Edible Bird Nest Supplementation Enhances Male Reproductive Function: Current Insights and Future Horizons
Abstract
1. Introduction
2. Nutritional Composition of EBN
3. Characteristics of EBN Attributed to Male Reproductive Function
3.1. Proliferative Effect
3.2. Reproductive Hormonal Content
3.3. Antioxidant Activity
4. Scientific Evidence of EBN on the Male Reproductive System
4.1. In Vivo Studies
4.2. In Vitro Studies
5. Concern and Safety of EBN on the Male Reproductive System
6. Future Perspective of EBN on the Male Reproductive System
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABTS | 2,2′-azino-bis [3-ethylbenzothiazoline-6-sulphonic acid] |
| AP-1 | Activator protein-1 pathway |
| DPPH | 1,1-diphenyl-2-picrylhydrazyl |
| EBN | Edible Bird Nest |
| E2 | Estradiol |
| EGF | Epidermal growth factor |
| ERα | Estradiol receptors α |
| ERβ | Estradiol receptors β |
| FGF | Fibroblast growth factor |
| FSH | Follicle-stimulating hormone |
| GalNAc | N-acetylgalactosamine |
| GlcNAc | N-acetylglucosamine |
| GDNF | Glial cell line-derived neurotrophic factor |
| Gpx | Glutathione peroxidase |
| Gsr | Glutathione reductase |
| H2O2 | Hydrogen peroxide |
| hADSCs | Human adipose-derived stem cells |
| IL-6 | Interleukin-6 |
| LC-MS | Liquid chromatography mass spectrometry |
| LH | Luteinizing hormone |
| MAPK | Mitogen-activated protein kinase |
| NF-κB | Nuclear factor kappa B |
| NANA | N-acetylneuraminic acid |
| ORAC | Oxygen radical absorbance capacity |
| PI3K | Phosphoinositide 3-kinase |
| RA | Retinoic acid |
| RF-EMF | Radiofrequency electromagnetic field |
| ROS | Reactive oxygen species |
| SOD | Superoxide dismutase |
| SSCs | Spermatogonia stem cells |
| VEGF | Vascular endothelial growth factor |
References
- Looi, Q.H.; Omar, A.R. Swiftlets and edible bird’s nest industry in Asia. Pertanika J. Sch. Res. Rev. 2016, 2, 32–48. [Google Scholar]
- Babji, A.; Nurfatin, M.; Etty Syarmila, I.; Masitah, M. Secrets of edible bird nest. UTAR Agric. Sci. J. 2015, 1, 32–37. [Google Scholar]
- Chua, L.S.; Zukefli, S.N. A comprehensive review of edible bird nests and swiftlet farming. J. Integr. Med. 2016, 14, 415–428. [Google Scholar] [CrossRef]
- Kang, N.; Hails, C.; Sigurdsson, J. Nest construction and egg-laying in Edible-nest Swiftlets Aerodramus spp. and the implications for harvesting. IBIS 1991, 133, 170–177. [Google Scholar] [CrossRef]
- Green, J. The edible bird’s-nest, or nest of the Java swift (Collocalia nidifica). J. Physiol. 1885, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Home, E. Some account of the nests of the Java swallow, and of the glands that secrete the mucus of which they are composed. Proc. R. Soc. Lond. 1833, 2, 277–278. [Google Scholar]
- Marshall, A.; Folley, S. The origin of nest-cement in edible-nest swiftlets (Collocalia spp.). J. Zool. 1956, 126, 383–390. [Google Scholar] [CrossRef]
- Hamzah, Z.; Ibrahim, N.H.; Sarojini, J.; Hussin, K.; Hashim, O.; Lee, B.-B. Nutritional properties of edible bird nest. J. Asian Sci. Res. 2013, 3, 600. [Google Scholar]
- Marcone, M.F. Characterization of the edible bird’s nest the “Caviar of the East”. Food Res. Int. 2005, 38, 1125–1134. [Google Scholar] [CrossRef]
- Saengkrajang, W.; Matan, N.; Matan, N. Nutritional composition of the farmed edible bird’s nest (Collocalia fuciphaga) in Thailand. J. Food Compos. Anal. 2013, 31, 41–45. [Google Scholar] [CrossRef]
- Norhayati, M.; Azman, O.; Nazaimoon, W. Preliminary study of the nutritional content of Malaysian edible bird’s nest. Malays. J. Nutr. 2010, 16, 389–396. [Google Scholar]
- Ma, F.; Liu, D. Sketch of the edible bird’s nest and its important bioactivities. Food Res. Int. 2012, 48, 559–567. [Google Scholar] [CrossRef]
- Biddle, F.; Belyavin, G. The haemagglutination inhibitor in edible bird-nest: Its biological and physical properties. Microbiology 1963, 31, 31–44. [Google Scholar] [CrossRef]
- Saengkrajang, W.; Matan, N.; Matan, N. Antimicrobial activities of the edible bird’s nest extracts against food-borne pathogens. Thai J. Agric. Sci. 2011, 44, 326–330. [Google Scholar]
- Aswir, A.; Wan Nazaimoon, W. Effect of edible bird’s nest on cell proliferation and tumor necrosis factor-alpha (TNF-α) release in vitro. Int. Food Res. J. 2011, 18, 1123–1127. [Google Scholar]
- Vimala, B.; Hussain, H.; Nazaimoon, W.W. Effects of edible bird’s nest on tumour necrosis factor-alpha secretion, nitric oxide production and cell viability of lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Agric. Immunol. 2012, 23, 303–314. [Google Scholar] [CrossRef]
- Yida, Z.; Imam, M.U.; Ismail, M.; Hou, Z.; Abdullah, M.A.; Ideris, A.; Ismail, N. Edible Bird’s Nest attenuates high fat diet-induced oxidative stress and inflammation via regulation of hepatic antioxidant and inflammatory genes. BMC Complement. Altern. Med. 2015, 15, 310. [Google Scholar] [CrossRef]
- Yida, Z.; Imam, M.U.; Ismail, M. In vitro bioaccessibility and antioxidant properties of edible bird’s nest following simulated human gastro-intestinal digestion. BMC Complement. Altern. Med. 2014, 14, 468. [Google Scholar] [CrossRef] [PubMed]
- Yew, M.Y.; Koh, R.Y.; Chye, S.M.; Othman, I.; Ng, K.Y. Edible bird’s nest ameliorates oxidative stress-induced apoptosis in SH-SY5Y human neuroblastoma cells. BMC Complement. Altern. Med. 2014, 14, 391. [Google Scholar] [CrossRef]
- Kim, K.C.; Kang, K.A.; Lim, C.M.; Park, J.H.; Jung, K.S.; Hyun, J.W. Water extract of edible bird’s nest attenuated the oxidative stress-induced matrix metalloproteinase-1 by regulating the mitogen-activated protein kinase and activator protein-1 pathway in human keratinocytes. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 347–354. [Google Scholar] [CrossRef]
- Nakagawa, H.; Hama, Y.; Sumi, T.; Li, S.C.; Maskos, K.; Kalayanamitra, K.; Mizumoto, S.; Sugahara, K.; Li, Y.-T. Occurrence of a nonsulfated chondroitin proteoglycan in the dried saliva of Collocalia swiftlets (edible bird’s-nest). Glycobiology 2007, 17, 157–164. [Google Scholar] [CrossRef]
- Chua, K.-H.; Lee, T.-H.; Nagandran, K.; Md Yahaya, N.H.; Lee, C.-T.; Tjih, E.T.T.; Abdul Aziz, R. Edible Bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: In vitro study. BMC Complement. Altern. Med. 2013, 13, 19. [Google Scholar] [CrossRef]
- Zainal Abidin, F.; Hui, C.K.; Luan, N.S.; Mohd Ramli, E.S.; Hun, L.T.; Abd Ghafar, N. Effects of edible bird’s nest (EBN) on cultured rabbit corneal keratocytes. BMC Complement. Altern. Med. 2011, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Aswir, A.R.; Nazaimoon, W.M.W. Effect of edible bird’s nest on Caco-2 cell proliferation. J. Food Technol. 2010, 8, 126–130. [Google Scholar] [CrossRef]
- Roh, K.-B.; Lee, J.; Kim, Y.-S.; Park, J.; Kim, J.-H.; Lee, J.; Park, D. Mechanisms of Edible Bird’s Nest Extract-Induced Proliferation of Human Adipose-Derived Stem Cells. eCAM 2012, 2012, 797520. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, N.; Matsumoto, M.; Bukawa, W.; Chiji, H.; Nakayama, K.; Hara, H.; Tsukahara, T. Improvement of bone strength and dermal thickness due to dietary edible bird’s nest extract in ovariectomized rats. Biosci. Biotechnol. Biochem. 2011, 75, 590–592. [Google Scholar] [CrossRef]
- Hou, Z.; Imam, M.U.; Ismail, M.; Ooi, D.J.; Ideris, A.; Mahmud, R. Nutrigenomic effects of edible bird’s nest on insulin signaling in ovariectomized rats. Drug Des. Devel Ther. 2015, 9, 4115–4125. [Google Scholar] [CrossRef]
- Hou, Z.; He, P.; Imam, M.U.; Qi, J.; Tang, S.; Song, C.; Ismail, M. Edible bird’s nest prevents menopause-related memory and cognitive decline in rats via increased hippocampal sirtuin-1 expression. Oxid. Med. Cell. Longev. 2017, 2017, 7205082. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y.; Lin, X.; Zhang, D.; Yin, J.; Yuan, M.; Zhang, W.; Li, R.; Xu, B.; Wang, D.; et al. Maternal edible bird’s nest diet improves learning and memory function of offspring rats via the ERK-CREB-BDNF pathway. J. Funct. Foods 2023, 108, 105757. [Google Scholar] [CrossRef]
- Lee, T.H.; Wani, W.A.; Lee, C.H.; Cheng, K.K.; Shreaz, S.; Wong, S.; Hamdan, N.; Azmi, N.A. Edible bird’s nest: The functional values of the prized animal-based bioproduct from Southeast Asia–A review. Front. Pharmacol. 2021, 12, 626233. [Google Scholar] [CrossRef]
- Herkommer, K.; Meissner, V.H.; Dinkel, A.; Jahnen, M.; Schiele, S.; Kron, M.; Ankerst, D.P.; Gschwend, J.E. Prevalence, lifestyle, and risk factors of erectile dysfunction, premature ejaculation, and low libido in middle-aged men: First result of the Bavarian men’s health-study. Andrology 2024, 12, 801–808. [Google Scholar] [CrossRef]
- Kathan, R.H.; Weeks, D.I. Structure studies of collocalia mucoid: I. Carbohydrate and amino acid composition. Arch. Biochem. Biophys. 1969, 134, 572–576. [Google Scholar] [CrossRef]
- Seow, E.K.; Ibrahim, B.; Muhammad, S.A.; Lee, L.H.; Cheng, L.H. Differentiation between house and cave edible bird’s nests by chemometric analysis of amino acid composition data. LWT 2016, 65, 428–435. [Google Scholar] [CrossRef]
- Voigt, A.L.; Thiageswaran, S.; de Lima e Martins Lara, N.; Dobrinski, I. Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance In Vivo and In Vitro. Int. J. Mol. Sci. 2021, 22, 1998. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Mukherjee, K.; Barbul, A. Proline precursors and collagen synthesis: Biochemical challenges of nutrient supplementation and wound healing. J. Nutr. 2017, 147, 2011–2017. [Google Scholar] [CrossRef] [PubMed]
- Yu-Qin, Y.; Liang, X.; Hua, W.; Hui-Xing, Z.; Xin-Fang, Z.; Bu-Sen, L. Determination of edible bird’s nest and its products by gas chromatography. J. Chromatogr. Sci. 2000, 38, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; You, S.; Xu, Y.; Shi, W.; Zhu, B.; Shen, J.; Wu, J.; Li, C.; Chen, Z.; Su, Y.; et al. Precision glycoproteomics reveals distinctive N-glycosylation in human spermatozoa. Mol. Cell. Proteom. 2022, 21, 100214. [Google Scholar] [CrossRef]
- Torrezan-Nitao, E.; Brown, S.G.; Mata-Martínez, E.; Treviño, C.L.; Barratt, C.; Publicover, S. [Ca2+]i oscillations in human sperm are triggered in the flagellum by membrane potential-sensitive activity of CatSper. Hum. Reprod. 2021, 36, 293–304. [Google Scholar] [CrossRef]
- Maciejewski, R.; Radzikowska-Büchner, E.; Flieger, W.; Kulczycka, K.; Baj, J.; Forma, A.; Flieger, J. An Overview of essential microelements and common metallic nanoparticles and their effects on male fertility. Int. J. Environ. Res. Public Health 2022, 19, 11066. [Google Scholar] [CrossRef]
- Ma, F.; Liu, D.-C.; Dai, M.-X. The effects of the edible bird’s nest on sexual function of male castrated rats. Afr. J. Pharm. Pharmacol. 2012, 6, 2875–2879. [Google Scholar] [CrossRef]
- Noor, H.S.M.; Babji, A.; Lim, S.J. Nutritional composition of different grades of edible bird’s nest and its enzymatic hydrolysis. AIP Conf. Proc. 2018, 1940, 020088. [Google Scholar]
- Lu, Y.; Han, D.; Wang, J.; Wang, D.; He, R.; Han, L. Study on the main ingredients of the three species of edible swift’s nest of Yunnan Province. Zool. Res. 1995, 16, 385–391. [Google Scholar]
- Quek, M.C.; Chin, N.L.; Yusof, Y.A.; Law, C.L.; Tan, S.W. Characterization of edible bird’s nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities. Food Res. Int. 2018, 109, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 1962, 237, 1555–1562. [Google Scholar] [CrossRef]
- Gupta, R.; Leon, F.; Rauth, S.; Batra, S.K.; Ponnusamy, M.P. A systematic review on the implications of O-linked glycan branching and truncating enzymes on cancer progression and metastasis. Cells 2020, 9, 446. [Google Scholar] [CrossRef]
- Ghosh, S. Sialic acid and biology of life: An introduction. In Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–61. [Google Scholar]
- Zhao, R.; Li, G.; Kong, X.-J.; Huang, X.-Y.; Li, W.; Zeng, Y.-Y.; Lai, X.-P. The improvement effects of edible bird’s nest on proliferation and activation of B lymphocyte and its antagonistic effects on immunosuppression induced by cyclophosphamide. Drug Des. Dev. Ther. 2016, 10, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Kubota, H. Heterogeneity of Spermatogonial Stem Cells. In Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology; Birbrair, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 225–242. [Google Scholar]
- Mäkelä, J.-A.; Hobbs, R.M. Molecular regulation of spermatogonial stem cell renewal and differentiation. Reproduction 2019, 158, R169–R187. [Google Scholar] [CrossRef]
- Griswold, M.D. Spermatogenesis: The commitment to meiosis. Physiol. Rev. 2016, 96, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.H.; Hao, S.L.; Yang, W.X. Regulation of spermatogonial stem cell self-renewal and proliferation in mammals. Histol. Histopathol. 2022, 37, 825–838. [Google Scholar]
- Lee, R.; Park, H.-J.; Lee, W.-Y.; Han, M.-G.; Park, J.H.; Moon, J.; Kwon, D.A.; Song, H. Effect of epidermal growth factor on the colony-formation ability of porcine spermatogonial germ cells. Biotechnol. Bioprocess. Eng. 2021, 26, 677–687. [Google Scholar] [CrossRef]
- Li, X.; Long, X.-Y.; Xie, Y.-J.; Zeng, X.; Chen, X.; Mo, Z.-C. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin. Chim. Acta 2019, 497, 54–60. [Google Scholar] [CrossRef]
- Griswold, M.D. Cellular and molecular basis for the action of retinoic acid in spermatogenesis. J. Mol. Endocrinol. 2022, 69, T51–T57. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-M.; Li, Z.-F.; Yang, W.-X.; Tan, F.-Q. Follicle-stimulating hormone signaling in Sertoli cells: A licence to the early stages of spermatogenesis. Reprod. Biol. Endocrinol. 2022, 20, 97. [Google Scholar] [CrossRef]
- Ruwanpura, S.M.; McLachlan, R.I.; Meachem, S.J. Hormonal regulation of male germ cell development. J. Endocrinol. 2010, 205, 117–131. [Google Scholar] [CrossRef]
- Khanehzad, M.; Abbaszadeh, R.; Holakuyee, M.; Modarressi, M.H.; Nourashrafeddin, S.M. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis. Reprod. Biol. Endocrinol. 2021, 19, 4. [Google Scholar] [CrossRef]
- Zirkin, B.R.; Papadopoulos, V. Leydig cells: Formation, function, and regulation. Biol. Reprod. 2018, 99, 101–111. [Google Scholar] [CrossRef]
- O’Shaughnessy, P.J. Hormonal control of germ cell development and spermatogenesis. In Seminars in Cell & Developmental Biology; Academic Press: New York, NY, USA, 2014; pp. 55–65. [Google Scholar]
- Dmitrieva, A.D.; Morozov, I.A.; Karkhov, A.M.; Rubtsov, P.M.; Smirnova, O.V.; Shchelkunova, T.A. Distribution of progesterone receptors and the membrane component of the progesterone receptor in various organs and tissues of male and female rats. Biochem. Moscow Suppl. Ser. A 2024, 18 (Suppl. S1), S33–S47. [Google Scholar] [CrossRef]
- Rosati, L.; Falvo, S.; Chieffi Baccari, G.; Santillo, A.; Di Fiore, M.M. The aromatase–estrogen system in the testes of non-mammalian vertebrates. Animals 2021, 11, 1763. [Google Scholar] [CrossRef] [PubMed]
- Raut, S.; Deshpande, S.; Balasinor, N.H. Unveiling the role of prolactin and its receptor in male reproduction. Horm. Metab. Res. 2019, 51, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Schulster, M.; Bernie, A.M.; Ramasamy, R. The role of estradiol in male reproductive function. Asian J. Androl. 2016, 18, 435–440. [Google Scholar] [CrossRef]
- Jaffar, F.H.F.; Osman, K.; Hui, C.K.; Zulkefli, A.F.; Ibrahim, S.F. Edible bird’s nest supplementation improves male reproductive parameters of Sprague Dawley rat. Front. Pharmacol. 2021, 12, 631402. [Google Scholar] [CrossRef]
- Albishtue, A.A.; Yimer, N.; Zakaria, M.Z.A.; Abubakar, A.A.; Almhanawi, B.H. Effects of EBN on embryo implantation, plasma concentrations of reproductive hormones, and uterine expressions of genes of PCNA, steroids, growth factors and their receptors in rats. Theriogenology 2019, 126, 310–319. [Google Scholar] [CrossRef]
- Chung, J.Y.; Brown, S.; Chen, H.; Liu, J.; Papadopoulos, V.; Zirkin, B. Effects of pharmacologi-cally induced Leydig cell testosterone production on intratesticular testosterone and spermatogenesis. Biol. Reprod. 2019, 102, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Navanukraw, P.; Chotimanukul, S.; Kemthong, T.; Choowongkomon, K.; Chatdarong, K. Impaired testicular function without altering testosterone concentration using an anti-follicular-stimulating hormone receptor (Anti-FSHr) single-chain variable fragment (scFv) in long-tailed macaques (Macaca fascicularis). Animals 2023, 13, 2282. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.M.; Noor, H.S.M.; Chong, P.K.; Babji, A.S.; Lim, S.J. Comparison of amino acids profile and antioxidant activities between edible bird nest and chicken egg. Malays. Appl. Biol. 2019, 48, 63–69. [Google Scholar]
- Ghassem, M.; Arihara, K.; Mohammadi, S.; Sani, N.A.; Babji, A.S. Identification of two novel antioxidant peptides from edible bird’s nest (Aerodramus fuciphagus) protein hydrolysates. Food Funct. 2017, 8, 2046–2052. [Google Scholar] [CrossRef]
- Nurul Nadia, M.; Babji, A.; Ayub, M.; Nur’Aliah, D. Effect of enzymatic hydrolysis on antioxidant capacity of cave edible bird’s nests hydrolysate. Int. J. Chemtech Res. 2017, 10, 1100–1107. [Google Scholar]
- Hou, Z.; Imam, M.U.; Ismail, M.; Azmi, N.H.; Ismail, N.; Ideris, A.; Mahmud, R. Lactoferrin and ovotransferrin contribute toward antioxidative effects of Edible Bird’s Nest against hydrogen peroxide-induced oxidative stress in human SH-SY5Y cells. Biosci. Biotechnol. Biochem. 2015, 79, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Cheng, L.-J.; Shen, B.; Yuan, Z.-L.; Feng, Y.-Q.; Lu, S.-H. Antihypertensive and antioxidant properties of sialic acid, the major component of edible bird’s nests. Curr. Top. Nutraceutical Res. 2019, 17, 376–380. [Google Scholar]
- Sinbad, O.O.; Folorunsho, A.A.; Olabisi, O.L.; Ayoola, O.A.; Temitope, E.J. Vitamins as antioxidants. J. Food Sci. Nutr. Res. 2019, 2, 214–235. [Google Scholar] [CrossRef]
- Broussard, A.L.; Leader, B.; Russell, H.; Beydoun, H.; Colver, R.; Reuter, L.; Bopp, B.; Will, M.; Will, E.A.; Adaniya, G. Lifestyle factors and laboratory sperm processing techniques are correlated with sperm DNA fragmentation index, oxidative stress adducts, and high DNA stainability. Andrology 2023, 12, 1000292. [Google Scholar]
- Villaverde, A.I.S.B.; Netherton, J.; Baker, M.A. From past to present: The link between reactive oxygen species in sperm and male infertility. Antioxidants 2019, 8, 616. [Google Scholar] [CrossRef]
- Lewis, S.E.; Simon, L. Clinical implications of sperm DNA damage. Hum. Fertil. 2010, 13, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Nowicka-Bauer, K.; Lepczynski, A.; Ozgo, M.; Kamieniczna, M.; Fraczek, M.; Stanski, L.; Olszewska, M.; Malcher, A.; Skrzypczak, W.; Kurpisz, M. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia. J. Physiol. Pharmacol. 2018, 69, 403–417. [Google Scholar]
- Ammar, O.; Mehdi, M.; Muratori, M. Teratozoospermia: Its association with sperm DNA defects, apoptotic alterations, and oxidative stress. Andrology 2020, 8, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Steger, K.; Yang, H.; Wang, H.; Hu, K.; Zhang, T.; Chen, B. A comprehensive investigation of sperm DNA damage and oxidative stress injury in infertile patients with subclinical, normozoospermic, and astheno/oligozoospermic clinical varicocoele. Andrology 2016, 4, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, O.; Philip, S.; Shittu, S.-T. Antioxidant activity of Moringa oleifera leaf extract on testicular oxidative stress during experimental cryptorchidism was optimal at low dose. Afr. J. Biomed. Res. 2021, 24, 109–114. [Google Scholar]
- Theam, O.C.; Dutta, S.; Sengupta, P. Role of leucocytes in reproductive tract infections and male infertility. Chem. Biol. Lett. 2020, 7, 124–130. [Google Scholar]
- Zubair, M. Effects of dietary vitamin E on male reproductive system. Asian Pac. J. Reprod. 2017, 6, 145–150. [Google Scholar] [CrossRef]
- Ahmad, G.; Agarwal, A.; Esteves, S.; Sharma, R.; Almasry, M.; Al-Gonaim, A.; AlHayaza, G.; Singh, N.; Al Kattan, L.; Sannaa, W. Ascorbic acid reduces redox potential in human spermatozoa subjected to heat-induced oxidative stress. Andrologia 2017, 49, e12773. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Calogero, A.E.; Sengupta, P.; Dutta, S. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J. Mens. Health 2021, 39, 346. [Google Scholar] [CrossRef]
- Nouri, M.; Amani, R.; Nasr-Esfahani, M.; Tarrahi, M.J. The effects of lycopene supplement on the spermatogram and seminal oxidative stress in infertile men: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res. 2019, 33, 3203–3211. [Google Scholar] [CrossRef]
- Riviere, E.; Rossi, S.P.; Tavalieri, Y.E.; de Toro, M.M.M.; Ponzio, R.; Puigdomenech, E.; Levalle, O.; Martinez, G.; Terradas, C.; Calandra, R.S.; et al. Melatonin daily oral supplementation attenuates inflammation and oxidative stress in testes of men with altered spermatogenesis of unknown aetiology. Mol. Cell Endocrinol. 2020, 515, 110889. [Google Scholar] [CrossRef]
- Budin, S.B.; Jubaidi, F.F.; Azam, S.N.F.M.N.; Yusof, N.L.M.; Taib, I.S.; Mohamed, J. Kelulut honey supplementation prevents sperm and testicular oxidative damage in streptozotocin-induced diabetic rats. J. Teknol. 2017, 79, 89–95. [Google Scholar] [CrossRef]
- Fabunmi, O.A.; Ajibare, A.J.; Akintoye, O.O.; Olofinbiyi, B.A.; Olayaki, L.A. Honey ameliorates imbalance between reactive oxygen species and antioxidant enzymes in the testis of sleep deprived rats. Niger. Stethosc. 2021, 3, 40–48. [Google Scholar]
- Mohamed, M.; Sulaiman, S.A.; Jaafar, H.; Sirajudeen, K.N. Antioxidant protective effect of honey in cigarette smoke-induced testicular damage in rats. Int. J. Mol. Sci. 2011, 12, 5508–5521. [Google Scholar] [CrossRef]
- Tvrda, E.; Tušimová, E.; Kováčik, A.; Paál, D.; Greifova, H.; Abdramanov, A.; Lukáč, N. Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress. Anim. Reprod. Sci. 2016, 172, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Raeeszadeh, M.; Akbari, A. The effects of broccoli and caraway extracts on serum oxidative markers, testicular structure and function, and sperm quality before and after sperm cryopreservation. Cryobiology 2021, 99, 11–19. [Google Scholar] [CrossRef]
- Sönmez, M.; Türk, G.; Yüce, A. The effect of ascorbic acid supplementation on sperm quality, lipid peroxidation and testosterone levels of male Wistar rats. Theriogenology 2005, 63, 2063–2072. [Google Scholar] [CrossRef]
- Chi, H.; Kim, J.; Ryu, C.; Lee, J.; Park, J.; Chung, D.; Choi, S.; Kim, M.; Chun, E.; Roh, S. Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum. Reprod. 2008, 23, 1023–1028. [Google Scholar] [CrossRef]
- Zvara, P.; Sioufi, R.; Schipper, H.M.; Begin, L.; Brock, G. Nitric oxide mediated erectile activity is a testosterone dependent event: A rat erection model. Int. J. Impot. Res. 1995, 7, 209–219. [Google Scholar]
- Liao, M.; Huang, X.; Gao, Y.; Tan, A.; Lu, Z.; Wu, C.; Zhang, Y.; Yang, X.; Zhang, H.; Qin, X. Testosterone is associated with erectile dysfunction: A cross-sectional study in Chinese men. PLoS ONE 2012, 7, e39234. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.A.; Saad, F. Testosterone and erectile dysfunction. J. Androl. 2008, 29, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Isidori, A.M.; Buvat, J.; Corona, G.; Goldstein, I.; Jannini, E.A.; Lenzi, A.; Porst, H.; Salonia, A.; Traish, A.M.; Maggi, M. A critical analysis of the role of testosterone in erectile function: From pathophysiology to treatment—A systematic review. Eur. Urol. 2014, 65, 99–112. [Google Scholar] [CrossRef]
- Henkel, R. The sixth edition of the WHO manual for human semen analysis: A critical review and SWOT analysis. Life 2021, 11, 1368. [Google Scholar] [CrossRef]
- Jaffar, F.H.F.; Osman, K.; Hui, C.K.; Zulkefli, A.F.; Ibrahim, S.F. Long-term Wi-Fi exposure from pre-pubertal to adult age on the spermatogonia proliferation and protective effects of edible bird’s nest supplementation. Front. Physiol. 2022, 13, 828578. [Google Scholar] [CrossRef]
- Jaffar, F.H.F.; Osman, K.; Hui, C.K.; Zulkefli, A.F.; Ibrahim, F.H.F. Effect of Wi-Fi exposure and edible bird nest supplementation on the testicular oxidative stress status and sperm quality in male Sprague-Dawley rat pups. IJRR 2024, 22, 329–338. [Google Scholar] [CrossRef]
- Ibrahim, S.F.; Abu Bakar, N.F.; Paranthaman, N.S.; Gan, T.S.; Faith Childs, J.; Azhar, N.A.; Zulkefli, A.F.; Mat Ros, M.F.; Osman, K.; Jaffar, F.H.F. Testicular morphological alterations in 2.45 GHz Wi-Fi exposed rat pups and the mitigating effects of edible bird nest. Med. Health 2025, 20, 764–775. [Google Scholar]
- Maluin, S.M.; Jaffar, F.H.F.; Osman, K.; Zulkefli, A.F.; Mat Ros, M.F.; Ibrahim, S.F. Exploring edible bird nest’s potential in mitigating Wi-Fi’s impact on male reproductive health. Reprod. Med. Biol. 2024, 23, e12606. [Google Scholar] [CrossRef]
- Azhar, N.A.; Osman, K.; Jaffar, F.H.F.; Hui, C.K.; Mat Ros, M.F.; Zulkefli, A.F.; Ibrahim, S.F. Effect of edible bird nest supplementation against busulfan-induced oligospermia in adult rats. Sains Malays. 2024, 53, 1219–1234. [Google Scholar] [CrossRef]
- Al-Khaldi, K.; Yimer, N.; Al-Bulushi, S.; Haron, A.W.; Hiew, M.; Babji, A.S. A preliminary study on the effects of EZ Mixin® and EquiPlus® extenders supplemented with edible bird’s nest on the quality of chilled Arabian stallion semen. Anim. Reprod. 2021, 18, e20200027. [Google Scholar] [CrossRef] [PubMed]
- Al-Khaldi, K.; Yimer, N.; Sadiq, M.B.; Abdullah, F.F.J.B.; Babji, A.S.; Al-Bulushi, S. Edible bird’s nest supplementation in chilled and cryopreserved Arabian stallion semen. Saudi J. Biol. Sci. 2022, 29, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.N.; Sani, D.; Lim, C.W.; Ideris, A.; Stanslas, J.; Lim, C.T.S. Proximate analysis and safety profile of farmed edible bird’s nest in Malaysia and its effect on cancer cells. eCAM 2020, 2020, 8068797. [Google Scholar] [CrossRef] [PubMed]
- Ibtisham, F.; Zhao, Y.; Wu, J.; Nawab, A.; Mei, X.; Li, G.; An, L. The optimized condition for the isolation and in vitro propagation of mouse spermatogonial stem cells. Biol. Futura 2019, 70, 79–87. [Google Scholar] [CrossRef]
- Ibtisham, F.; Honaramooz, A. Spermatogonial stem cells for in vitro spermatogenesis and in vivo restoration of fertility. Cells 2020, 9, 745. [Google Scholar] [CrossRef]
- Albishtue, A.A.; Yimer, N.; Zakaria, M.Z.A.; Haron, A.W.; Yusoff, R.; Almhanawi, B.H. Ameliorating effect of edible bird’s nest against lead acetate toxicity on the rat hypothalamic–pituitary–ovarian axis and expressions of epidermal growth factor and vascular endothelial growth factor in ovaries. Comp. Clin. Pathol. 2018, 27, 1257–1267. [Google Scholar] [CrossRef]
- Levi, M.; Stemmer, S.M.; Stein, J.; Shalgi, R.; Ben-Aharon, I. Treosulfan induces distinctive gonadal toxicity compared with busulfan. Oncotarget 2018, 9, 19317. [Google Scholar] [CrossRef]
- Mobarak, H.; Rahbarghazi, R.; Nouri, M.; Heidarpour, M.; Mahdipour, M. Intratesticular versus intraperitoneal injection of Busulfan for the induction of azoospermia in a rat model. BMC Pharmacol. Toxicol. 2022, 23, 50. [Google Scholar] [CrossRef]
- Al-Janabi, A.P.; Khalid, A.; Hadr, A.P. Effect of Cimetidine on semen parameters, FSH and LH in male rats. Int. J. Pharm. Bio-Med. Sci. 2023, 3, 240–244. [Google Scholar] [CrossRef]
- Efe, A.E.; Igho, O.E. Histomorphological effects of oral nicotine administration on the testes of adult wistar rats. J. Chem. Health Risks 2023, 13, 291. [Google Scholar]
- Ismail, M.; Hou, Z.P.; Stanslas, J.; Imam, M.U.; Zhang, Y.D.; Ideris, A.; Mahmud, R. Edible bird’s nest pretreatment prevents ovariectomy induced cognitive aging in Morris water maze. In Proceedings of the Edible Bird Nest Industry Conference, Putrajaya, Malaysia, 25–26 November 2014. [Google Scholar]
- Zhiping, H.; Imam, M.U.; Ismail, M.; Ismail, N.; Yida, Z.; Ideris, A.; Sarega, N.; Mahmud, R. Effects of edible bird’s nest on hippocampal and cortical neurodegeneration in ovariectomized rats. Food Funct. 2015, 6, 1701–1711. [Google Scholar] [CrossRef]
- Neto, R.P.; Nunes, R.d.S.S.; Nascimento, B.C.; Neto, C.M.B.; de Bessa Junior, J.; Srougi, M.; Nahas, W.C. Correlation between libido and testosterone: Estradiol ratio in men with sexual dysfunction. J. Sex. Med. 2022, 19, S232. [Google Scholar] [CrossRef]
- Chen, H.-R.; Tian, R.-H.; Li, P.; Chen, H.-X.; Xia, S.-J.; Li, Z. Estradiol is an independent risk factor for organic erectile dysfunction in eugonadal young men. Asian J. Androl. 2020, 22, 636–641. [Google Scholar] [CrossRef]
- Ponce, M.D.R.; Garolla, A.; Caretta, N.; De Toni, L.; Avogaro, A.; Foresta, C. Estradiol correlates with erectile dysfunction and its severity in type 2 diabetic patients. J. Diabetes Complicat. 2020, 34, 107728. [Google Scholar] [CrossRef]
- Ladyman, S.R.; Hackwell, E.C.; Brown, R.S. The role of prolactin in co-ordinating fertility and metabolic adaptations during reproduction. Neuropharmacology 2020, 167, 107911. [Google Scholar] [CrossRef]
- Dabbous, Z.; Atkin, S.L. Hyperprolactinaemia in male infertility: Clinical case scenarios. Arab. J. Urol. 2018, 16, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Salvio, G.; Martino, M.; Giancola, G.; Arnaldi, G.; Balercia, G. Hypothalamic–pituitary diseases and erectile dysfunction. J. Clin. Med. 2021, 10, 2551. [Google Scholar] [CrossRef]
- Quek, M.C.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Law, C.L. Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest. Inf. Process Agric. 2015, 2, 1–5. [Google Scholar] [CrossRef]
- Chen, J.; Lim, P.; Wong, S.; Mak, J. Determination of the presence and levels of heavy metals and other elements in raw and commercial edible bird nests. Malays. J. Nutr. 2014, 20, 377–391. [Google Scholar]
- Huang, X.; Li, Z.; Zou, X.; Shi, J.; Tahir, H.E.; Xu, Y.; Zhai, X.; Hu, X. A low cost smart system to analyze different types of edible Bird’s nest adulteration based on colorimetric sensor array. J. Food Drug Anal. 2019, 27, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Yeo, B.H.; Tang, T.K.; Wong, S.F.; Tan, C.P.; Wang, Y.; Cheong, L.Z.; Lai, O.M. Potential residual contaminants in edible bird’s nest. Front. Pharmacol. 2021, 12, 631136. [Google Scholar] [CrossRef] [PubMed]
- Federation of Malaysian Manufacturers. Food Act 1983 Food (Amendment) (No. 3) Regulations 2014. Available online: https://www.fmm.org.my/images/articles/Draf-pindaan-PPM1985-Bil3-2014_draft%20food%20(amendment)%20reg%20(No%203)%202014.pdf (accessed on 18 September 2025).
- Jabatan Perkhidmatan Veterinar Malaysia, Standar Operating Procedures for Registration & Traceability System for Raw Unclean Edible-Birdnest Export to China. Available online: https://www.dvs.gov.my/dvs/resources/user_1/DVS%20pdf/SQIE/2018/SOPRUCEBN-2_Raw_unclean_primary_processing_establishment.pdf (accessed on 18 September 2025).
- Basar, M.M.; Avci, A.E. Obesity and male infertility: Energy imbalance to inflammation. Chem. Biol. Lett. 2021, 8, 162–170. [Google Scholar]
- Sun, C.G.; Da, A.L.; Sen, O.B.; Yusof, Z.; Chan, H.-K.; Balanathan, K.; Zain, M.M. Effects of 6-week micronutrient supplementation on sperm parameters and pregnancy outcomes in males with idiopathic infertility undergoing fertility interventions: A pilot cohort study. J. Pharm. Pract. Community Med. 2017, 3, 220–224. [Google Scholar] [CrossRef]
- Schisterman, E.F.; Clemons, T.; Peterson, C.M.; Johnstone, E.; Hammoud, A.O.; Lamb, D.; Carrell, D.T.; Perkins, N.J.; Sjaarda, L.A.; Van Voorhis, B.J. A randomized trial to evaluate the effects of folic acid and zinc supplementation on male fertility and livebirth: Design and baseline characteristics. Am. J. Epidemiol. 2020, 189, 8–26. [Google Scholar] [CrossRef]



| Component | Content | Reference | Potential Benefit |
|---|---|---|---|
| Proximate analysis (%): | [41] |
| |
| Moisture | 12.28–16.62 | ||
| Ash | 1.85–10.70 | ||
| Protein | 54.29–60.59 | ||
| Fat | 0.43–1.19 | ||
| Carbohydrate | 18.98–26.32 | ||
| Amino acids (g/100 g): | [41] |
| |
| Essential amino acids | |||
| Lysine | 1.74–1.93 | ||
| Threonine | 3.09–3.48 | ||
| Leucine | 2.88–3.29 | ||
| Phenylalanine | 2.62–3.01 | ||
| Valine | 3.98–4.62 | ||
| Isoleucine | 1.40–1.58 | ||
| Histidine | 1.92–2.38 | ||
| Methionine | 0.03–0.05 | ||
| Non-essential amino acids | |||
| Serine | 4.97–5.68 | ||
| Aspartic acid | 4.46–5.07 | ||
| Glutamic acid | 3.92–4.27 | ||
| Proline | 3.43–3.91 | ||
| Alanine | 1.76–2.95 | ||
| Arginine | 3.12–3.41 | ||
| Glycine | 2.10–2.32 | ||
| Hydroxyproline | 0.32–0.39 | ||
| Tyrosine | 3.07–3.54 | ||
| Fatty acid (%): | [9] |
| |
| Palmitic C16:0 | 23–26 | ||
| Steric C18:0 | 26–29 | ||
| Linoleic C18:1 | 22 | ||
| Linolenic C18:2 | 26 | ||
| Triacylglycerol (%): | [9] |
| |
| Palmitic-Palmitic-Steric | 14–16 | ||
| Steric-Steric-Linoleic | 13–15 | ||
| Palmitic-Linolenic-Linolenic | 18–19 | ||
| Monoglycerides | 27–31 | ||
| Diglycerides | 21–26 | ||
| Vitamin: | [42] |
| |
| A (IU/mg) | 2.57–30.40 | ||
| D (IU/mg) | 60.00–1280.00 | ||
| C (mg/100 g) | 0.12–29.30 | ||
| Elemental analysis (mg/kg dry matter): | [43] |
| |
| Sodium | 16,095–17,937 | ||
| Potassium | 647–898 | ||
| Calcium | 6605–19,577 | ||
| Magnesium | 1790–2818 | ||
| Phosphorus | 0.27–0.31 | ||
| Iron | 22.02–28.76 | ||
| Zinc | 4.18–8.02 | ||
| Copper | 5.99–6.31 | ||
| Lead | 0.194–0.233 | ||
| Cadmium | 0.004–0.007 | ||
| Mercury | 0.084–0.099 | ||
| Arsenic | 0.075–0.088 | ||
| Hormone: | [12] |
| |
| Testosterone (ng/g) | 4.293–12.148 | ||
| Estradiol (pg/g) | 802.333–906.086 | ||
| Progesterone (ng/g) | 24.966–37.724 | ||
| LH (mIU/g) | 1.420–11.167 | ||
| FSH (mIU/g) | 0–0.149 | ||
| Prolactin (ng/g) | 0–0.392 |
| Characteristics of EBN | Key Molecules Associated with the Characteristic of EBN | Probable Effect on Male Reproductive Function |
|---|---|---|
| Proliferative effect |
| Stimulates mitosis of spermatogonia stem cells (SSC) via MAPK signalling in the seminiferous tubules, thereby enhancing spermatogenesis outcomes. |
| Reproductive hormonal content |
| Enhance libido and regulate hormone-dependent spermatogenesis in the testis. Therefore, contributes to overall male reproductive performance. |
| Antioxidant activity | Amino acids:
| Scavenges reactive oxygen species (ROS), protects spermatozoa from oxidative damage, enhances antioxidant defence in testicular tissue, and improves sperm quality and function under oxidative stress conditions. |
| EBN Dosage and Duration | Route of Administration | Study Model | Findings | References |
|---|---|---|---|---|
| In vivo | ||||
| 1 mg/kg/day, 3 mg/kg/day, 9 mg/kg/day for 10 days | Intragastric | Castrated rats |
| [40] |
| 10 mg/kg/day, 50 mg/kg/day, 250 mg/kg/day for 60 days | Oral (EBN enriched mouse pellet) | Healthy rats |
| [64] |
| 250 mg/kg/day for 60 days | Oral (EBN enriched mouse pellet) | Wi-Fi induced testicular damage in rat pups |
| [99] |
| 250 mg/kg/day for 60 days | Oral (EBN enriched mouse pellet) | Wi-Fi induced testicular damage rat pups |
| [100] |
| 250 mg/kg/day for 60 days | Oral (EBN enriched mouse pellet) | Wi-Fi-induced testicular damage in adult rats |
| [102] |
| 250 mg/kg/day, 500 mg/kg/day, 1000 mg/kg/day for 28 days | Oral (EBN enriched mouse pellet) | Busulfan-induced oligospermia |
| [103] |
| 250 mg/kg/day for 60 days | Oral (EBN enriched mouse pellet) | Wi-Fi-induced testicular damage rat pups |
| [101] |
| In vitro | ||||
| 0%, 0.12%, 0.24%, 0.24% + seminal plasma for 0 h, 24 h and 48 h | EBN-supplemented E-Z mixin® extender | Chilled Arabian stallion semen |
| [104] |
| 0%, 0.12%, 0.24%, for 0 h, 24 h and 48 h | EBN-supplemented EquiPlus® and INRA 96® extenders | Chilled and post-thawed cryopreserved Arabian stallion spermatozoa |
| [105] |
| Contaminant/ Constituent | Regulatory Limit by Malaysian Food Act 1983 [126] (Raw Cleaned EBN) | Regulatory Limit Set before Exporting Raw, Uncleaned EBN [127] | Toxicological Concerns for Human Health | Key Research Needs |
|---|---|---|---|---|
| Lead | 0.30 mg/kg | ≤2 mg/kg |
| EBN reproductive toxicity studies |
| Arsenic | 0.15 mg/kg | ≤1 mg/kg |
| Speciation analysis for inorganic vs. organic arsenic dietary exposure and reproductive studies. |
| Mercury | 0.07 mg/kg | ≤1 mg/kg |
|
|
| Cadmium | N/A | ≤1 mg/kg | Kidney toxicity, testicular damage, and reduced sperm quality. |
|
| Trace elements | N/A | N/A | Essential at low levels (e.g., Zn supports spermatogenesis), whereas excess can be toxic. |
|
| Microbial/ Mycotoxins | Nitrite ≤ 30 mg/kg [125] |
|
| Routine testing for microbial contamination and mycotoxins. |
| Hormonal contents | N/A | N/A |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaffar, F.H.F.; Azhar, N.A.; Maluin, S.M.; Osman, K.; Ibrahim, S.F. Edible Bird Nest Supplementation Enhances Male Reproductive Function: Current Insights and Future Horizons. Foods 2025, 14, 3759. https://doi.org/10.3390/foods14213759
Jaffar FHF, Azhar NA, Maluin SM, Osman K, Ibrahim SF. Edible Bird Nest Supplementation Enhances Male Reproductive Function: Current Insights and Future Horizons. Foods. 2025; 14(21):3759. https://doi.org/10.3390/foods14213759
Chicago/Turabian StyleJaffar, Farah Hanan Fathihah, Nurul Atiqah Azhar, Sofwatul Mokhtarah Maluin, Khairul Osman, and Siti Fatimah Ibrahim. 2025. "Edible Bird Nest Supplementation Enhances Male Reproductive Function: Current Insights and Future Horizons" Foods 14, no. 21: 3759. https://doi.org/10.3390/foods14213759
APA StyleJaffar, F. H. F., Azhar, N. A., Maluin, S. M., Osman, K., & Ibrahim, S. F. (2025). Edible Bird Nest Supplementation Enhances Male Reproductive Function: Current Insights and Future Horizons. Foods, 14(21), 3759. https://doi.org/10.3390/foods14213759

