Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses
Abstract
1. Introduction
2. Methods
3. Results
3.1. Expansion of Femtosecond and Nanosecond Flows into Vacuum
3.2. Features of the Expansion of «Femtosecond» and «Nanosecond» Plasma Flows into an External Transverse Magnetic Field of 14 T
3.3. Interaction of Elongated Laser Plasma Slab with Transverse Magnetic Field
4. Simulation
5. Discussion
Astrophysical Implication
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basov, N.; Krokhin, O. Conditions for heating up of a plasma by the radiation from an optical generator. Sov. Phys. JETP 1964, 19, 123–126. [Google Scholar]
- Chang, P.; Fiksel, G.; Hohenberger, M.; Knauer, J.; Betti, R.; Marshall, F.; Meyerhofer, D.; Séguin, F.; Petrasso, R. Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett. 2011, 107, 035006. [Google Scholar] [CrossRef] [PubMed]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 55, 447–449. [Google Scholar] [CrossRef]
- Zakharov, Y.; Antonov, V.; Boyarintsev, E.; Melekhov, A.; Posukh, V.; Shaikhislamov, I.; Pickalov, V. Role of the Hall flute instability in the interaction of laser and space plasmas with a magnetic field. Plasma Phys. Rep. 2006, 32, 183–204. [Google Scholar] [CrossRef]
- Ripin, B.; McLean, E.; Manka, C.; Pawley, C.; Stamper, J.; Peyser, T.; Mostovych, A.; Grun, J.; Hassam, A.; Huba, J. Large-Larmor-radius interchange instability. Phys. Rev. Lett. 1987, 59, 2299. [Google Scholar] [CrossRef] [PubMed]
- Khiar, B.; Revet, G.; Ciardi, A.; Burdonov, K.; Filippov, E.; Béard, J.; Cerchez, M.; Chen, S.; Gangolf, T.; Makarov, S.; et al. Laser-produced magnetic-Rayleigh-Taylor unstable plasma slabs in a 20 T magnetic field. Phys. Rev. Lett. 2019, 123, 205001. [Google Scholar] [CrossRef]
- Hassam, A.; Huba, J. Structuring of the AMPTE magnetotail barium releases. Geophys. Res. Lett. 1987, 14, 60–63. [Google Scholar] [CrossRef]
- Fujioka, S.; Zhang, Z.; Ishihara, K.; Shigemori, K.; Hironaka, Y.; Johzaki, T.; Sunahara, A.; Yamamoto, N.; Nakashima, H.; Watanabe, T.; et al. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 2013, 3, 1170. [Google Scholar] [CrossRef]
- Froula, D.; Ross, J.; Pollock, B.; Davis, P.; James, A.; Divol, L.; Edwards, M.; Offenberger, A.; Price, D.; Town, R.; et al. Quenching of the Nonlocal Electron Heat Transport by Large External Magnetic Fields in a Laser-Produced Plasma Measured with Imaging Thomson Scattering. Phys. Rev. Lett. 2007, 98, 135001. [Google Scholar]
- Zemskov, R.; Burdonov, K.; Soloviev, A.; Sladkov, A.; Korzhimanov, A.; Fuchs, J.; Bisikalo, D.; Zhilkin, A.; Barkov, M.; Ciardi, A.; et al. Laboratory modeling of YSO jets collimation by a large-scale divergent interstellar magnetic field. Astron. Astrophys. 2024, 681, A37. [Google Scholar] [CrossRef]
- Burdonov, K.; Yao, W.; Sladkov, A.; Bonito, R.; Chen, S.; Ciardi, A.; Korzhimanov, A.; Soloviev, A.; Starodubtsev, M.; Zemskov, R.; et al. Laboratory modelling of equatorial ‘tongue’accretion channels in young stellar objects caused by the Rayleigh-Taylor instability. Astron. Astrophys. 2022, 657, A112. [Google Scholar] [CrossRef]
- Fazzini, A.; Yao, W.; Burdonov, K.; Beard, J.; Chen, S.; Ciardi, A.; d’Humieres, E.; Diab, R.; Filippov, E.; Kisyov, S.; et al. Particle energization in colliding subcritical collisionless shocks investigated in the laboratory. Astron. Astrophys. 2022, 665, A87. [Google Scholar] [CrossRef]
- Burdonov, K.; Revet, G.; Bonito, R.; Argiroffi, C.; Béard, J.; Bolanõs, S.; Cerchez, M.; Chen, S.N.; Ciardi, A.; Espinosa, G.; et al. Laboratory evidence for an asymmetric accretion structure upon slanted matter impact in young stars. Astron. Astrophys. 2020, 642, A38. [Google Scholar] [CrossRef]
- Burdonov, K.; Bonito, R.; Giannini, T.; Aidakina, N.; Argiroffi, C.; Béard, J.; Chen, S.; Ciardi, A.; Ginzburg, V.; Gubskiy, K.; et al. Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments. Astron. Astrophys. 2021, 648, A81. [Google Scholar] [CrossRef]
- Albertazzi, B.; Ciardi, A.; Nakatsutsumi, M.; Vinci, T.; Beard, J.; Bonito, R.; Billette, J.; Borghesi, M.; Burkley, Z.; Chen, S.N.; et al. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science 2014, 346, 325–328. [Google Scholar] [CrossRef]
- Yao, W.; Fazzini, A.; Chen, S.; Burdonov, K.; Antici, P.; Beard, J.; Bolanos, S.; Ciardi, A.; Diab, R.; Filippov, E.; et al. Laboratory evidence for proton energization by collisionless shock surfing. Nat. Phys. 2021, 17, 1177–1182. [Google Scholar] [CrossRef]
- Ryutov, D.; Drake, R.P.; Kane, J.; Liang, E.; Remington, B.A.; Wood-Vasey, W.M. Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics. Astrophys. J. 1999, 518, 821–832. [Google Scholar] [CrossRef]
- Ryutov, D.D.; Drake, R.P.; Remington, B.A. Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena. Astrophys. J. Suppl. Ser. 2000, 127, 465–468. [Google Scholar] [CrossRef]
- Ryutov, D.D. Scaling laws for dynamical plasma phenomena. Phys. Plasmas 2018, 25, 100501. [Google Scholar] [CrossRef]
- Roth, M.; Cowan, T.; Key, M.; Hatchett, S.; Brown, C.; Fountain, W.; Johnson, J.; Pennington, D.; Snavely, R.; Wilks, S.; et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 2001, 86, 436. [Google Scholar] [CrossRef]
- Tabak, M.; Clark, D.; Hatchett, S.; Key, M.; Lasinski, B.; Snavely, R.; Wilks, S.; Town, R.; Stephens, R.; Campbell, E.; et al. Review of progress in fast ignition. Phys. Plasmas 2005, 12. [Google Scholar] [CrossRef]
- Albert, F.; Thomas, A.G. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control. Fusion 2016, 58, 103001. [Google Scholar] [CrossRef]
- Soloviev, A.A.; Burdonov, K.F.; Ginzburg, V.N.; Glyavin, M.Y.; Zemskov, R.S.; Kotov, A.V.; Kochetkov, A.A.; Kuzmin, A.A.; Murzanev, A.A.; Mukhin, I.B.; et al. Research in plasma physics and particle acceleration using the PEARL petawatt laser. Uspekhi Fiz. Nauk. 2024, 194, 313–335. [Google Scholar] [CrossRef]
- Perevalov, S.E.; Kotov, A.V.; Zemskov, R.S.; Burdonov, K.F.; Ginzburg, V.N.; Kuzmin, A.A.; Stukachev, S.E.; Yakovlev, I.V.; Shaykin, A.; Lopatin, A.Y.; et al. Acceleration of Electrons upon Interaction of Laser Pulses with Solid Targets in the Laser Peeler Regime. Bull. Lebedev Phys. Inst. 2024, 51, S305–S315. [Google Scholar] [CrossRef]
- Perevalov, S.; Burdonov, K.; Kotov, A.; Romanovskiy, D.; Soloviev, A.; Starodubtsev, M.; Golovanov, A.; Ginzburg, V.; Kochetkov, A.; Korobeinikova, A.; et al. Experimental study of strongly mismatched regime of laser-driven wakefield acceleration. Plasma Phys. Control. Fusion 2020, 62, 094004. [Google Scholar] [CrossRef]
- Schoenlein, R.; Elsaesser, T.; Holldack, K.; Huang, Z.; Kapteyn, H.; Murnane, M.; Woerner, M. Recent advances in ultrafast X-ray sources. Philos. Trans. R. Soc. 2019, 377, 20180384. [Google Scholar] [CrossRef]
- Liao, G.Q.; Li, Y.T. Review of intense terahertz radiation from relativistic laser-produced plasmas. IEEE Trans. Plasma Sci. 2019, 47, 3002–3008. [Google Scholar] [CrossRef]
- Zemskov, R.; Perevalov, S.; Kotov, A.; Bodrov, S.; Stepanov, A.; Solov’ev, A.; Bakunov, M.; Luchinin, A.; Ginzburg, V.; Kuz’min, A.; et al. Experimental Study of Terahertz Radiation Generation in the Interaction of Ultrashort Laser Pulse with Gas Targets. Radiophys. Quantum Electron. 2023, 65, 877–887. [Google Scholar] [CrossRef]
- Chen, H.; Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Phys. Plasmas 2023, 30, 020601. [Google Scholar] [CrossRef]
- Gurevich, E.; Hergenröder, R. Femtosecond laser-induced breakdown spectroscopy: Physics, applications, and perspectives. Appl. Spectrosc. 2007, 61, 233A–242A. [Google Scholar] [CrossRef]
- Singh, J.P.; Thakur, S.N. Laser-Induced Breakdown Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Harilal, S.S.; Freeman, J.R.; Diwakar, P.K.; Hassanein, A. Femtosecond laser ablation: Fundamentals and applications. In Laser-Induced Breakdown Spectroscopy: Theory and Applications; Springer: New York, NY, USA, 2014; pp. 143–166. [Google Scholar]
- Amoruso, S.; Bruzzese, R.; Spinelli, N.; Velotta, R. Characterization of laser-ablation plasmas. J. Phys. At. Mol. Opt. Phys. 1999, 32, R131. [Google Scholar] [CrossRef]
- Antici, P.; Gremillet, L.; Grismayer, T.; Mora, P.; Audebert, P.; Borghesi, M.; Cecchetti, C.; Mančic, A.; Fuchs, J. Modeling target bulk heating resulting from ultra-intense short pulse laser irradiation of solid density targets. Phys. Plasmas 2013, 20, 123116. [Google Scholar] [CrossRef]
- Dubois, J.L.; Lubrano-Lavaderci, F.; Raffestin, D.; Ribolzi, J.; Gazave, J.; Fontaine, A.C.L.; d’Humières, E.; Hulin, S.; Nicolaï, P.; Poyé, A.; et al. Target charging in short-pulse-laser–plasma experiments. Phys. Rev. E 2014, 89, 013102. [Google Scholar] [CrossRef] [PubMed]
- Soloviev, A.; Burdonov, K.; Chen, S.; Eremeev, A.; Korzhimanov, A.; Pokrovskiy, G.; Pikuz, T.; Revet, G.; Sladkov, A.; Ginzburg, V.; et al. Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures. Sci. Rep. 2017, 7, 12144. [Google Scholar] [CrossRef]
- Daido, H.; Nishiuchi, M.; Pirozhkov, A.S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 2012, 75, 056401. [Google Scholar] [CrossRef]
- Sarri, G.; Macchi, A.; Cecchetti, C.; Kar, S.; Liseykina, T.; Yang, X.; Dieckmann, M.E.; Fuchs, J.; Galimberti, M.; Gizzi, L.; et al. Dynamics of Self-Generated, Large Amplitude Magnetic Fields Following High-Intensity Laser Matter Interaction. Phys. Rev. Lett. 2012, 109, 205002. [Google Scholar] [CrossRef]
- Albertazzi, B.; Chen, S.; Antici, P.; Böker, J.; Borghesi, M.; Breil, J.; Dervieux, V.; Feugeas, J.; Lancia, L.; Nakatsutsumi, M.; et al. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation. Phys. Plasmas 2015, 22, 123108. [Google Scholar] [CrossRef]
- Shaikh, M.; Lad, A.D.; Jana, K.; Sarkar, D.; Dey, I.; Kumar, G.R. Megagauss magnetic fields in ultra-intense laser generated dense plasmas. Plasma Phys. Control. Fusion 2016, 59, 014007. [Google Scholar] [CrossRef]
- Borghesi, M.; Mackinnon, A.; Gaillard, R.; Willi, O.; Pukhov, A.; Meyer-ter Vehn, J. Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma. Phys. Rev. Lett. 1998, 80, 5137. [Google Scholar] [CrossRef]
- Gopal, A.; Tatarakis, M.; Beg, F.; Clark, E.; Dangor, A.; Evans, R.; Norreys, P.; Wei, M.; Zepf, M.; Krushelnick, K. Temporally and spatially resolved measurements of multi-megagauss magnetic fields in high intensity laser-produced plasmas. Phys. Plasmas 2008, 15, 122701. [Google Scholar] [CrossRef]
- Weibel, E.S. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 1959, 2, 83. [Google Scholar] [CrossRef]
- Ruyer, C.; Bolaños, S.; Albertazzi, B.; Chen, S.; Antici, P.; Böker, J.; Dervieux, V.; Lancia, L.; Nakatsutsumi, M.; Romagnani, L.; et al. Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales. Nat. Phys. 2020, 16, 983–988. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Makur, K.; Ramakrishna, B. Observation of resistive Weibel instability in intense laser plasma. Laser Part. Beams 2020, 38, 152–158. [Google Scholar] [CrossRef]
- Quinn, K.; Romagnani, L.; Ramakrishna, B.; Sarri, G.; Dieckmann, M.E.; Wilson, P.; Fuchs, J.; Lancia, L.; Pipahl, A.; Toncian, T.; et al. Weibel-induced filamentation during an ultrafast laser-driven plasma expansion. Phys. Rev. Lett. 2012, 108, 135001. [Google Scholar] [CrossRef] [PubMed]
- Biermann, L. Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem Anhang von A. Schlüter). Z. Naturforschung Teil A 1950, 5, 65. [Google Scholar]
- Ciardi, A.; Vinci, T.; Fuchs, J.; Albertazzi, B.; Riconda, C.; Pépin, H.; Portugall, O. Astrophysics of Magnetically Collimated Jets Generated from Laser-Produced Plasmas. Phys. Rev. Lett. 2013, 110, 025002. [Google Scholar] [CrossRef]
- Ciardi, A.; Lebedev, S.; Frank, A.; Blackman, E.; Chittenden, J.; Jennings, C.; Ampleford, D.; Bland, S.; Bott, S.; Rapley, J.; et al. The evolution of magnetic tower jets in the laboratory. Phys. Plasmas 2007, 14, 056501. [Google Scholar] [CrossRef]
- Ryu, D.; Schleicher, D.R.; Treumann, R.A.; Tsagas, C.G.; Widrow, L.M. Magnetic fields in the large-scale structure of the universe. Space Sci. Rev. 2012, 166, 1–35. [Google Scholar] [CrossRef]
- Ryutov, D.; Kugland, N.; Park, H.; Plechaty, C.; Remington, B.; Ross, J. Basic scalings for collisionless-shock experiments in a plasma without pre-imposed magnetic field. Plasma Phys. Control. Fusion 2012, 54, 105021. [Google Scholar] [CrossRef]
- Lozhkarev, V.; Freidman, G.; Ginzburg, V.; Katin, E.; Khazanov, E.; Kirsanov, A.; Luchinin, G.; Mal’Shakov, A.; Martyanov, M.; Palashov, O.; et al. Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD* P crystals. Laser Phys. Lett. 2007, 4, 421. [Google Scholar] [CrossRef]
- Ginzburg, V.; Yakovlev, I.; Kochetkov, A.; Kuzmin, A.; Mironov, S.; Shaikin, I.; Shaykin, A.; Khazanov, E. 11 fs, 1.5 PW laser with nonlinear pulse compression. Opt. Express 2021, 29, 28297–28306. [Google Scholar] [CrossRef] [PubMed]
- Soloviev, A.; Kotov, A.; Martyanov, M.; Perevalov, S.; Zemskov, R.; Starodubtsev, M.; Alexandrov, A.; Galaktionov, I.; Samarkin, V.; Kudryashov, A.; et al. Improving focusability of post-compressed PW laser pulses using a deformable mirror. Opt. Express 2022, 30, 40584–40591. [Google Scholar] [CrossRef] [PubMed]
- Soloviev, A.; Burdonov, K.; Kotov, A.; Perevalov, S.; Zemskov, R.; Ginzburg, V.; Kochetkov, A.; Kuzmin, A.; Shaikin, A.; Shaikin, I.; et al. Experimental study of the interaction of a laser plasma flow with a transverse magnetic field. Radiophys. Quantum Electron. 2021, 63, 876–886. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Barkov, M.V.; Khangulyan, D. Scenarios for Ultrafast Gamma-Ray Variability in AGN. Astrophys. J. 2017, 841, 61. [Google Scholar] [CrossRef]
- Luchinin, A.; Malyshev, V.; Kopelovich, E.; Burdonov, K.; Gushchin, M.; Morozkin, M.; Proyavin, M.; Rozental, R.; Soloviev, A.; Starodubtsev, M.; et al. Pulsed magnetic field generation system for laser-plasma research. Rev. Sci. Instrum. 2021, 92, 123506. [Google Scholar] [CrossRef]
- Faenov, A.Y.; Colgan, J.; Hansen, S.; Zhidkov, A.; Pikuz, T.; Nishiuchi, M.; Pikuz, S.; Skobelev, I.Y.; Abdallah, J.; Sakaki, H.; et al. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser. Sci. Rep. 2015, 5, 13436. [Google Scholar] [CrossRef]
- Faenov, A.Y. X-ray spectroscopic methods for measuring the parameters of high-temperature dense plasma. Meas. Tech. 1997, 40, 94–100. [Google Scholar] [CrossRef]
- Hipp, M.; Woisetschlager, J.; Reiterer, P.; Neger, T. Digital evaluation of interferograms. Measurement 2004, 36, 53–66. [Google Scholar] [CrossRef]
- Basov, N.; Zakharenkov, Y.A.; Rupasov, A.; Sklizkov, G.; Shikanov, A. Diagnostics of Dense Plasma. Nauka Mosc. 1989, 11, 9. [Google Scholar]
- Tatarakis, M.; Gopal, A.; Watts, I.; Beg, F.; Dangor, A.; Krushelnick, K.; Wagner, U.; Norreys, P.; Clark, E.; Zepf, M.; et al. Measurements of ultrastrong magnetic fields during relativistic laser–plasma interactions. Phys. Plasmas 2002, 9, 2244–2250. [Google Scholar] [CrossRef]
- Tatarakis, M.; Watts, I.; Beg, F.; Clark, E.; Dangor, A.; Gopal, A.; Haines, M.; Norreys, P.; Wagner, U.; Wei, M.S.; et al. Measuring huge magnetic fields. Nature 2002, 415, 280. [Google Scholar] [CrossRef]
- Zemskov, R.; Burdonov, K.; Kuzmin, A.; Shaikin, I.A.; Ginsburg, V.N.; Yakovlev, I.V.; Kochetkov, A.A.; Perevalov, S.E.; Kotov, A.V.; Solovyov, A.A.; et al. Laboratory study of Rayleigh-Taylor instability in laser plasma interacting with an external magnetic field. Radiophys. Quantum Electron. 2024, 67, 1029–1037. [Google Scholar] [CrossRef]
- Korobkov, S.; Nikolenko, A.; Gushchin, M.; Strikovsky, A.; Zudin, I.Y.; Aidakina, N.; Shaikhislamov, I.; Rumenskikh, M.; Zemskov, R.; Starodubtsev, M. Features of Dynamics and Instability of Plasma Jets Expanding into an External Magnetic Field in Laboratory Experiments with Compact Coaxial Plasma Generators on a Large-Scale “Krot” Stand. Astron. Rep. 2023, 67, 93–103. [Google Scholar] [CrossRef]
- Winske, D.; Huba, J.D.; Niemann, C.; Le, A. Recalling and updating research on diamagnetic cavities: Experiments, theory, simulations. Front. Astron. Space Sci. 2019, 5, 51. [Google Scholar] [CrossRef]
- Tang, H.b.; Hu, G.y.; Liang, Y.h.; Wang, Y.l.; Tao, T.; Hu, P.; Yuan, P.; Zhu, P.; Zuo, Y.; Zhao, B.; et al. Observation of large Larmor radius instability in laser plasma expanding into a 10 T external magnetic field. Phys. Plasmas 2020, 27, 022108. [Google Scholar] [CrossRef]
- Meshkov, E.E. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 1969, 4, 101–104. [Google Scholar] [CrossRef]
- Richardson, A.S. 2019 NRL Plasma Formulary; Naval Research Laboratory: Washington, DC, USA, 2019.
- Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F.X.; Zingale, M.; Lamb, D.; MacNeice, P.; Rosner, R.; Truran, J.; Tufo, H. FLASH: An Adaptive Mesh Hydrodynamics Code for ModelingAstrophysical Thermonuclear Flashes. Astrophys. J. Suppl. Ser. 2000, 131, 273. [Google Scholar] [CrossRef]
- Wollaeger, R.T.; Van Rossum, D.R. Radiation transport for explosive outflows: Opacity regrouping. Astrophys. J. Suppl. Ser. 2014, 214, 28. [Google Scholar] [CrossRef]
- Chatzopoulos, E.; Weide, K. Gray radiation hydrodynamics with the FLASH code for astrophysical applications. Astrophys. J. 2019, 876, 148. [Google Scholar] [CrossRef]
- Braginskii, S. Transport processes in a plasma. Rev. Plasma Phys. 1965, 1, 205. [Google Scholar]
- Huba, J.; Gladd, N.; Papadopoulos, K. The lower-hybrid-drift instability as a source of anomalous resistivity for magnetic field line reconnection. Geophys. Res. Lett. 1977, 4, 125–128. [Google Scholar] [CrossRef]
- Okada, S.; Sato, K.; Sekiguchi, T. Possibility of lower-hybrid-drift instability in laser produced plasma in a uniform magnetic field. J. Phys. Soc. Jpn. 1979, 46, 355–356. [Google Scholar] [CrossRef]
- Peyser, T.; Manka, C.; Ripin, B.; Ganguli, G. Electron–ion hybrid instability in laser-produced plasma expansions across magnetic fields. Phys. Fluids Plasma Phys. 1992, 4, 2448–2458. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Sharp, D.H. Overview of Rayleigh-Taylor Instability; Technical Report; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 1983.
- Winske, D. Short-wavelength modes on expanding plasma clouds. J. Geophys. Res. Space Phys. 1988, 93, 2539–2552. [Google Scholar] [CrossRef]
- Zakharov, Y.P. Collisionless laboratory astrophysics with lasers. IEEE Trans. Plasma Sci. 2003, 31, 1243–1251. [Google Scholar] [CrossRef]
- Huba, J.; Lyon, J.; Hassam, A. Theory and simulation of the Rayleigh-Taylor instability in the limit of large Larmor radius. Phys. Rev. Lett. 1987, 59, 2971. [Google Scholar] [CrossRef]
- Huba, J.; Hassam, A.; Satyanarayana, P. Nonlocal theory of the Rayleigh–Taylor instability in the limit of unmagnetized ions. Phys. Fluids Plasma Phys. 1989, 1, 931–941. [Google Scholar] [CrossRef]
- Hassam, A.; Huba, J. Nonlinear evolution of the unmagnetized ion Rayleigh–Taylor instability. Phys. Fluids Plasma Phys. 1990, 2, 2001–2006. [Google Scholar] [CrossRef]
- Huba, J. Hall magnetohydrodynamics in space and laboratory plasmas. Phys. Plasmas 1995, 2, 2504–2513. [Google Scholar] [CrossRef]
- Bernhardt, P.; Roussel-Dupre, R.; Pongratz, M.; Haerendel, G.; Valenzuela, A.; Gurnett, D.; Anderson, R. Observations and theory of the AMPTE magnetotail barium releases. J. Geophys. Res. Space Phys. 1987, 92, 5777–5794. [Google Scholar] [CrossRef]
- Huba, J.; Hassam, A.; Winske, D. Stability of sub-Alfvénic plasma expansions. Phys. Fluids Plasma Phys. 1990, 2, 1676–1697. [Google Scholar] [CrossRef]
- Zhu, P.; Sovinec, C.; Hegna, C. The formation of blobs from a pure interchange process. Phys. Plasmas 2015, 22, 022311. [Google Scholar] [CrossRef]
- Faenov, A.Y.; Pikuz, S.; Erko, A.; Bryunetkin, B.; Dyakin, V.; Ivanenkov, G.; Mingaleev, A.; Pikuz, T.; Romanova, V.; Shelkovenko, T. High-performance x-ray spectroscopic devices for plasma microsources investigations. Phys. Scr. 1994, 50, 333. [Google Scholar] [CrossRef]
- Filippov, E.D.; Makarov, S.S.; Burdonov, K.F.; Yao, W.; Revet, G.; Béard, J.; Bolaños, S.; Chen, S.N.; Guediche, A.; Hare, J.; et al. Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field. Sci. Rep. 2021, 11, 8180. [Google Scholar] [CrossRef] [PubMed]
- Hassam, A.; Huba, J. Magnetohydrodynamic equations for systems with large Larmor radius. Phys. Fluids 1988, 31, 318–325. [Google Scholar] [CrossRef]
- Ryutov, D.; Kugland, N.; Levy, M.; Plechaty, C.; Ross, J.; Park, H. Magnetic field advection in two interpenetrating plasma streams. Phys. Plasmas 2013, 20, 032703. [Google Scholar] [CrossRef]
- Gordeev, A.V.; Kingsep, A.S.; Rudakov, L.I. Electron magnetohydrodynamics. Phys. Rep. 1994, 243, 215–315. [Google Scholar] [CrossRef]
- Gushchin, M.E.; Korobkov, S.V.; Terekhin, V.A.; Strikovskiy, A.; Gundorin, V.I.; Zudin, I.Y.; Aidakina, N.A.; Nikolenko, A. Laboratory simulation of the dynamics of a dense plasma cloud expanding in a magnetized background plasma on a Krot large-scale device. JETP Lett. 2018, 108, 391–395. [Google Scholar] [CrossRef]
- Nikolenko, A.; Gushchin, M.; Korobkov, S.; Zudin, I.Y.; Aidakina, N.; Strikovskiy, A.; Loskutov, K. Dynamics of a Plasma Cloud Generated by a Compact Coaxial Gun upon Expansion into Vacuum and Large-Volume Background Plasma in an External Magnetic Field. Plasma Phys. Rep. 2023, 49, 1284–1299. [Google Scholar] [CrossRef]
- Collette, A.; Gekelman, W. Structure of an exploding laser-produced plasma. Phys. Rev. Lett. 2010, 105, 195003. [Google Scholar] [CrossRef]
- Collette, A.; Gekelman, W. Structure of an exploding laser-produced plasma. Phys. Plasmas 2011, 18, 055705. [Google Scholar] [CrossRef]
- Chibranov, A.; Shaikhislamov, I.; Berezutskiy, A.; Posukh, V.; Trushin, P.; Zakharov, Y.P.; Miroshnichenko, I.; Rumenskikh, M.; Terekhin, V. Hall Effects and Diamagnetic Cavity Collapse during a Laser Plasma Cloud Expansion into a Vacuum Magnetic Field. Astron. Rep. 2024, 68, 418–428. [Google Scholar] [CrossRef]
- Winske, D. Regimes of the magnetized Rayleigh–Taylor instability. Phys. Plasmas 1996, 3, 3966–3974. [Google Scholar] [CrossRef]
- Huba, J.; Winske, D. Rayleigh–Taylor instability: Comparison of hybrid and nonideal magnetohydrodynamic simulations. Phys. Plasmas 1998, 5, 2305–2316. [Google Scholar] [CrossRef]
- Umeda, T.; Wada, Y. Non-MHD effects in the nonlinear development of the MHD-scale Rayleigh-Taylor instability. Phys. Plasmas 2017, 24, 072307. [Google Scholar] [CrossRef]
- Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; Byrum, K.; et al. VERITAS Observations of Day-scale Flaring of M 87 in 2010 April. Astrophys. J. 2012, 746, 141. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; et al. Fermi Gamma-ray Space Telescope Observations of the Gamma-ray Outburst from 3C454.3 in November 2010. Astrophys. J. Lett. 2011, 733, L26. [Google Scholar] [CrossRef]
- Barkov, M.V.; Aharonian, F.A.; Bosch-Ramon, V. Gamma-ray Flares from Red Giant/Jet Interactions in Active Galactic Nuclei. Astrophys. J. 2010, 724, 1517–1523. [Google Scholar] [CrossRef]
- Barkov, M.V.; Aharonian, F.A.; Bogovalov, S.V.; Kelner, S.R.; Khangulyan, D. Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. Astrophys. J. 2012, 749, 119. [Google Scholar] [CrossRef]
- Bosch-Ramon, V.; Perucho, M.; Barkov, M.V. Clouds and red giants interacting with the base of AGN jets. Astron. Astrophys. 2012, 539, A69. [Google Scholar] [CrossRef]
Fs Flow | Ns Flow | Astro | |
---|---|---|---|
Material | H | ||
Z | 3 | 6 | 1 |
A | 7 | 17 | 1 |
B [G] | 500 | ||
L [cm] | |||
[cm−3] | |||
[eV] | 20 | 100 | |
[eV] | 20 | 100 | |
V [km/s] | 100 | 400 | |
[g.cm−3] | |||
[km.s−1] | 43 | 81 | |
[cm] | |||
[ns] | |||
[cm] | 15 | ||
[Hz] | |||
[cm] | |||
[ns] | |||
(directed) [cm] | |||
[ns] | |||
(directed) [cm] | |||
[Hz] | |||
[Hz] | |||
c/ [cm] | |||
[cm2/s] | |||
14 | 370 | ||
Re | 320 | 670 | |
Eu | 3 | ||
1 | |||
HN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemskov, R.S.; Barkov, M.V.; Blinov, E.S.; Burdonov, K.F.; Ginzburg, V.N.; Kochetkov, A.A.; Kotov, A.V.; Kuzmin, A.A.; Perevalov, S.E.; Shaikin, I.A.; et al. Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses. Plasma 2025, 8, 23. https://doi.org/10.3390/plasma8020023
Zemskov RS, Barkov MV, Blinov ES, Burdonov KF, Ginzburg VN, Kochetkov AA, Kotov AV, Kuzmin AA, Perevalov SE, Shaikin IA, et al. Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses. Plasma. 2025; 8(2):23. https://doi.org/10.3390/plasma8020023
Chicago/Turabian StyleZemskov, Roman S., Maxim V. Barkov, Evgeniy S. Blinov, Konstantin F. Burdonov, Vladislav N. Ginzburg, Anton A. Kochetkov, Aleksandr V. Kotov, Alexey A. Kuzmin, Sergey E. Perevalov, Il’ya A. Shaikin, and et al. 2025. "Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses" Plasma 8, no. 2: 23. https://doi.org/10.3390/plasma8020023
APA StyleZemskov, R. S., Barkov, M. V., Blinov, E. S., Burdonov, K. F., Ginzburg, V. N., Kochetkov, A. A., Kotov, A. V., Kuzmin, A. A., Perevalov, S. E., Shaikin, I. A., Stukachev, S. E., Yakovlev, I. V., Soloviev, A. A., Shaykin, A. A., Khazanov, E. A., Fuchs, J., & Starodubtsev, M. V. (2025). Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses. Plasma, 8(2), 23. https://doi.org/10.3390/plasma8020023