Background: This study compared the performance of a Head-mounted Virtual Reality Perimeter (HVRP) with the Humphrey Field Analyzer (HFA), the standard in automated perimetry. The HFA is the established standard for automated perimetry but is constrained by lengthy testing, bulky equipment, and limited patient comfort. Comparative data on newer head-mounted virtual reality perimeters are limited, leaving uncertainty about their clinical reliability and potential advantages.
Aim: The aim was to evaluate parameters such as visual field outcomes, portability, patient comfort, eye tracking, and usability.
Methods: Participants underwent testing with both devices, assessing metrics like mean deviation (MD), pattern standard deviation (PSD), and duration.
Results: The HVRP demonstrated small but statistically significant differences in MD and PSD compared to the HFA, while maintaining a consistent trend across participants. MD values were slightly more negative for HFA than HVRP (average difference −0.60 dB,
p = 0.0006), while pattern standard deviation was marginally higher with HFA (average difference 0.38 dB,
p = 0.00018). Although statistically significant, these differences were small in magnitude and do not undermine the clinical utility or reproducibility of the device. Notably, HVRP showed markedly shorter testing times with HVRP (7.15 vs. 18.11 min, mean difference 10.96 min,
p < 0.0001). Its lightweight, portable design allowed for bedside and home testing, enhancing accessibility for pediatric, geriatric, and mobility-impaired patients. Participants reported greater comfort due to the headset design, which eliminated the need for chin rests. The device also offers potential for AI integration and remote data analysis.
Conclusions: The HVRP proved to be a reliable, user-friendly alternative to traditional perimetry. Its advantages in comfort, portability, and test efficiency support its use in both clinical settings and remote screening programs for visual field assessment. Its portability and user-friendly design support broader use in clinical practice and expand possibilities for bedside assessment, home monitoring, and remote screening, particularly in populations with limited access to conventional perimetry.
Full article