Next Issue
Volume 3, June
Previous Issue
Volume 2, December
From the start of 2016, the journal uses article numbers instead of page numbers to identify articles. If you are required to add page numbers to a citation, you can do with using a colon in the format [article number]:1–[last page], e.g. 10:1–20.

Medicines, Volume 3, Issue 1 (March 2016) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Ionically Crosslinked Chitosan Hydrogels for the Controlled Release of Antimicrobial Essential Oils and Metal Ions for Wound Management Applications
Medicines 2016, 3(1), 8; https://doi.org/10.3390/medicines3010008 - 01 Mar 2016
Cited by 5 | Viewed by 2506
Abstract
The emerging problems posed by antibiotic resistance complicate the treatment regime required for wound infections and are driving the need to develop more effective methods of wound management. There is growing interest in the use of alternative, broad spectrum, pre-antibiotic antimicrobial agents such [...] Read more.
The emerging problems posed by antibiotic resistance complicate the treatment regime required for wound infections and are driving the need to develop more effective methods of wound management. There is growing interest in the use of alternative, broad spectrum, pre-antibiotic antimicrobial agents such as essential oils (e.g., tea tree oil, TTO) and metal ions (e.g., silver, Ag+). Both TTO and Ag+ have broad spectrum antimicrobial activity and act on multiple target sites, hence reducing the likelihood of developing resistance. Combining such agents with responsive, controlled release delivery systems such as hydrogels may enhance microbiocidal activity and promote wound healing. The advantages of using chitosan to formulate the hydrogels include its biocompatible, mucoadhesive and controlled release properties. In this study, hydrogels loaded with TTO and Ag+ exhibited antimicrobial activity against P. aeruginosa, S. aureus and C. albicans. Combining TTO and Ag+ into the hydrogel further improved antimicrobial activity by lowering the effective concentrations required, respectively. This has obvious advantages for reducing the potential toxic effects on the healthy tissues surrounding the wound. These studies highlight the feasibility of delivering lower effective concentrations of antimicrobial agents such as TTO and Ag+ in ionically crosslinked chitosan hydrogels to treat common wound-infecting pathogens. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Show Figures

Figure 1

Open AccessArticle
Composition and Biological Activities of Murraya paniculata (L.) Jack Essential Oil from Nepal
Medicines 2016, 3(1), 7; https://doi.org/10.3390/medicines3010007 - 26 Feb 2016
Cited by 8 | Viewed by 2384
Abstract
Murraya paniculata (L.) Jack, a small tropical evergreen shrub growing in Nepal, has numerous uses in traditional medicine for treatment of abdominal pain, diarrhea, stomach ache, headache, edema, thrombosis, and blood stasis. The present study investigated the chemical composition and bioactivities of the [...] Read more.
Murraya paniculata (L.) Jack, a small tropical evergreen shrub growing in Nepal, has numerous uses in traditional medicine for treatment of abdominal pain, diarrhea, stomach ache, headache, edema, thrombosis, and blood stasis. The present study investigated the chemical composition and bioactivities of the leaf essential oil from M. paniculata from Nepal. The essential oil from leaves was obtained by hydrodistillation and a detailed chemical analysis was conducted by gas chromatography-mass spectrometry (GC-MS). The essential oil was screened for antimicrobial activity using the microbroth dilution test, for nematicidal activity against Caenorhabditis elegans, and for lethality against brine shrimp (Artemia salina). A total of 76 volatile components were identified from the essential oil. The major components were methyl palmitate (11.1%), isospathulenol (9.4%), (E,E)-geranyl linalool (5.3%), benzyl benzoate (4.2%), selin-6-en-4-ol (4.0%), β-caryophyllene (4.0%), germacrene B (3.6%), germacrene D (3.4%), and γ-elemene (3.2%). The essential oil showed no antibacterial activity, marginal antifungal activity against Aspergillus niger (MIC = 313 μg/mL), a moderate activity against A. salina (LC50 = 41 μg/mL), and a good nematicidal activity against C. elegans (LC50 = 37 μg/mL). Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Show Figures

Graphical abstract

Open AccessReview
Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities
Medicines 2016, 3(1), 6; https://doi.org/10.3390/medicines3010006 - 19 Feb 2016
Cited by 17 | Viewed by 3913
Abstract
Aromatic plants have played key roles in the lives of tribal peoples living in the Himalaya by providing products for both food and medicine. This review presents a summary of aromatic medicinal plants from the Indian Himalaya, Nepal, and Bhutan, focusing on plant [...] Read more.
Aromatic plants have played key roles in the lives of tribal peoples living in the Himalaya by providing products for both food and medicine. This review presents a summary of aromatic medicinal plants from the Indian Himalaya, Nepal, and Bhutan, focusing on plant species for which volatile compositions have been described. The review summarizes 116 aromatic plant species distributed over 26 families. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Show Figures

Graphical abstract

Open AccessReview
The Effects of Yin, Yang and Qi in the Skin on Pain
Medicines 2016, 3(1), 5; https://doi.org/10.3390/medicines3010005 - 29 Jan 2016
Cited by 7 | Viewed by 2031
Abstract
The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous [...] Read more.
The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients. Full article
Show Figures

Graphical abstract

Open AccessEditorial
Acknowledgement to Reviewers of Medicines in 2015
Medicines 2016, 3(1), 4; https://doi.org/10.3390/medicines3010004 - 28 Jan 2016
Viewed by 1297
Abstract
The editors of Medicines would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2015. [...] Full article
Open AccessArticle
GC-MS Analysis and Preliminary Antimicrobial Activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC)
Medicines 2016, 3(1), 3; https://doi.org/10.3390/medicines3010003 - 28 Jan 2016
Cited by 35 | Viewed by 3024
Abstract
The non-polar components of two leguminoceae species Albizia adianthifolia (Schumach), and Pterocarpus angolensis (DC) were investigated. GC-MS analysis of the crude n-hexane and chloroform extracts together with several chromatographic separation techniques led to the identification and characterization (using NMR) of sixteen known [...] Read more.
The non-polar components of two leguminoceae species Albizia adianthifolia (Schumach), and Pterocarpus angolensis (DC) were investigated. GC-MS analysis of the crude n-hexane and chloroform extracts together with several chromatographic separation techniques led to the identification and characterization (using NMR) of sixteen known compounds from the heartwood and stem bark of Albizia adianthifolia and Pterocarpus angolensis respectively. These constituents include, n-hexadecanoic acid (palmitic acid) 1, oleic acid 2, chondrillasterol 3, stigmasterol 4, 24S 5α-stigmast-7-en-3β-ol 5, 9,12-octadecadienoic acid (Z,Z)-, methyl ester 6, trans-13-octadecanoic acid, methyl ester 7, tetradecanoic acid 8, hexadecanoic acid, methyl ester 9, octadecanoic acid 10, tetratriacontane 11, 7-dehydrodiosgenin 12, lupeol 13, stigmasta-3,5-diene-7-one 14, friedelan-3-one (friedelin) 15, and 1-octacosanol 16. Using agar over lay method, the preliminary antimicrobial assay for the extracts was carried out against bacterial (E. coli, P. aeruginosa, B. subtilis, S. aueus) and a fungus/yeast (C. albicans) strains. The n-hexane and chloroform extracts of A. adianthifolia showed the best activity against E. coli with minimum inhibition quantity (MIQ) of 1 µg each while the remaining exhibited moderate-to-weak activity against the test microorganisms. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Show Figures

Graphical abstract

Open AccessReview
The Changing Landscape of Breast Cancer: How Biology Drives Therapy
Medicines 2016, 3(1), 2; https://doi.org/10.3390/medicines3010002 - 21 Jan 2016
Cited by 2 | Viewed by 2761
Abstract
Breast cancer is the most prevalent life-threatening cancer in women. Optimizing therapy to increase cure rates in early stage disease, and improving life expectancy and palliation for advanced stages, are goals driving major areas of research. The armamentarium of targeted treatments for breast [...] Read more.
Breast cancer is the most prevalent life-threatening cancer in women. Optimizing therapy to increase cure rates in early stage disease, and improving life expectancy and palliation for advanced stages, are goals driving major areas of research. The armamentarium of targeted treatments for breast cancer is ever expanding as understanding of breast cancer biology deepens. A revolution in our treatment was heralded a decade ago by the introduction of trastuzumab for human epidermal receptor-2 positive (HER2+) disease resulting in remarkable reductions in recurrence and improvements in overall survival (OS). Advances continue to be made in other breast cancer subtypes targeting key activating pathways for therapeutic development. However, for these other targeted agents, improvement in OS has been elusive. This article focuses on the development of targeted therapy in breast cancer focusing primarily on the last 5 years, to illustrate that as we understand the complex pathways allowing the dysregulated cell to become malignant, it also propels us closer towards the promise of precision and personalized medicine. Full article
(This article belongs to the Special Issue Recent Advance in Targeted Therapy in Medicine)
Show Figures

Graphical abstract

Open AccessArticle
Characterization and Antimicrobial Activity of Volatile Constituents from Fresh Fruits of Alchornea cordifolia and Canthium subcordatum
Medicines 2016, 3(1), 1; https://doi.org/10.3390/medicines3010001 - 29 Dec 2015
Cited by 6 | Viewed by 1987
Abstract
Bacterial resistance has been increasingly reported worldwide and is one of the major causes of failure in the treatment of infectious diseases. Natural-based products, including plant secondary metabolites (phytochemicals), can be exploited to ameliorate the problem of microbial resistance. The fruit essential oils [...] Read more.
Bacterial resistance has been increasingly reported worldwide and is one of the major causes of failure in the treatment of infectious diseases. Natural-based products, including plant secondary metabolites (phytochemicals), can be exploited to ameliorate the problem of microbial resistance. The fruit essential oils of Alchornea cordifolia and Canthium subcordatum were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). The essential oils were subjected to in vitro antibacterial, antifungal and cytotoxic activity screening. Thirty-eight compounds comprising 97.7% of A. cordifolia oil and forty-six constituents representing 98.2% of C. subcordatum oil were identified. The major components in A. cordifolia oil were methyl salicylate (25.3%), citronellol (21.4%), α-phellandrene (7.4%), terpinolene (5.7%) and 1,8-cineole (5.5%). Benzaldehyde (28.0%), β-caryophyllene (15.5%), (E,E)-α-farnesene (5.3%) and methyl salicylate (4.5%) were the quantitatively significant constituents in C. subcordatum fruit essential oil. A. cordifolia essential oil demonstrated potent in vitro antibacterial activity against Staphylococcus aureus (MIC = 78 μg/mL) and marginal antifungal activity against Aspergillus niger (MIC = 156 μg/mL). C. subcordatum showed antibacterial activity against Bacillus cereus and S. aureus (MIC = 156 μg/mL) and notable antifungal activity against A. niger (MIC = 39 μg/mL). However, no appreciable cytotoxic effects on human breast carcinoma cells (Hs 578T) and human prostate carcinoma cells (PC-3) were observed for either essential oil. The antimicrobial activities of A. cordifolia and C. subcordatum fruit essential oils are a function of their distinct chemical profiles; their volatiles and biological activities are reported for the first time. Full article
(This article belongs to the Special Issue Essential Oils: Chemistry and Bioactivity)
Previous Issue
Next Issue
Back to TopTop