Bioprotective and Technological Roles of Lactic Acid Bacteria in Reduced-Sodium Fermented Sausages
Abstract
1. Introduction
2. Innovative Reformulation of Fermented Meat Sausages
2.1. Sodium Chloride Reduction Strategies
2.2. Nitrate and Nitrite Reduction Strategies
3. Role of Lactic Acid Bacteria in Fermented Sausage
3.1. Biopreservative Compounds Produced by LAB
3.2. LAB for the Biopreservation of Fermented Sausages
| Lactic Acid Bacteria | Objective | Results | Reference |
|---|---|---|---|
| Nitrite reduction/free | |||
| Lactobacillus lactis MP11, P. acidilactici MP14, L. salivarius MP02c, and P. acidilactici B-LC-20 | Anti-listerial activity of selected bacteriocin-producing LAB in vitro and in a fermented sausage model developed with or without small sodium nitrite concentrations | P. acidilactici MP14 reduced Listeria counts in a nitrite-reduced environment. The reduction observed was similar to that caused by the commercial strain P. acidilactici B-LC-20, both in vitro and in the meat model. | [71] |
| Weissella cibaria X31 and Weissella confusa L2 | The effects of the Weissella species as a starter on the physicochemical and proteolytic properties of low-nitrite dry-fermented sausage were evaluated. | W. cibaria X31 and W. confusa L2 resulted in high redness values in the final product. Residual nitrite levels were reduced by 95–97%. Both strains suppressed the growth of S. enterica. | [72] |
| Lpb. plantarum | The positive effect of Lpb. plantarum on the reduction of nitrate and biogenic amine content, color, and gel property of fermented sausages | In Chinese fermented sausages, the combination of low levels of sodium nitrite and Lpb. plantarum resulted in reduced residual nitrite and biogenic amine levels, and increased color and gel properties. | [40] |
| Mammaliicoccus sciuri IMDO-S72 and Ltb. sakei CTC 494 | Monitoring the growth of C. botulinum-like strains in group I during the production of fermented sausages without added nitrate and nitrite salts | The addition of M. sciuri IMDO-S72 as an anticlostridial starter culture did not result in any additional antibacterial effect. | [73] |
| Lactobacillus MPKL03 and MPKL04 | The ability of nitrite-reducing performance under different production and processing conditions of two LABs isolated from Sichuan traditional sausage | MPKL03 and MPKL04 reduced residual nitrite levels and influenced microbial counts in traditional Sichuan sausages. | [74] |
| Low sodium | |||
| Ltb. curvatus, Ltb. sakei, Weissella hellenica, and Lpb. plantarum. | The potential taste-compensating role of these LAB strains in reduced-salt dry sausage was evaluated. | Free amino acids (FAAs) and organic acids were detected in reduced-salt dry sausage, influencing measurable taste-related parameters. | [75] |
| Ltb. curvatus SYS29, Ltb. sakei HRB10, W. hellenica HRB6, and Lpb. plantarum MDJ2 | investigate the compensative role of four autochthonous LAB strains in the physicochemical properties and taste profiles of dry sausages substituted with NaCl | In dry sausages with 40% NaCl substituted by KCl, inoculation with LAB starter cultures resulted in faster acidification, increased water loss, and higher levels of FAAs and organic acids. | [76] |
| Lpb. plantarum LPL-1 | Potential application of the strain as a starter culture for low-salt fermented sausage production | LPL-1 reduced microbial counts associated with spoilage and pathogens in low-salt fermented sausages. | [77] |
| Lpb. plantarum CRL681, Ltb. curvatus CRL705, Ltb. sakei CRL1862 and Enterococcus mundtii CRL35 | Biochemical analysis of the production of small peptides and free amino acids by different LAB strains in a sausage model with reduced sodium content | The starter combination E. mundtii CRL35 + S. vitulinus GV318 showed the highest levels of peptides. L. sakei CRL1862 + S. vitulinus GV318 resulted in increased amino acid production. | [78] |
| Bifidobacterium animalis ssp. lactic BB-12 | Produce Italian salami with encapsulated probiotic microparticles and reduced curing salt, and evaluate the product’s physicochemical and sensory characteristics and probiotic viability. | The addition of microparticles containing Bifidobacterium BB-12 combined with reduced curing salt did not significantly change physicochemical parameters, lipid oxidation, color parameters (a * and b *), texture profile, fatty acid profile, or organic acid content. In sensory evaluation, treatment B2 (curing salt reduction + encapsulated BB-12) received the highest acceptance scores. | [79] |
| Bacteriocin-Producing Strain | Objective | Results | Reference |
|---|---|---|---|
| P. acidilactici (B-L20SafePro®, Hansen). | Bioprotection cultures for dry-fermented salami to control L. monocytogenes growth during the manufacturing process | The bioprotection culture inhibited the growth of L. monocytogenes in dry fermented sausages throughout the ripening/drying stage. | [80] |
| Lactiplantibacillus paraplantarum BPF2 and P. acidilactici ST6. | Starter cultures for the production of salchichones | The two autochthonous strains reduced L. monocytogenes counts in the samples. | [81] |
| P. acidilactici 13. | Evaluate the potential antilisterial effect when used as a starter culture. | The strain inhibited L. monocytogenes during sucuk fermentation. | [82] |
| Ltb. curvatus 54M16. | LAB isolated from fermented sausages for novel antimicrobial substances, producing bacteriocin(s) that are active against L. monocytogenes. | Ltb. curvatus 54M16 reduced microbial counts associated with spoilage and pathogens in traditional fermented sausages prepared without antimicrobial additives. | [83] |
| Ltb. curvatus MBSa2 and MBSa3 | Isolation of LAB with anti-Listeria activity from Italian salami produced in Brazil | Strains isolated from Italian-type salami produced two bacteriocins, sakacin P and sakacin X, which were stable under heat, pH, and NaCl conditions, and inhibited L. monocytogenes. | [84] |
| P. acidilactici strain HA-6111-2 | The combined effect of mild high-pressure processing (300 MPa) with phage P100 and P. acidilactici HA6111-2 as a novel decontamination method to inactivate L. monocytogenes in fermented meat sausages was evaluated. | In the Alheira model, the combination of mild high hydrostatic pressure, phage P100, and bacteriocinogenic P. acidilactici resulted in no detectable L. monocytogenes immediately after processing. | [85] |
| Ltb. curvatus MBSa2 | The application of the free and entrapped strain in calcium alginate was tested for activity against L. monocytogenes AL602/08, a strain isolated from a meat product. | Entrapment of Lb. curvatus MBSa2 in calcium alginate did not affect bacteriocin production in salami. | [86] |
| Ltb. sakei ST22Ch, ST153Ch, and ST154Ch | Bacteriocins ST22Ch, ST153Ch, and ST154Ch produced by L. sakei strains ST22Ch, ST153Ch, and ST154Ch isolated from Salpicao were characterized to use these strains as co-starter bioprotective cultures in meat fermentation. | The strains exhibited antibacterial activity against multiple target microorganisms. | [87] |
| Cob. alimentarius FM-MM4 | Purification and characterization of a novel bacteriocin produced by the bioactive strain FM-MM4 | Lactocin MM4 was resistant to heat and a wide range of pH values. It was inactivated by proteolytic enzymes but remained active after treatment with lipase and amylase. | [65] |
| P. acidilactici HA-6111-2 | Assess the combined effect of pediocin bacHA-6111-2 and mild hydrostatic pressure to control L. innocua. | The combination of pediocin bacHA-6111-2 and mild pressure treatments reduced L. innocua counts in Alheiras fermented sausages. | [88] |
3.3. Bacteriocins in Fermented Sausage Meat
3.4. Probiotic LAB in Fermented Sausages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Huang, X.-H.; Zhang, Y.-Y.; Li, S.; Dong, X.; Qin, L. Effect of sodium salt on meat products and reduction sodium strategies—A review. Meat Sci. 2023, 205, 109296. [Google Scholar] [CrossRef]
- Orsi, A.S.; Junior, W.J.L.; Alegbeleye, O.O.; Muniz, D.C.; Horita, C.N.; Sant’Ana, A.S. Sodium chloride reduction in meat processing: Microbial shifts, spoilage risks, and metagenomic insights. Meat Sci. 2025, 226, 109848. [Google Scholar] [CrossRef]
- Alves Junior, C.A.; Bellucci, E.R.B.; Santos, J.M.D.; Bertuci, M.L.; Barretto, A.C.D. L-lysine and dietary fiber improve the physicochemical properties of sausage without added phosphate and reduced salt levels. Sci. Agric. 2023, 80, e20220026. [Google Scholar] [CrossRef]
- Cittadini, A.; Domínguez, R.; Sarriés, M.V.; Pateiro, M.; Lorenzo, J.M. Study of Pansalt® or Laminaria Ochroleuca seaweed powder as potential NaCl replacers in dry-cured foal “cecina”. Meat Sci. 2023, 204, 109253. [Google Scholar] [CrossRef]
- Alves Junior, C.A.; Bellucci, E.R.B.; Bertuci, M.L.; dos Santos, J.M.; Barretto, A.C.D. Effect of collagen in Italian type salami with NaCl reduction on the physicochemical and technological properties. Int. J. Food Sci. Technol. 2024, 59, 7589–7597. [Google Scholar] [CrossRef]
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2022, 183, 108661. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Tang, Y.; Hu, Y.; Lu, Y.; Sun, Q.; Lv, Y.; Zhang, Q.; Wu, C.; Zhu, M.; He, Q.; et al. Sodium Reduction in Traditional Fermented Foods: Challenges, Strategies, and Perspectives. J. Agric. Food Chem. 2021, 69, 8065–8080. [Google Scholar] [CrossRef]
- Jia, S.; Shen, H.; Wang, D.; Liu, S.; Ding, Y.; Zhou, X. Novel NaCl reduction technologies for dry-cured meat products and their mechanisms: A comprehensive review. Food Chem. 2024, 431, 137142. [Google Scholar] [CrossRef]
- Rios-Mera, J.D.; Selani, M.M.; Patinho, I.; Saldaña, E.; Contreras-Castillo, C.J. Modification of NaCl structure as a sodium reduction strategy in meat products: An overview. Meat Sci. 2021, 174, 108417. [Google Scholar] [CrossRef]
- Bertuci, M.L.; Alves Junior, C.A.; Souza, C.V.B.; Penna, A.L.B.; da Silva Barretto, A.C. Bio preservation capacity of potentially probiotic Lacticaseibacillus strains in fermented sausage. Int. J. Food Sci. Technol. 2023, 58, 6253–6262. [Google Scholar] [CrossRef]
- Rendueles, C.; Duarte, A.C.; Escobedo, S.; Fernández, L.; Rodríguez, A.; García, P.; Martínez, B. Combined use of bacteriocins and bacteriophages as food biopreservatives. A review. Int. J. Food Microbiol. 2022, 368, 109611. [Google Scholar] [CrossRef]
- Karbowiak, M.; Szymański, P.; Zielińska, D. Synergistic Effect of Combination of Various Microbial Hurdles in the Biopreservation of Meat and Meat Products—Systematic Review. Foods 2023, 12, 1430. [Google Scholar] [CrossRef]
- Todorov, S.D.; Popov, I.; Weeks, R.; Chikindas, M.L. Use of Bacteriocins and Bacteriocinogenic Beneficial Organisms in Food Products: Benefits, Challenges, Concerns. Foods 2022, 11, 3145. [Google Scholar] [CrossRef]
- Afraei, M.; Soleimanian-Zad, S.; Fathi, M. Improvement the texture of nitrite-free fermented sausages using microencapsulation of fermenting bacteria. Food Biosci. 2022, 50, 102010. [Google Scholar] [CrossRef]
- Comi, G.; Muzzin, A.; Corazzin, M.; Iacumin, L. Lactic Acid Bacteria: Variability Due to Different Pork Breeds, Breeding Systems and Fermented Sausage Production Technology. Foods 2020, 9, 338. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Pei, H.; Liu, R.; Chen, L.; Gao, X.; Gu, Y.; Hou, Q.; Yin, Y.; Yu, H.; Wu, M.; et al. Effects of Lactobacillus plantarum NJAU-01 from Jinhua ham on the quality of dry-cured fermented sausage. LWT 2019, 101, 513–518. [Google Scholar] [CrossRef]
- Giello, M.; la Storia, A.; de Filippis, F.; Ercolini, D.; Villani, F. Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages. Food Microbiol. 2018, 72, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.I.; Mizan, M.F.R.; Roy, P.K.; Nahar, S.; Toushik, S.H.; Ashrafudoulla, M.; Jahid, I.K.; Lee, J.; Ha, S.-D. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res. Int. 2021, 148, 110595. [Google Scholar] [CrossRef]
- Todorov, S.D.; Baretto Penna, A.L.; Venema, K.; Holzapfel, W.H.; Chikindas, M.L. Recommendations for the use of standardised abbreviations for the former Lactobacillus genera, reclassified in the year 2020. Benef. Microbes 2023, 15, 1–4. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Muthuvelu, K.S.; Ethiraj, B.; Pramnik, S.; Raj, N.K.; Venkataraman, S.; Rajendran, D.S.; Bharathi, P.; Palanisamy, E.; Narayanan, A.S.; Vaidyanathan, V.K.; et al. Biopreservative technologies of food: An alternative to chemical preservation and recent developments. Food Sci. Biotechnol. 2023, 32, 1337–1350. [Google Scholar] [CrossRef]
- Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yılmaz, N.; Lotfi, A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef]
- Kim, J.; Knowles, S.; Ahmad, R.; Day, L. Objective Measurements Associated with the Preferred Eating Qualities of Fermented Salamis. Foods 2021, 10, 2003. [Google Scholar] [CrossRef]
- Santos, J.M.D.; Ignácio, E.O.; Bis-Souza, C.V.; Silva-Barretto, A.C.D. Performance of reduced fat-reduced salt fermented sausage with added microcrystalline cellulose, resistant starch and oat fiber using the simplex design. Meat Sci. 2021, 175, 108433. [Google Scholar] [CrossRef]
- Zampouni, K.; Soniadis, A.; Dimakopoulou-Papazoglou, D.; Moschakis, T.; Biliaderis, C.G.; Katsanidis, E. Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. LWT 2022, 158, 113172. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Katsanidis, E. Osmotic processing of meat: Mathematical modeling and quality parameters. Food Eng. Rev. 2020, 12, 32–47. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In Water Activity in Foods: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2020; pp. 323–355. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Padilla-Moseley, J.; Sivakumar, B.; Flexner, N.; Grajeda, R.; Gamble, B.; Blanco-Metzler, A.; Arcand, J. Factors Impacting the Uptake of Research into Dietary Sodium Reduction Policies in Five Latin American Countries: A Qualitative Study. Curr. Dev. Nutr. 2023, 7, 100073. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-K.; Yong, H.I.; Jung, S.; Kim, H.-W.; Choi, Y.-S. Effect of reducing sodium chloride based on the sensory properties of meat products and the improvement strategies employed: A review. J. Anim. Sci. Technol. 2021, 63, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.; Laranjo, M.; Potes, M.E.; Agulheiro-Santos, A.C.; Fernandes, M.J.; Garcia, R.; Fraqueza, M.J. Impact of a 25% Salt Reduction on the Microbial Load, Texture, and Sensory Attributes of a Traditional Dry-Cured Sausage. Foods 2020, 9, 554. [Google Scholar] [CrossRef] [PubMed]
- Corral, S.; Belloch, C.; López-Díez, J.J.; Salvador, A.; Flores, M. Yeast inoculation as a strategy to improve the physico-chemical and sensory properties of reduced salt fermented sausages produced with entire male fat. Meat Sci. 2017, 123, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hu, Y.; Wen, R.; Wang, Y.; Qin, L.; Kong, B. Characterisation of the flavour profile of dry fermented sausages with different NaCl substitutes using HS-SPME-GC-MS combined with electronic nose and electronic tongue. Meat Sci. 2021, 172, 108338. [Google Scholar] [CrossRef]
- Le, B.; Yu, B.; Amin, M.S.; Liu, R.; Zhang, N.; Soladoye, O.P.; Aluko, R.E.; Zhang, Y.; Fu, Y. Salt taste receptors and associated salty/salt taste-enhancing peptides: A comprehensive review of structure and function. Trends Food Sci. Technol. 2022, 129, 657–666. [Google Scholar] [CrossRef]
- Tabanelli, G.; Barbieri, F.; Soglia, F.; Magnani, R.; Gardini, G.; Petracci, M.; Gardini, F.; Montanari, C. Safety and technological issues of dry fermented sausages produced without nitrate and nitrite. Food Res. Int. 2022, 160, 111685. [Google Scholar] [CrossRef] [PubMed]
- Fraqueza, M.J.; Laranjo, M.; Elias, M.; Patarata, L. Microbiological hazards associated with salt and nitrite reduction in cured meat products: Control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Curr. Opin. Food Sci. 2021, 38, 32–39. [Google Scholar] [CrossRef]
- Pavli, F.G.; Argyri, A.A.; Chorianopoulos, N.G.; Nychas, G.-J.E.; Tassou, C.C. Effect of Lactobacillus plantarum L125 strain with probiotic potential on physicochemical, microbiological and sensorial characteristics of dry-fermented sausages. LWT 2020, 118, 108810. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Jia, J.; Peng, H.; Qian, Q.; Pan, Z.; Liu, D. Nitrite and nitrate in meat processing: Functions and alternatives. Curr. Res. Food Sci. 2023, 6, 100470. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Xia, C.; Yang, F.; Xu, N.; Wu, Q.; Hu, Y.; Xia, L.; Wang, C.; Zhou, M. Effect of selenium supplements on the antioxidant activity and nitrite degradation of lactic acid bacteria. World J. Microbiol. Biotechnol. 2019, 35, 61. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, L.; Yang, Q. Partial replacement of nitrite with a novel probiotic Lactobacillus plantarum on nitrate, color, biogenic amines and gel properties of Chinese fermented sausages. Food Res. Int. 2020, 137, 109351. [Google Scholar] [CrossRef]
- Morales, P.; Aguirre, J.; Troncoso, M.; Figueroa, G. Comparison of in vitro and in situ antagonism assays as tools for the selection of bio-preservative lactic acid bacteria (LAB) in poultry meat. LWT 2020, 118, 108846. [Google Scholar] [CrossRef]
- Graça, C.; Lima, A.; Raymundo, A.; Sousa, I. Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. Fermentation 2021, 7, 246. [Google Scholar] [CrossRef]
- Kong, L.; Deng, J.; Cai, K.; Wu, Y.; Ge, J.; Xu, B. Evaluating the colour formation and oxidation effect of Leuconostoc mesenteroides subsp. IMAU:80679 combining with ascorbic acid in fermented sausages. Food Biosci. 2023, 52, 102478. [Google Scholar] [CrossRef]
- Stasiak-Różańska, L.; Berthold-Pluta, A.; Pluta, A.S.; Dasiewicz, K.; Garbowska, M. Effect of Simulated Gastrointestinal Tract Conditions on Survivability of Probiotic Bacteria Present in Commercial Preparations. Int. J. Environ. Res. Public Health 2021, 18, 1108. [Google Scholar] [CrossRef]
- Qin, S.; Zeng, X.M.; Jiang, M.; Rui, X.; Li, W.; Dong, M.S.; Chen, X.H.; Zhang, Q.Q. Genomic and biogenic amine-reducing characterization of Lactiplantibacillus plantarum JB1 isolated from fermented dry sausage. Food Control 2023, 154, 109971. [Google Scholar] [CrossRef]
- Martínez-Miranda, J.G.; Chairez, I.; Durán-Páramo, E. Mannitol Production by Heterofermentative Lactic Acid Bacteria: A Review. Appl. Biochem. Biotechnol. 2022, 194, 2762–2795. [Google Scholar] [CrossRef] [PubMed]
- Todorov, S.D.; de Melo Franco, B.D.G.; Tagg, J.R. Bacteriocins of Gram-positive bacteria having activity spectra extending beyond closely-related species. Benef. Microbes 2019, 10, 315–328. [Google Scholar] [CrossRef]
- de Azevedo, P.O.S.; Converti, A.; Gierus, M.; Oliveira, R.P.S. Antimicrobial activity of bacteriocin-like inhibitory substance produced by Pediococcus pentosaceus: From shake flasks to bioreactor. Mol. Biol. Rep. 2019, 46, 461–469. [Google Scholar] [CrossRef]
- Habiba, M.U.; Augustin, M.A.; Varela, C.; Morris, H.; Rahman, M.M.; Bozkurt, H. Probiotic Dairy Innovations: Exploring Buffalo Milk Potential for Food Product Development. Compr. Rev. Food Sci. Food Saf. 2025, 24, 4. [Google Scholar] [CrossRef] [PubMed]
- Wanderley Porto, M.C.; de Souza de Azevedo, P.O.; Lourenço, F.R.; Converti, A.; Vitolo, M.; Oliveira, R.P.S. Effect of Polydextrose on the Growth of Pediococcus pentosaceus as Well as Lactic Acid and Bacteriocin-like Inhibitory Substances (BLIS) Production. Microorganisms 2022, 10, 1898. [Google Scholar] [CrossRef]
- Jawan, R.; Abbasiliasi, S.; Mustafa, S.; Kapri, M.R.; Halim, M.; Ariff, A.B. In Vitro Evaluation of Potential Probiotic Strain Lactococcus lactis Gh1 and Its Bacteriocin-Like Inhibitory Substances for Potential Use in the Food Industry. Probiotics Antimicrob. Proteins 2021, 13, 422–440. [Google Scholar] [CrossRef]
- Piazentin, A.C.M.; Mendonça, C.M.N.; Vallejo, M.; Mussatto, S.I.; de Souza Oliveira, R.P. Bacteriocin-like inhibitory substances production by Enterococcus faecium 135 in co-culture with Ligilactobacillus salivarius and Limosilactobacillus reuteri. Braz. J. Microbiol. 2022, 53, 131–141. [Google Scholar] [CrossRef]
- Smaoui, S.; Echegaray, N.; Kumar, M.; Chaari, M.; D’Amore, T.; Shariati, M.A.; Rebezov, M.; Lorenzo, J.M. Beyond conventional meat preservation: Saddling the control of bacteriocin and lactic acid bacteria for clean label and functional meat products. Appl. Biochem. Biotechnol. 2024, 196, 3604–3635. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Nanda, P.K.; Pateiro, M.; Lorenzo, J.M.; Dhar, P.; Das, A.K. Lactic Acid Bacteria and Bacteriocins: Novel Biotechnological Approach for Biopreservation of Meat and Meat Products. Microorganisms 2022, 10, 2058. [Google Scholar] [CrossRef]
- Sadeghi, A.; Katouzian, I.; Ebrahimi, M.; Assadpour, E.; Tan, C.; Jafari, S.M. Bacteriocin-like inhibitory substances as green bio-preservatives; nanoliposomal encapsulation and evaluation of their in vitro/in situ anti-Listerial activity. Food Control 2023, 150, 109725. [Google Scholar] [CrossRef]
- de Marco, I.; Fusieger, A.; Nero, L.A.; Kempka, A.P.; Moroni, L.S. Bacteriocin-like inhibitory substances (BLIS) synthesized by Lactococcus lactis LLH20: Antilisterial activity and application for biopreservation of minimally processed lettuce (Lactuca sativa L.). Biocatal. Agric. Biotechnol. 2022, 42, 102355. [Google Scholar] [CrossRef]
- Haryani, Y.; Halid, N.A.; Guat, G.S.; Nor-Khaizura, M.A.R.; Hatta, A.; Sabri, S.; Radu, S.; Hasan, H. Characterization, molecular identification, and antimicrobial activity of lactic acid bacteria isolated from selected fermented foods and beverages in Malaysia. FEMS Microbiol. Lett. 2023, 370, fnad023. [Google Scholar] [CrossRef] [PubMed]
- Thuy, T.T.D.; Lu, H.-F.; Bregente, C.J.B.; Huang, F.-C.A.; Tu, P.-C.; Kao, C.-Y. Characterization of the broad-spectrum antibacterial activity of bacteriocin-like inhibitory substance-producing probiotics isolated from fermented foods. BMC Microbiol. 2024, 24, 85. [Google Scholar] [CrossRef]
- Jiang, S.; Cai, L.; Lv, L.; Li, L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb. Cell Fact. 2021, 20, 45. [Google Scholar] [CrossRef]
- Giaouris, E. Application of lactic acid bacteria and their metabolites against foodborne pathogenic bacterial biofilms. In Recent Trends in Biofilm Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 205–232. [Google Scholar] [CrossRef]
- Milani, G.; Tabanelli, G.; Barbieri, F.; Montanari, C.; Gardini, F.; Belloso Daza, M.V.; Castellone, V.; Bozzetti, M.; Cocconcelli, P.S.; Bassi, D. Technological traits and mitigation activity of autochthonous lactic acid bacteria from Mediterranean fermented meat-products. LWT 2024, 196, 115861. [Google Scholar] [CrossRef]
- Siddi, G.; Piras, F.; Spanu, V.; Meloni, M.P.; Sanna, R.; Carta, N.; Errico, M.; Cuccu, M.; de Santis, E.P.L.; Scarano, C. Selection of commercial protective cultures to be added in Sardinian fermented sausage to control Listeria monocytogenes. Ital. J. Food Saf. 2022, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Parada Fabián, J.C.; Álvarez Contreras, A.K.; Natividad Bonifacio, I.; Hernández Robles, M.F.; Vázquez Quiñones, C.R.; Quiñones Ramírez, E.I.; Vázquez Salinas, C. Toward safer and sustainable food preservation: A comprehensive review of bacteriocins in the food industry. Biosci. Rep. 2025, 45, 277–302. [Google Scholar] [CrossRef]
- Khorshidian, N.; Khanniri, E.; Mohammadi, M.; Mortazavian, A.M.; Yousefi, M. Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Front. Microbiol. 2021, 12, 709959. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Shan, C.; Xia, X.; Wang, Y.; Dong, M.; Zhou, J. Novel bacteriocin produced by Lactobacillus alimentarius FM-MM 4 from a traditional Chinese fermented meat Nanx Wudl: Purification, identification and antimicrobial characteristics. Food Control 2017, 77, 290–297. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- De Prisco, A.; Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol. 2016, 48, 27–39. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Sharma, H.; Ozogul, F.; Bartkiene, E.; Rocha, J.M. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit. Rev. Food Sci. Nutr. 2023, 63, 4819–4841. [Google Scholar] [CrossRef] [PubMed]
- Chittora, D.; Meena, B.; Jain, T.; Sharma, K. Biopreservation: Bacteriocins and lactic acid bacteria. J. Postharvest Technol. 2022, 10, 1–15. Available online: https://journals.acspublisher.com/index.php/jpht/article/view/15040 (accessed on 25 April 2025).
- Fernández, M.; Hospital, X.F.; Caballero, N.; Jiménez, B.; Sánchez-Martín, V.; Morales, P.; Haza, A.I.; Hierro, E. Potential of selected bacteriocinogenic lactic acid bacteria to control Listeria monocytogenes in nitrite-reduced fermented sausages. Food Control 2023, 150, 109724. [Google Scholar] [CrossRef]
- Liu, X.; Qu, H.; Gou, M.; Guo, H.; Wang, L.; Yan, X. Application of Weissella cibaria X31 or Weissella confusa L2 as a starter in low nitrite dry-fermented sausages. Int. J. Food Eng. 2020, 16, 8. [Google Scholar] [CrossRef]
- Van der Veken, D.; Poortmans, M.; Dewulf, L.; Fraeye, I.; Michiels, C.; Leroy, F. Challenge tests reveal limited outgrowth of proteolytic Clostridium botulinum during the production of nitrate- and nitrite-free fermented sausages. Meat Sci. 2023, 200, 109158. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Zhou, C.; Ning, J.; Wang, S.; Nie, Q.; Wang, W.; Zhang, J.; Zhao, Z. Nitrite-reducing performance of two Lactobacillus strains isolated from traditional Sichuan fermented sausage in different production processes. Food Bioeng. 2022, 1, 307–318. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Zhu, J.; Kong, B.; Liu, Q.; Chen, Q. Improving the taste profile of reduced-salt dry sausage by inoculating different lactic acid bacteria. Food Res. Int. 2021, 145, 110391. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sui, Y.; Lu, J.; Ren, J.; Kong, B.; Li, Y.; Chen, Q.; Yang, W. Compensative role of autochthonous lactic acid bacteria in physical properties and taste profiles of dry sausage with partial substitution of NaCl by KCl. LWT 2024, 199, 116115. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, Y.; Wang, Y.; Huang, Y.; Li, P.; Li, P. Lactobacillus plantarum LPL-1, a bacteriocin-producing strain, changed the bacterial community composition and improved the safety of low-salt fermented sausages. LWT 2020, 128, 109385. [Google Scholar] [CrossRef]
- de Almeida, M.A.; Saldaña, E.; da Silva Pinto, J.S.; Palacios, J.; Contreras-Castillo, C.J.; Sentandreu, M.A.; Fadda, S.G. A peptidomic approach of meat protein degradation in a low-sodium fermented sausage model using autochthonous starter cultures. Food Res. Int. 2018, 109, 368–379. [Google Scholar] [CrossRef]
- Oliveira Gomes, B.; Mesquita Oliveira, C.; Marins, A.R.; Gomes, R.G.; Feihrmann, A.C. Application of microencapsulated probiotic Bifidobacterium animalis ssp. lactis BB-12 in Italian salami. J. Food Process. Preserv. 2021, 45, 10. [Google Scholar] [CrossRef]
- Ștefan, G.; Predescu, C.N. Using the bioprotection culture for dry fermented salami-the control measure of Listeria monocytogenes growth. Sci. Pap. Ser. D Anim. Sci. 2024, 67, 1. Available online: https://animalsciencejournal.usamv.ro/pdf/2024/issue_1/Art72.pdf (accessed on 18 January 2025).
- García-López, J.D.; Barbieri, F.; Baños, A.; Madero, J.M.G.; Gardini, F.; Montanari, C.; Tabanelli, G. Use of two autochthonous bacteriocinogenic strains as starter cultures in the production of salchichónes, a type of Spanish fermented sausages. Curr. Res. Food Sci. 2023, 7, 100615. [Google Scholar] [CrossRef]
- Cosansu, S.; Geornaras, I.; Ayhan, K.; Sofos, J.N. Control of Listeria monocytogenes by bacteriocin-producing Pediococcus acidilactici 13 and its antimicrobial substance in a dry fermented sausage sucuk and in turkey breast. J. Food Nutr. Res. 2010, 49, 206–214. [Google Scholar]
- Casaburi, A.; di Martino, V.; Ferranti, P.; Picariello, L.; Villani, F. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control 2016, 59, 31–45. [Google Scholar] [CrossRef]
- de Souza Barbosa, M.; Todorov, S.D.; Ivanova, I.; Chobert, J.-M.; Haertlé, T.; de Melo Franco, B.D.G. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol. 2015, 46, 254–262. [Google Scholar] [CrossRef]
- Komora, N.; Maciel, C.; Amaral, R.A.; Fernandes, R.; Castro, S.M.; Saraiva, J.A.; Teixeira, P. Innovative hurdle system towards Listeria monocytogenes inactivation in a fermented meat sausage model—High pressure processing assisted by bacteriophage P100 and bacteriocinogenic Pediococcus acidilactici. Food Res. Int. 2021, 148, 110628. [Google Scholar] [CrossRef]
- Barbosa, M.S.; Todorov, S.D.; Jurkiewicz, C.H.; Franco, B.D.G.M. Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control 2015, 47, 147–153. [Google Scholar] [CrossRef]
- Todorov, S.D.; Vaz-Velho, M.; de Melo Franco, B.D.G.; Holzapfel, W.H. Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from North-West of Portugal. Food Control 2013, 30, 111–121. [Google Scholar] [CrossRef]
- Castro, S.M.; Silva, J.; Casquete, R.; Queirós, R.; Saraiva, J.A.; Teixeira, P. Combined effect of pediocin bacHA-6111-2 and high hydrostatic pressure to control Listeria innocua in fermented meat sausage. Int. Food Res. J. 2018, 25, 553–560. Available online: http://www.ifrj.upm.edu.my/25%20(02)%202018/(14).pdf (accessed on 12 July 2025).
- Aalto-Araneda, M.; Pöntinen, A.; Pesonen, M.; Corander, J.; Markkula, A.; Tasara, T.; Stephan, R.; Korkeala, H. Strain variability of Listeria monocytogenes under NaCl stress elucidated by a high-throughput microbial growth data assembly and analysis protocol. Appl. Environ. Microbiol. 2020, 86, 6. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Li, X.; Zhang, H.; Chen, Q.; Kong, B. Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: Texture, color, and flavor profiles. LWT 2022, 154, 112723. [Google Scholar] [CrossRef]
- NicAogáin, K.; O’Byrne, C.P. The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain. Front. Microbiol. 2016, 7, 1865. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, Z.; Liang, Z.; Fu, X.; Li, D.; Zhu, C.; Kong, Q.; Mou, H. Current challenges and development strategies of bacteriocins produced by lactic acid bacteria applied in the food industry. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70038. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Fernandez de Ullivarri, M.; Ross, R.P.; Hill, C. After a century of nisin research—Where are we now? FEMS Microbiol. Rev. 2023, 47, fuad023. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef]
- Zimina, M.; Babich, O.; Prosekov, A.; Sukhikh, S.; Ivanova, S.; Shevchenko, M.; Noskova, S. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics 2020, 9, 553. [Google Scholar] [CrossRef] [PubMed]
- Grujović, M.Ž.; Mladenović, K.G.; Semedo-Lemsaddek, T.; Laranjo, M.; Stefanović, O.D.; Kocić-Tanackov, S.D. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1537–1567. [Google Scholar] [CrossRef]
- Fuochi, V.; Emma, R.; Furneri, P.M. Bacteriocins, a natural weapon against bacterial contamination for greater safety and preservation of food: A review. Curr. Pharm. Biotechnol. 2021, 22, 216–231. [Google Scholar] [CrossRef]
- Bis-Souza, C.V.; Penna, A.L.B.; da Silva Barretto, A.C. Applicability of potentially probiotic Lactobacillus casei in low-fat Italian type salami with added fructooligosaccharides: In vitro screening and technological evaluation. Meat Sci. 2020, 168, 108186. [Google Scholar] [CrossRef] [PubMed]
- Yim, D.-G.; Ali, M.; Nam, K.-C. Comparison of meat quality traits in salami added by nitrate-free salts or nitrate pickling salt during ripening. Food Sci. Anim. Resour. 2020, 40, 11–20. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Zhang, W.; Domínguez, R.; Xing, L.; Fierro, E.M.; Lorenzo, J.M. Autochthonous probiotics in meat products: Selection, identification, and their use as starter culture. Microorganisms 2020, 8, 1833. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; da Silva Barretto, A.C.; Santos, E.M.; Lorenzo, J.M. Functional fermented meat products with probiotics—A review. J. Appl. Microbiol. 2022, 133, 91–103. [Google Scholar] [CrossRef]
- Kaveh, S.; Hashemi, S.M.B.; Abedi, E.; Amiri, M.J.; Conte, F.L. Bio-preservation of meat and fermented meat products by lactic acid bacteria strains and their antibacterial metabolites. Sustainability 2023, 15, 10154. [Google Scholar] [CrossRef]
- Sirini, N.; Frizzo, L.S.; Aleu, G.; Soto, L.P.; Rosmini, M.R. Use of probiotic microorganisms in the formulation of healthy meat products. Curr. Opin. Food Sci. 2021, 38, 141–146. [Google Scholar] [CrossRef]
- Rachwał, K.; Gustaw, K. Lactic acid bacteria in sustainable food production. Sustainability 2024, 16, 3362. [Google Scholar] [CrossRef]
- Acedo, J.Z.; Chiorean, S.; Vederas, J.C.; van Belkum, M.J. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol. Rev. 2018, 42, 805–828. [Google Scholar] [CrossRef]
- Figueroa, R.H.H.; López-Malo, A.; Mani-López, E. Antimicrobial activity and applications of fermentates from lactic acid bacteria–a review. Sustain. Food Technol. 2024, 2, 292–306. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Cui, Y.; Wang, L.; Duan, J.; Yang, X.; Liu, X.; Zhang, S.; Sun, B.; Yu, H.; et al. Characteristics of lactic acid bacteria as potential probiotic starters and their effects on the quality of fermented sausages. Foods 2024, 13, 198. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertuci, M.L.; Bis Souza, C.V.; Alves, C.A., Jr.; Todorov, S.D.; Penna, A.L.B.; Barretto, A.C.d.S. Bioprotective and Technological Roles of Lactic Acid Bacteria in Reduced-Sodium Fermented Sausages. Foods 2025, 14, 3758. https://doi.org/10.3390/foods14213758
Bertuci ML, Bis Souza CV, Alves CA Jr., Todorov SD, Penna ALB, Barretto ACdS. Bioprotective and Technological Roles of Lactic Acid Bacteria in Reduced-Sodium Fermented Sausages. Foods. 2025; 14(21):3758. https://doi.org/10.3390/foods14213758
Chicago/Turabian StyleBertuci, Marcello Lima, Camila Vespúcio Bis Souza, Carlos Alberto Alves, Jr., Svetoslav Dimitrov Todorov, Ana Lúcia Barretto Penna, and Andrea Carla da Silva Barretto. 2025. "Bioprotective and Technological Roles of Lactic Acid Bacteria in Reduced-Sodium Fermented Sausages" Foods 14, no. 21: 3758. https://doi.org/10.3390/foods14213758
APA StyleBertuci, M. L., Bis Souza, C. V., Alves, C. A., Jr., Todorov, S. D., Penna, A. L. B., & Barretto, A. C. d. S. (2025). Bioprotective and Technological Roles of Lactic Acid Bacteria in Reduced-Sodium Fermented Sausages. Foods, 14(21), 3758. https://doi.org/10.3390/foods14213758

