
Review
A Tutorial on One-Dimensional Numerical Simulation of Virtual Cathode Oscillation
by Weihua Jiang
Plasma 2025, 8(2), 13; https://doi.org/10.3390/plasma8020013 - 1 Apr 2025
Viewed by 293
Abstract
This review article is the continuation of a previous publication, by the same author, on one dimensional theory of space charge effect and virtual cathode. The virtual cathode is known to be unstable. However, the process of virtual cathode oscillation is very complicated [...] Read more.
This review article is the continuation of a previous publication, by the same author, on one dimensional theory of space charge effect and virtual cathode. The virtual cathode is known to be unstable. However, the process of virtual cathode oscillation is very complicated both physically and mathematically. No satisfactory theoretical model exists that can fully describe the oscillatory behavior of the virtual cathode. On the other hand, computer simulations allow us to numerically observe this phenomenon and establish certain relations between the electron beam parameters and the virtual cathode characteristics. This article explains the detailed procedure of numerical modeling by dealing with the one-dimensional case as an example. A sample code written in the C language is attached at the end following the main text. This article is expected to serve as a reference for young researchers and students who are interested in computer simulations of intense particle beams and high-power microwave generation. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2025)
Show Figures

Figure 1

Previous Issue
Back to TopTop