Ionospheric Electron Density and Temperature Profiles Using Ionosonde-like Data and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Nearest Neighbour
2.2. Radial Basis Function
2.3. Loss Function
- 1.
- it must be nonnegative;
- 2.
- if the inferred data match the modelled ones, the loss function vanishes;
- 3.
- the loss function increases as the discrepancy between inferred and known training data increases.
- (1)
- the Maximum Absolute Error (MAE)
- (2)
- the maximum absolute relative error (MARE)
- (3)
- the Root Mean Square Error (RMSE)
- (4)
- the Root Mean Square Relative Error (RMSRE)
3. Results
3.1. Inference of Electron Density Profiles with NNB and RBF Models
3.2. Inference of Electron Temperature Profiles with NNB and RBF Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NNB | Nearest Neighbour |
RBF | Radial Basis Function |
IRI | International Reference Ionosphere |
E-CHAIM | Empirical Canadian High Arctic Ionospheric Model |
GPS | Global Positioning System |
AfriTEC | Africa Total Electron Content |
ISR | Incoherent Scattering Radars |
OSSEs | Observation System Simulation Experiments |
TEC | Total Electron Content |
COSMIC | Constellation Observing System for Meteorology, Ionosphere and Climate |
RIOMETER | Relative Ionospheric Opacity Meter for Extra-Terrestrial Emissions of Radio noise |
RO | Radio Occultation |
hmE | Height at Maximum E layer |
hmF2 | Height at Maximum F2 layer |
NmE | Maximum electron density in E layer |
NmF2 | Maximum electron density in F2 layer |
GOES | Geostationary Operational Environmental Satellites |
References
- Appleton, E.V. Geophysical influences on the transmission of wireless waves. Proc. Phys. Soc. Lond. 1924, 37, 16D–22D. [Google Scholar] [CrossRef]
- Marconi, G. Radio telegraphy. J. Am. Inst. Electr. Eng. 1922, 41, 561–570. [Google Scholar] [CrossRef]
- Breit, G.; Tuve, M.A. A test of the existence of the conducting layer. Phys. Rev. 1926, 28, 554–575. [Google Scholar] [CrossRef]
- Yao, M.; Chen, G.; Zhao, Z.; Wang, Y.; Bai, B. A novel low-power multifunctional ionospheric sounding system. IEEE Trans. Instrum. Meas. 2011, 61, 1252–12591. [Google Scholar] [CrossRef]
- Lei, J.; Liu, L.; Wan, W.; Zhang, S. Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over millstone hill. Radio Sci. 2015, 40, RS2008. [Google Scholar] [CrossRef]
- Olsen, N.; Friis-Christensen, E.; Floberghagen, R.; Alken, P.; Beggan, C.D.; Chulliat, A.; Doornbos, E.; Da Encarnação, J.T.; Hamilton, B.; Hulot, G.; et al. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth Planets Space 2013, 65, 1189–1200. [Google Scholar] [CrossRef]
- Ware, R.; Exner, M.; Feng, D.; Gorbunov, M.; Hardy, K.; Herman, B.; Kuo, Y.; Meehan, T.; Melbourne, W.; Rocken, C.; et al. Gps sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Am. Meteorol. Soc. 1996, 77, 19–40. [Google Scholar] [CrossRef]
- Anthes, R.A. Exploring earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech. 2011, 4, 1077–1103. [Google Scholar] [CrossRef]
- De Dieu Nibigira, J.; Venkat, D.R.; Prasad, G. Analysis of ionospheric GPS-TEC variability over Uganda IGS station during descending phase of 24th solar cycle, 2018 year. Int. J. Sci. Technol. Res. 2019, 8, 3947–3950. [Google Scholar]
- Cheng, P.H.; Morton, Y.J. Observation of large-scale traveling ionospheric disturbances in the topside ionosphere using POD TEC from multiple LEO satellites constellations. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033293. [Google Scholar] [CrossRef]
- Siskind, D.E.; Jones, M., Jr.; Reep, J.W.; Drob, D.P.; Samaddar, S.; Bailey, S.M.; Zhang, S.R. Tests of a new solar flare model against D and E region ionosphere data. Space Weather 2022, 20, e2021SW003012. [Google Scholar] [CrossRef]
- Anderson, D.N.; Kintner, P.M.; Kelley, M.C. Inference of equatorial field-line-integrated electron density values using whistlers. J. Atmos. Terr. Phys. 1985, 47, 989–997. [Google Scholar] [CrossRef]
- Hughes, J.; Forsythe, V.; Blay, R.; Azeem, I.; Crowley, G.; Wilson, W.J.; Dao, E.; Colman, J.; Parris, R. On constructing a realistic truth model using ionosonde data for observation system simulation experiments. Radio Sci. 2022, 57, e2022RS007508. [Google Scholar] [CrossRef]
- He, J.; Yue, X.; Astafyeva, E.; Le, H.; Ren, Z.; Pedatella, N.M.; Ding, F.; Wei, Y. Global gridded ionospheric electron density derivation during 2006–2016 by assimilating COSMIC TEC and its validation. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030955. [Google Scholar] [CrossRef]
- Giovanni, G.D.; Radicella, S.M. An analytical model of the electron density profile in the ionosphere. Adv. Space Res. 1990, 10, 27–30. [Google Scholar] [CrossRef]
- McKay, D.; Vierinen, J.; Kero, A.; Partamies, N. On the determination of ionospheric electron density profiles using multi-frequency riometry. Geosci. Instrum. Method. Data Syst. 2022, 11, 25–35. [Google Scholar] [CrossRef]
- Sibanda, P.; McKinnell, L. Topside ionospheric vertical electron density profile reconstruction using GPS and ionosonde data: Possibilities for south africa. Ann. Geophys. 2011, 9, 229–236. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.S.; Al-Dabbagh, B.S.N.; Fadhel, M.A.; Manoufali, M.; Zhang, J.; Al-Timemy, A.H.; et al. A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and applications. J. Big Data 2023, 10, 46. [Google Scholar] [CrossRef]
- Lin, Y.; Fang, H.; Duan, D.; Huang, H.; Xiao, C.; Ren, G.; Li, C.; Zhou, C. Enhancing deep learning ionospheric modeling with solar radiation and flare classes. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033319. [Google Scholar] [CrossRef]
- Weng, J.; Liu, Y.; Wang, J.A. Model-Assisted Combined Machine Learning Method for Ionospheric TEC Prediction. Remote Sens. 2023, 15, 2953. [Google Scholar] [CrossRef]
- Zhang, R.; Li, H.; Shen, Y.; Yang, J.; Li, W.; Zhao, D.; Hu, A. Deep Learning Applications in Ionospheric Modeling: Progress, Challenges, and Opportunities. Remote Sens. 2025, 17, 124. [Google Scholar] [CrossRef]
- Kates-Harbeck, J.; Svyatkovskiy, A.; Tang, W. Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature 2019, 568, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Shousha, R.; Yang, S.; Hu, Q.; Hahn, S.; Jalalvand, A.; Park, J.K.; Logan, N.C.; Nelson, A.O.; Na, Y.S.; et al. Highest fusion performance without harmful edge energy bursts in tokamak. Nat. Commun. 2024, 15, 3990. [Google Scholar] [CrossRef]
- Döpp, A.; Eberle, C.; Howard, S.; Irshad, F.; Lin, J.; Streeter, M. Data-driven science and machine learning methods in laser–plasma physics. High Power Laser Sci. Eng. 2025, 11, e55. [Google Scholar] [CrossRef]
- Faraji, F.; Reza, M. Machine learning applications to computational plasma physics and reduced-order plasma modeling: A perspective. J. Phys. D Appl. Phys. 2025, 58, 102002. [Google Scholar] [CrossRef]
- Salimov, B.G.; Yasyukevich, Y.V.; Vesnin, A.M.; Bykov, A.E.; Zhang, B.; Ratnam, D.V. Machine learning total electron content models based on F10.7. Adv. Space Res. 2025, 76, 317–330. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Okoh, D.; Burešová, D.; Rabiu, B.; Tshisaphungo, M.; Kosch, M.; Häggström, I.; Erickson, P.J.; Milla, M.A. A global 3-D electron density reconstruction model based on radio occultation data and neural networks. J. Atmos. Sol.-Terr. Phys. 2022, 221, 105702. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Okoh, D.; Burešová, D.; Rabiu, B.; Scipión, D.; Häggström, I.; Erickson, P.J.; Milla, M.A. A storm-time global electron density reconstruction model in three-dimensions based on artificial neural networks. Adv. Space Res. 2019, 124, 4639–4657. [Google Scholar] [CrossRef]
- Hu, A.; Carter, B.; Currie, J.; Norman, R.; Wu, S.; Zhang, K. A Deep Neural Network Model of Global Topside Electron Temperature Using Incoherent Scatter Radars and Its Application to GNSS Radio Occultation. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027263. [Google Scholar] [CrossRef]
- Bilitza, D.; Truhlik, V.; Yoshihara, O.; Moldwin, M.B. Development and Improvement of the International Reference Ionosphere with special emphasis on the topside and extension to the plasmasphere. Ann. Geophys. 2024, 67, SA443. [Google Scholar] [CrossRef]
- Nibigira, J.D.D.; Ratnam, D.V.; Sivavaraprasad, G. Performance analysis of IRI-2016 model TEC predictions over Northern and Southern Hemispheric IGS stations during descending phase of solar cycle 24. Acta Geophys. 2021, 69, 1509–1527. [Google Scholar] [CrossRef]
- Endeshaw, L. Comparison of NeQuick and IRI Models with Ionosonde Data for Ionospheric Electron Density Measurements. Geomagn. Aeron. 2025, 1–15. [Google Scholar] [CrossRef]
- Jayachandran, P.T.; Langley, R.B.; MacDougall, J.W.; Mushini, S.C.; Pokhotelov, D.; Hamza, A.M. Canadian high arctic ionospheric network (chain). Radio Sci. 2009, 44, 342–351. [Google Scholar] [CrossRef]
- Nibigira, J.D.D.; Ratnam, D.; Sivakrishna, K. Performance analysis of Nequick-G, IRI-2016, IRI-Plas 2017 and AfriTEC models over the African region during the geomagnetic storm of March 2015. Geomagn. Aeron. 2023, 63, S83–S98. [Google Scholar] [CrossRef]
- Larson, B.; Koustov, A.V.; Themens, D.R.; Gillies, R.G. Ionospheric electron density over Resolute Bay according to E-CHAIM model and RISR radar measurements. Adv. Space Res. 2023, 71, 2759–2769. [Google Scholar] [CrossRef]
- Chen, Z.; An, B.; Liao, W.; Wang, Y.; Tang, R.; Wang, J.; Deng, X. Ionospheric Electron Density Model by Electron Density Grid Deep Neural Network (EDG-DNN). Atmosphere 2023, 14, 810. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I.; Gleason, S.; Hunt, D.; Freesland, D.; Krimchansky, A.; McCorkel, J.; Ramsey, G.; Chapel, J. Statistical validation of ionospheric electron density profiles retrievals from GOES geosynchronous satellites. J. Space Weather Space Clim. 2023, 13, 23. [Google Scholar] [CrossRef]
- Köhnlein, W. A model of the electron and ion temperatures in the ionosphere. Planet. Space Sci. 1986, 34, 609–630. [Google Scholar] [CrossRef]
- Matta, M.; Galand, M.; Moore, L.; Mendillo, M.; Withers, P. Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus 2014, 227, 78–88. [Google Scholar] [CrossRef]
- Pignalberi, A.; Giannattasio, F.; Truhlik, V.; Coco, I.; Pezzopane, M.; Alberti, T. Investigating the main features of the correlation between electron density and temperature in the topside ionosphere through swarm satellites data. J. Geophys. Res. Space Phys. 2024, 129, e2023JA032201. [Google Scholar] [CrossRef]
- Su, F.; Wang, W.; Burns, A.G.; Yue, X.; Zhu, F. The correlation between electron temperature and density in the topside ionosphere during 2006–2009. J. Geophys. Res. Space Phys. 2015, 120, 10724–10739. [Google Scholar] [CrossRef]
- Grant, S.W.; Hickey, G.L.; Head, S.J. Statistical primer: Multivariable regression considerations and pitfalls. Eur. J. Cardio-Thorac. Surg. 2019, 55, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Aggarwal, C. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2018; Volume 978, p. 3. [Google Scholar] [CrossRef]
- Mallika, I.L.; Ratnam, D.V.; Ostuka, Y.; Sivavaraprasad, G.; Raman, S. Implementation of hybrid ionospheric TEC forecasting algorithm using PCA-NN method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 371–381. [Google Scholar] [CrossRef]
- Azari, A.; Biersteker, J.B.; Dewey, R.M.; Doran, G.; Forsberg, E.J.; Harris, C.D.K.; Kerner, H.R.; Skinner, K.A.; Smith, A.W.; Amini, R.; et al. Integrating Machine Learning for Planetary Science: Perspectives for the Next Decade. Bull. AAS 2021, 53, 2023–2032. [Google Scholar] [CrossRef]
- Han, Y.; Wang, L.; Fu, W.; Zhou, H.; Li, T.; Chen, R. Machine learning-based short-term GPS TEC forecasting during high solar activity and magnetic storm periods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 115–126. [Google Scholar] [CrossRef]
- Abolfathi, M.; Inturi, S.; Banaei-Kashani, F.; Jafarian, J.H. Toward enhancing web privacy on HTTPS traffic: A novel SuperLearner attack model and an efficient defense approach with adversarial examples. Comput. Secur. 2024, 139, 103673. [Google Scholar] [CrossRef]
- Dittmann, T.T.; Chang, H.; Morton, Y. Multiclass Machine Learning in Low Cost CubeSat GNSS Radio Occultation Profiles. Presented at the AGU Fall Meeting 2024, Washington, DC, USA, 9–13 December 2024. [Google Scholar]
- Azari, A.R.; Lockhart, J.W.; Liemohn, M.W.; Jia, X. Incorporating physical knowledge into machine learning for planetary space physics. Front. Astron. Space Sci. 2020, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Wang, J.; Neskovic, P.; Cooper, L.N. An adaptive nearest neighbor algorithm for classification. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 5, pp. 3069–3074. [Google Scholar] [CrossRef]
- Gu, X.; Akoglu, L.; Rinaldo, A. Statistical analysis of nearest neighbor methods for anomaly detection. In Proceedings of the Advances in Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Monte-Moreno, E.; Yang, H.; Hernández-Pajares, M. Forecast of the global TEC by nearest neighbour technique. Remote Sens. 2022, 14, 1361. [Google Scholar] [CrossRef]
- Aggarwal, C.; Hinneburg, A.; Keim, D. On the surprising behavior of distance metrics in high dimensional space. In Database Theory—ICDT 2001, Proceedings of the 8th International Conference on Database Theory, London, UK, 4–6 January 2001; Van den Bussche, J., Vianu, V., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 1973. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic programming. Science 2019, 153, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Marchand, R.; Shahsavani, S.; Sanchez-Arriaga, G. Beyond analytic approximations with machine learning inference of plasma parameters and confidence intervals. J. Plasma Phys. 2023, 89, 905890111. [Google Scholar] [CrossRef]
- Huang, Z.; Yuan, H. Ionospheric single-station TEC short-term forecast using RBF neural network. Radio Sci. 2014, 49, 283–292. [Google Scholar] [CrossRef]
- Olowookere, A.; Marchand, R. A new technique to infer plasma density, flow velocity, and satellite potential from ion currents collected by a segmented langmuir probe. IEEE Trans. Plasma Sci. 2022, 50, 3774–3786. [Google Scholar] [CrossRef]
- Liu, G.; Marholm, S.; Eklund, A.; Clausen, L.; Marchand, R. m-NLP inference models using simulation and regression techniques. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030835. [Google Scholar] [CrossRef]
- Tang, S.; Huang, Z.; Yuan, H. Improving regional ionospheric TEC mapping based on RBF interpolation. Adv. Space Res. 2021, 7, 722–730. [Google Scholar] [CrossRef]
- Liu, G.; Marchand, R. Inference of m-NLP data using radial basis function regression with center-evolving algorithm. Comput. Phys. Commun. 2022, 280, 108497. [Google Scholar] [CrossRef]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Yu, B.; Tian, P.; Xue, X.; Scott, C.J.; Ye, H.; Wu, J.; Yi, W.; Chen, T.; Dou, X. Modelling of ionospheric temperature profiles. Adv. Space Res. 2024, 9, 10–19. [Google Scholar] [CrossRef]
- Bilitza, D.; Brace, L.H.; Theis, R.F. Modelling of ionospheric temperature profiles. Adv. Space Res. 2019, 5, 53–58. [Google Scholar] [CrossRef]
Model-Inference | MARE | h (km) |
---|---|---|
NNB-Best | 0.20 | 145 |
RBF-Best | 0.25 | 360 |
NNB-Worst | 0.60 | 415 |
RBF-Worst | 0.83 | 420 |
Model-Inference | MARE | h (km) |
---|---|---|
NNB-Best | 0.27 | 255 |
RBF-Best | 0.01 | 360 |
NNB-Worst | 0.50 | 350 |
RBF-Worst | 0.12 | 420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nibigira, J.d.D.; Marchand, R. Ionospheric Electron Density and Temperature Profiles Using Ionosonde-like Data and Machine Learning. Plasma 2025, 8, 24. https://doi.org/10.3390/plasma8020024
Nibigira JdD, Marchand R. Ionospheric Electron Density and Temperature Profiles Using Ionosonde-like Data and Machine Learning. Plasma. 2025; 8(2):24. https://doi.org/10.3390/plasma8020024
Chicago/Turabian StyleNibigira, Jean de Dieu, and Richard Marchand. 2025. "Ionospheric Electron Density and Temperature Profiles Using Ionosonde-like Data and Machine Learning" Plasma 8, no. 2: 24. https://doi.org/10.3390/plasma8020024
APA StyleNibigira, J. d. D., & Marchand, R. (2025). Ionospheric Electron Density and Temperature Profiles Using Ionosonde-like Data and Machine Learning. Plasma, 8(2), 24. https://doi.org/10.3390/plasma8020024