Anaerobic digestion of manures, crop residues, food waste, and sludge frequently yields biogas with elevated hydrogen sulfide concentrations, which accelerate corrosion and reduce biogas quality. Microaeration, defined as the controlled addition of oxygen at 1 to 5% of the biogas production rate, has
[...] Read more.
Anaerobic digestion of manures, crop residues, food waste, and sludge frequently yields biogas with elevated hydrogen sulfide concentrations, which accelerate corrosion and reduce biogas quality. Microaeration, defined as the controlled addition of oxygen at 1 to 5% of the biogas production rate, has been investigated as a low-cost desulfurization strategy. This review synthesizes studies from 2015 to 2025 spanning laboratory, pilot, and full-scale anaerobic digester systems. Continuous sludge digesters supplied with ambient air at 0.28–14 m
3 h
−1 routinely achieved 90 to 99% H
2S removal, while a full-scale dairy manure system reported a 68% reduction at 20 m
3 air d
−1. Pure oxygen dosing at 0.2–0.25 m
3 O
2 (standard conditions) per m
3 reactor volume resulted in greater than 99% removal. Reported methane yield improvements ranged from 5 to 20%, depending on substrate characteristics, operating temperature, and aeration control. Excessive oxygen, however, reduced methane yields in some cases by inhibiting methanogens or diverting carbon to CO
2. Documented benefits of microaeration include accelerated hydrolysis of lignocellulosic substrates, mitigation of sulfide inhibition, and stimulation of sulfur-oxidizing bacteria that convert sulfide to elemental sulfur or sulfate. Optimal redox conditions were generally maintained between −300 and −150 mV, though monitoring was limited by low-resolution oxygen sensors. Recent extensions of the Anaerobic Digestion Model No. 1 (ADM1), a mathematical framework developed by the International Water Association, incorporate oxygen transfer and sulfur pathways, enhancing its ability to predict gas quality and process stability under microaeration. Economic analyses estimate microaeration costs at 0.0015–0.0045 USD m
−3 biogas, substantially lower than chemical scrubbing. Future research should focus on refining oxygen transfer models, quantifying microbial shifts under long-term operation, assessing effects on digestate quality and nitrogen emissions, and developing adaptive control strategies that enable reliable application across diverse substrates and reactor configurations.
Full article