Cricket Flour for a Sustainable Pasta: Increasing the Nutritional Profile with a Safe Supplement
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Solvents
2.2. Samples
2.3. Physico-Chemical Parameters Determination
2.4. Ash and Protein Content Determination
2.5. Metals Determination
- (a)
- Fluka multi-element standard solution 4 for ICP (17 elements including Zn, Cu, Fe, 10–100 ppm) in HNO3 10%;
- (b)
- Fluka multi-element standard solution III for ICP, specifically for Na, K, Ca, and Mg (200–2000 ppm) in HNO3 5%.
2.6. Fat Extraction and Determination
2.7. Gas Chromatographic Analysis of Fatty Acid Methyl Esters (FAMEs)
2.8. Amino Acid Content Determination
- (i)
- 50 µL of an ethanol/pyridine (4:1) solution (Sigma Aldrich, Milan) was added and mixed using a glass capillary;
- (ii)
- 10 µL of ECF was added slowly (to control effervescence from HCl release);
- (iii)
- 50 µL of a 1% ECF solution in chloroform was added;
- (iv)
- The mixture was neutralized by adding 50 µL of saturated NaHCO3 and stirred until CO2 effervescence ceased.
2.9. Stability of Derivatized Amino Acids
2.10. Determination of Chitin
2.11. Analysis of Total Petroleum Hydrocarbons (TPH)
2.12. Analysis of Polycyclic Aromatic Hydrocarbons (PAHs)
3. Results and Discussion
3.1. Physico-Chemical Parameters, Minerals and Metals
3.2. Fatty Acids
3.3. Amino Acid Profile
3.4. Hydrocarbon Content and Profiling
3.5. Polycyclic Aromatic Hydrocarbons (PAHs)
3.6. Nutritional Aspects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 concerning novel foods and novel food ingredients. OJ L 1997, 43, 1–6. Available online: https://eur-lex.europa.eu/eli/reg/1997/258/oj/eng (accessed on 24 June 2025).
- Govorushko, S. Global status of insects as food and feed source: A review. Trends Food Sci Technol. 2019, 91, 436–445. [Google Scholar] [CrossRef]
- Aiello, D.; Barbera, M.; Bongiorno, D.; Cammarata, M.; Censi, V.; Indelicato, S.; Mazzotti, F.; Napoli, A.; Piazzese, D.; Saiano, F. Edible insects an alternative nutritional source of bioactive compounds: A review. Molecules 2023, 28, 699. [Google Scholar] [CrossRef]
- Ma, Z.; Mondor, M.; Valencia, F.G.; Hernández-Álvarez, A.J. Current state of insect proteins: Extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food Funct. 2023, 14, 8129–8156. [Google Scholar] [CrossRef]
- Hasnan, F.F.B.; Feng, Y.; Sun, T.; Parraga, K.; Schwarz, M.; Zarei, M. Insects as valuable sources of protein and peptides: Production, functional properties, and challenges. Foods 2023, 12, 4243. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Pankiewicz, U.; Sujka, M. Nutritional, physiochemical, and biological value of muffins enriched with edible insects flour. Antioxidants 2021, 10, 1122. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Kowalczewski, P.Ł.; Drabińska, N.; Różańska, M.B.; Jeleń, H.H. Effect of cricket powder incorporation on the profile of volatile organic compounds, free amino acids and sensory properties of gluten-free bread. Pol. J. Food Nutr. Sci. 2022, 72, 431–442. [Google Scholar] [CrossRef]
- Alencar, N.M.M.; de Araújo, V.A.; Faggian, L.; da Silveira Araújo, M.B.; Capriles, V.D. What about gluten-free products? An insight on celiac consumers’ opinions and expectations. J. Sens. Stud. 2021, 36, e12664. [Google Scholar]
- Bartkiene, E.; Starkute, V.; Katuskevicius, K.; Laukyte, N.; Fomkinas, M.; Vysniauskas, E.; Kasciukaityte, P.; Radvilavicius, E.; Rokaite, S.; Medonas, D.; et al. The contribution of edible cricket flour to quality parameters and sensory characteristics of wheat bread. Food Sci. Nutr. 2022, 10, 4319–4330. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z.H.; Gage, D.A.; Watson, J.T. Analysis of amino acids by gas chromatography—flame ionization detection and gas chromatography—mass spectrometry: Simultaneous derivatization of functional groups by an aqueous-phase chlorofor-mate-mediated reaction. J. Chromatogr. A 1994, 663, 71–78. [Google Scholar]
- Smídov, K.; Sera, J.; Bielska, L.; Hofman, J. Influence of feeding and earthworm density on compound bioaccumulation in earthworms Eisenia Andrei. Environ. Poll. 2015, 207, 168–175. [Google Scholar] [CrossRef]
- Christie, W.W. (Ed.) Advances in Lipid Methodology; Elsevier: Amsterdam, The Netherlands, 1997; Volume 4. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.M.; Ruggio, D.M.; Amanna, K.R. Extended validation of a simplified extraction and gravimetric determination of total fat to selected foods. J. Food Lipids 2008, 15, 309–325. [Google Scholar] [CrossRef]
- Iverson, S.J.; Lang, S.L.C.; Cooper, M.H. Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 2001, 36, 1283–1287. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Tremblay, A.; Plourde, G.; Despres, J.P.; Bouchard, C. Impact of dietary fat content and fat oxidation on energy intake in humans. Am. J. Clin. Nutr. 1989, 49, 799–805. [Google Scholar] [CrossRef]
- Bongiorno, D.; Giosuè, C.; Indelicato, S.; Avellone, G.; Maniaci, G.; Del Core, M.; D’Agostino, F. Helix aspersa aspersa flour: An evaluation for dietary supplementation. Heliyon 2024, 10, e33373. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef] [PubMed]
- Traina, A.; Quinci, E.M.; Sabatino, N.; Del Core, M.; Bellante, A.; Bono, G.; Giuga, M.; Avellone, G.; Sprovieri, M.; D’Agostino, F. Protein, Essential Amino Acid, and Fatty Acid Composition of Five Target Fishery Species of Central Mediterranean Sea. Animals 2024, 14, 2158. [Google Scholar] [CrossRef]
- Jang, M.K.; Kong, B.G.; Jeong, Y.I.; Lee, C.H.; Nah, J.W. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J. Polym. Sci. A Polym. Chem. 2004, 42, 3423–3432. [Google Scholar]
- Cárdenas, G.; Cabrera, G.; Taboada, E.; Miranda, S.P. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J. Appl. Polym. Sci. 2004, 93, 1876–1885. [Google Scholar] [CrossRef]
- Rasti, H.H.; Parivar, K.; Baharara, J.; Iranshahi, M.; Namvar, F. Chitin from the mollusc Chiton: Extraction, characterization and chitosan preparation. Iran. Pharm. Res. 2017, 16, 366–379. [Google Scholar]
- Ravichandran, K.M.S.; Uthayakumar, T.M.V.; Chandirasekar, R.; Rajeevgandhi, C.; Rajan, D.K.; Seedevi, P. Extraction and characterization of chitin from sea snail Conus inscriptus (Reeve, 1843). Int. J. Biol. Macromol. 2019, 126, 555–560. [Google Scholar]
- Czechowska-Biskup, R.; Jarosińska, D.; Rokita, B.; Ulański, P.; Rosiak, J.M. Determination of degree of deacetylation of chitosan—Comparision of methods. In Progress on Chemistry and Application of Chitin and Its; Media-Press: Lodz, Poland, 2012; Volume XVII, pp. 5–20. [Google Scholar]
- Ibitoye, E.B.; Lokman, I.H.; Hezmee, N.M.; Goh, Y.M.; Zuki, A.B.Z.; Jimoh, A.A. Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed. Mater. 2018, 13, 025009. [Google Scholar] [CrossRef]
- Bonsignore, M.; Manta, D.S.; Sharif, E.A.A.T.; D’Agostino, F.; Traina, A.; Quinci, E.M.; Giaramita, L.; Monastero, C.; Benothman, M.; Sprovieri, M. Marine pollution in the Libyan coastal area: Environmental and risk assessment. Mar. Pollut. Bull. 2018, 128, 340–352. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter Oliver, K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Kosečková, P.; Zvěřina, O.; Pěchová, M.; Krulíková, M.; Duborská, E.; Borkovcová, M. Mineral profile of cricket powders, some edible insect species and their implication for gastronomy. J. Food Compos. Anal. 2022, 107, 104340. [Google Scholar] [CrossRef]
- Lu, M.; Zhu, C.; Smetana, S.; Zhao, M.; Zhang, H.; Zhang, F.; Du, Y. Minerals in edible insects: A review of content and potential for sustainable sourcing. Food Sci. Hum. Wellness 2024, 13, 65–74. [Google Scholar] [CrossRef]
- Martin, N.M.; Oonincx, D.G.A.B.; Stouten, T.; Veenenbos, M.; Melse-Boonstra, A.; Dicke, M.; Van Loon, J.J.A. Insects as sources of iron and zinc in human nutrition. Nutr. Res. Rev. 2018, 31, 248–255. [Google Scholar] [CrossRef]
- Kinyuru, J.N.; Kenji, G.M.; Muhoho, S.N.; Ayieko, M.A. Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya District, Kenya. J. Agric. Sci. Tech. 2010, 12, 32–46. [Google Scholar]
- Araujo, R.G.; Macedo, S.M.; Korn, M.D.G.A.; Pimentel, M.F.; Bruns, R.E.; Ferreira, S.L. Mineral composition of wheat flour consumed in Brazilian cities. J. Braz. Chem. Soc. 2008, 19, 935–942. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration’s (FDA)—Guidance for Industry A Food Labeling Guide 21 CFR 101.9(c)(8)(iv). Available online: https://www.fda.gov/files/food/published/Food-Labeling-Guide-%28PDF%29.pdf (accessed on 2 July 2025).
- Chessa, E. Calorie e Valori Nutrizionali Degli Alimenti. 2012. Available online: https://www.dietabit.it/alimenti/ (accessed on 2 July 2025).
- Anbudhasan, P.; Asvini, G.; Surendraraj, A.; Ramasamy, D.; Sivakumar, T. Development of functional pasta enriched with omega-3 fatty acids. Fish Technol. 2014, 51, 242–246. [Google Scholar]
- Monter-Miranda, J.G.; Tirado-Gallegos, G.M.; Ochoa-Reyes, E.; Rios-Velasco, C.; Molina Corral, F.J.; Hernandez-Centeno, M.; de La Pena, H.Y.L. Nutritional characterization of fatty acids and minerals in Brachystola magna (Girard) during their development. Emir. J. Food Agric. 2018, 30, 389–395. [Google Scholar] [CrossRef]
- Xiaoming, C.; Ying, F.; Hong, Z.; Zhiyong, C. Review of the nutritive value of edible insects. Forest insects as food: Humans Bite Back. In Proceedings of the A Workshop on Asia-Pacific Resources and Their Potential for Development, Chiang Mai, Thailand, 19–21 February 2008; FAO, Regional Office for Asia and the Pacific: Bangkok, Thailand, 2010. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 14. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2010.1461 (accessed on 25 March 2010).
- Keys, A.; Anderson, J.T.; Grande, F. Serum cholesterol responses to change in diet, IV Particular saturated fatty acids in the diet. Metabolism 1965, 14, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Dietschy, J.M. Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentration. J. Nutr. 1998, 128, 444S–448S. [Google Scholar] [CrossRef]
- Hegsted, D.M.; McGandy, R.B.; Stare, F.J. Quantitative effects of dietary fat on serum cholesterol in man. Am. J. Clin. Nutr. 1965, 17, 281–295. [Google Scholar] [CrossRef]
- Khosla, P.; Sundram, K. Effect of dietary fatty acid composition on plasma cholesterol. Prog. Lipis Res. 1996, 35, 93–132. [Google Scholar] [CrossRef]
- Mashek, D.G.; Wu, C. MUFAS. Adv. Nutr. 2015, 6, 276–277. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A systematic review of nutrient composition data avalaible for twelve commercially available edible insects and comparison with reference value. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willet, W.; Hu, F.B. Dietary linoleic acid and risk of coronary heart disease: A systematic review and meta-analysis of prospective cohort studies. Circulation 2014, 130, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Protein and Amino Acid Requirements in Human Nutrition Report of a Joint FAO/WHO/UNU Expert Consultation (WHO Technical Report Series 935). Available online: https://iris.who.int/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf (accessed on 24 June 2025).
- Friedman, M. Nutritional value of proteins from different food sources. A review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition; Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Ildico Hirsch-Ernst, K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of partially defatted house cricket (Acheta domesticus) powder as a novel food pursuant to Regulation(EU) 2015/2283. EFSA J. 2022, 20, 7258. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Norberto, L.; Damini, R.; Musumeci, S. Human gastric juice contains chitinase that can degrade chitin. Ann. Nutr. Metab. 2007, 51, 244–251. [Google Scholar] [CrossRef]
- Refael, G.; Riess, H.T.; Levi, C.S.; Magzal, F.; Tamir, S.; Koren, O.; Lesmes, U. Responses of the human gut microbiota to physiologically digested insect powders or isolated chitin thereof. Future Foods 2022, 6, 100197. [Google Scholar] [CrossRef]
- Ansari, Z.A.; Desilva, C.; Badesa, S. Total petroleum hydrocarbon in the tissues of some commercially important fishes of the Bay of Bengal. Mar. Pollut. Bull. 2012, 64, 2564–2568. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, J.F.; Garcıa, C.; Petrón, M.J.; Andrés, A.I.; Antequera, T. n-Alkane content of intramuscular lipids of Iberian fresh ham from different feeding systems and crossbreeding. Meat. Sci. 2001, 57, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, R.F.; Martin, M.M. The lipids of the common house cricket, Acheta domesticus L. II. Hydrocarbons. Lipids 1968, 3, 250–255. [Google Scholar] [CrossRef]
- Alves, C.; Vicente, A.; Pio, C.; Kiss, G.; Hoffer, A.; Decesari, S.; Prevot, A.S.H.; Minguillòn, M.C.; Querol, X.; Hillamo, R.R.; et al. Organic compounds in aerosols from selected European sites—Biogenic versus anthropogenic sources. Atmos. Environ. 2012, 59, 243–255. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Mercuriali, M.; Perrone, M.G.; Ferrero, L.; Sangiorgi, G.; Bolzacchini, E. Distribution of n-alkanes in the Northe Italy Aerosols: Data Handling of GC/MS Signals for Homologous Series Characterization. Environ. Sci. Technol. 2010, 44, 4232–4240. [Google Scholar] [CrossRef]
- Giufrè, A.M. The effect of cultivar and harvest season on the n-alkane and the n-alkene composition of virgin olive oil. Eur. Food Res. Technol. 2021, 247, 25–36. [Google Scholar] [CrossRef]
- Eglinton, G.; Hamilton, R.H. The distribution of alkanes. In Chemical Plant Taxonomy; Swain, T., Ed.; Academic Press: London, UK, 1963; pp. 187–217. [Google Scholar]
- Sapian, N.A.S.; Roslan, M.A.M.; Hashim, A.M.; Desa, M.N.M.; Halim, M.; Manaf, Y.N.A.; Wasoh, H. Differentiation of lard from other animal fats based on n-Alkane profiles using chemometric analysis. Food Res. Int. 2023, 164, 112332. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Benford, D.; Cockburn, A.; Cravedi, J.-P.; Dogliotti, E.; Di Domenico, A.; Fernández-Cruz, M.L.; Fink-Gremmels, J.; Fürst, P.; Galli, C.; et al. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on Polycyclic Aromatic Hydrocarbons in Food. EFSA J. 2008, 724, 1–114. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2008.724 (accessed on 2 July 2025). [CrossRef]
- Jävenpää, E.; Huopalahti, R.; Tapanainen, P. Use of supercritical fluid extraction-high performance liquid chromatography in the determination of polynuclear aromatic hydrocarbons from smoked and broiled fish. J. Liq. Chromatogr. Relat. Techno. 1996, 19, 1473–1482. [Google Scholar] [CrossRef]
- Yang, N.F.Y.; Ke, L.; Wang, X.H.; Woog, Y.S. Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrowe swamps. Environ. Pollut. 2001, 114, 255–263. [Google Scholar]
- Baumard, P.; Budzinski, H.; Garrigues, P. PAHs in Arcachon Bay, France: Origin and biomonitoring with caged organisms. Mar. Pollut. Bull. 1998, 36, 577–586. [Google Scholar] [CrossRef]
- Budzinski, H.; Jones, J.; Bellocq, J.; Piérard, C.; Garrigues, P. Evalutation of sediment con-tamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 1997, 58, 85–97. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Garrigues, P.; Dizer, H.; Hansen, P.D. Polycyclic aromatic hydrocarbons in recent sediment and mussel (Mytilus edulis) from the Western Baltis Sea: Occurrence, bioavailibility and seasonal variations. Mar. Environ. Res. 1989, 47, 17–47. [Google Scholar] [CrossRef]
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Subcommittee on Interpretation, Uses of Dietary Reference Intakes; Subcommittee on Upper Reference Levels of Nutrients; Panel on the Definition of Dietary Fiber; Panel on Macronutrients. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
Metal | Wavelength 1 (nm) | Wavelength 2 (nm) |
---|---|---|
Ca | 315.887 | 317.933 |
Cu | 324.752 | 327.393 |
Fe | 238.204 | 239.562 |
K | 404.721 | 766.49 |
Mg | 279.077 | 285.213 |
Na | 330.237 | 589.592 |
Zn | 206.204 | 213.857 |
Amino Acid | m/z | Amino Acid | m/z |
---|---|---|---|
Alanine | 116, 88, 72, 70 | Methionine | 61, 129, 175, 101 |
Valine | 114, 116 | Glutamic acid | 84, 56 |
Isoleucine | 158, 102 | Serine | 142, 60, 129 |
Leucine | 158, 102 | Phenylalanine | 102, 91, 176 |
Glycine | 102, 74 | Arginine | 149, 167 |
Proline | 142, 70 | Lysine | 156, 128, 84 |
Aspartic acid | 188, 142, 116 | Histidine | 238, 254, 154 |
Threonine | 129, 101, 74 | Tyrosine | 264, 192, 107 |
Potassium | Sodium | Calcium | Magnesium | Zinc | Copper | Iron | Literature | |
---|---|---|---|---|---|---|---|---|
Analytes | (mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | (mg/100 g) | |
Acheta domesticus flour (this work) | 886 ± 5 | 389 ± 3 | 97 ± 1 | 68 ± 3 | 22 ± 1 | 3.4 ± 0.2 | 10.8 ± 0.6 | |
Acheta domesticus (adult) | 1126 | 435 | 132–210 | 80–109 | 18.6–21.7 | 0.85–2.01 | 6.3–11.23 | [29] |
Tenebrio molitor) | 994–1187 | 159–208 | 66–142 | 263–335 | 11.2–14.1 | 2.1–2.4 | 4.5–5 | [30] |
Ruspolia differens (brown adult) | 259.7 | 229 | 24.5 | 33.1 | 12.4 | 0.5 | 13 | [31] |
Melanoplus mexicanus s | 62 | 110 | 120 | 740 | 17 | 32 | [31] | |
Brachytrupes sp. | 9.2 | 0.1 | 0.7 | [31] | ||||
Gryllus bimaculatus | 38.6–40.5 | 166.5 | 71–74.4 | 22.4–25 | 6.8–9.8 | [31] |
Insect | Lipids (g/100 g) | Origin |
---|---|---|
Acheta domesticus flour (this work) | 11 ± 2 | Italy |
Gryllus assimilis * | 21.8 | Brazil |
Acheta domesticus adult * | 22.8 | USA |
Acheta domesticus nymph * | 17.7 | USA |
Melanoplus mexicanus * | 4.2 | Mexico |
Brachytrupes sp. * | 18.7 | Mexico |
Ruspolia differens * | 48.2 | Kenya |
Wheat Flour % | Cricket Flour % | Mixed Flour % | |
---|---|---|---|
Lauric acid (C12:0) | 0.60 ± 0.07 | ||
tetradecanoic acid (C14:0) | 2.0 ± 0.2 | 1.1 ± 0.06 | |
Palmitic acid (C16:0) | 24 ± 2 | 34 ± 3 | 29 ± 3 |
Stearic acid (C18:0) | 3.1 ± 0.5 | ||
cis-Vaccenic (C18:1-cis) | 10.3 ± 0.8 | ||
Oleic acid (C18:1-cis) | 19 ± 3 | 25 ± 2 | 23 ± 2 |
Linoleic Acid (C18:2-cis 9,12) | 57 ± 5 | 34 ± 3 | 35 ± 2 |
Linolenic Acid (C18:2 cis 9,12,15) | 1.4 ± 0.1 | 1.6 ± 0.2 | |
Eicosapentenoic acid (C20:5 cis-5,8,11,14,17) | 0.8 ± 0.1 | 0.10 ± 0.05 | |
Health Promoting Index (HPI) | 3.1 | 1.5 | 2.1 |
Trobogenicity Index (TI)= | 2.6 | 2.6 | 1.8 |
Atherogeniciy Index (AI)= | 0.4 | 1.2 | 0.7 |
Animal-Based Foods | Protein Content (N × 6.25, g/100 g) | Plant-Based Foods | Protein Content (N × 6.25, g/100 g) |
---|---|---|---|
Red meat (raw and cooked) | 20–33 | Vegetables | 1–5 |
Poultry | 22–37 | Legumes | 4–14 |
Fish | 15–25 | Fruit | 0.3–2 |
Eggs | 11–13 | Dried fruit and seeds | 8–29 |
Hard cheeses | 27–34 | Cooked pasta and rice | 2–6 |
Soft cheeses | 12–28 | Bread and focaccia | 6–13 |
Dairy products | 2–6 | Breakfast cereals | 5–13 |
Compound | Wheat Pasta | Wheat Flour | Cricket Flour | Wheat-Cricket Flour |
---|---|---|---|---|
Naphthalene | <LOD | <LOD | <LOD | <LOD |
Acenaphthene | <LOD | <LOD | <LOD | <LOD |
Acenaphthylene | <LOD | <LOD | <LOD | <LOD |
Fluorene | <LOD | <LOD | <LOD | <LOD |
Phenanthrene | 19 ± 1 | 12.1 ± 0.7 | 12.3 ± 0.5 | 9.3 ± 0.8 |
Anthracene | 1.3 ± 0.4 * | 0.9 ± 0.6 * | 1.7 ± 0.5 | 0.7 ± 0.2 * |
Fluoranthene | 3.5 ± 0.6 | 1.8 ± 0.3 | 2.3 ± 0.4 | 2.1 ± 0.2 |
Pyrene | 3.3 ± 0.8 | 1.6 ± 0.6 | 1.8 ± 0.5 | 1.9 ± 0.2 |
Benzo[a]anthracene | <LOD | <LOD | <LOD | <LOD |
Chrysene | <LOD | <LOD | <LOD | <LOD |
Benzo[b]fluoranthene | <LOD | <LOD | <LOD | <LOD |
Benzo[k]fluoranthene | <LOD | <LOD | <LOD | <LOD |
Benzo[a]pyrene | <LOD | <LOD | <LOD | <LOD |
Indeno[1,2,3]pyrene | <LOD | <LOD | <LOD | <LOD |
Dibenzo[a]anthracene | <LOD | <LOD | <LOD | <LOD |
Benzo[g,h,i]perylene | <LOD | <LOD | <LOD | <LOD |
TOTAL | 27 ± 2 | 16 ± 1 | 18 ± 1 | 14 ± 1 |
TEQ | 0.04 | 0.02 | 0.03 | 0.02 |
Fluoranthene/Pyrene | 1.1 | 1.1 | 1.3 | 1.1 |
Phenanthrene/Anthracene | 14 | 14 | 7 | 13 |
Naphthalene | <LOD | <LOD | <LOD | <LOD |
Cricket Flour | Wheat Flour | Mixed Cricket–Wheat Flour | Mixed vs. Wheat Flour | |||||
---|---|---|---|---|---|---|---|---|
Analyte | Recommended DI (mg/day) | Content (mg/100 g) | Required DI (g) | Content (mg/100 g) | Required DI (g) | Content (mg/100 g) | Required DI (g) | Ratio |
K | 3200 | 886 | 361 | 133 | 2406 | 194 | 1646 | 68.41% |
Na | 1500 | 389 | 386 | 41 | 3659 | 80 | 1866 | 51.01% |
Ca | 1000 | 97 | 1028 | 12 | 8333 | 21 | 4741 | 56.90% |
Mg | 350 | 68 | 518 | 68 | 515 | 71 | 495 | 96.09% |
Zn | 8.5 | 22 | 39 | 2.8 | 304 | 5 | 179 | 59.13% |
Fe | 15 | 11 | 139 | 2.5 | 600 | 5 | 325 | 54.17% |
Cu | 1.2 | 3 | 35 | 0.49 | 245 | 2 | 73 | 29.71% |
Lipids | 82,700 | 10,997 | 752 | 1000 | 8270 | 2000 | 4135 | 50.00% |
SFA | 2750 | 4583 | 60 | 241 | 1141 | 596 | 461 | 40.44% |
Proteins | 58,000 | 61,702 | 94 | 3500 | 1657 | 10,660 | 544 | 32.83% |
Valine | 2300 | 3382 | 68 | 90 | 2556 | 140 | 1643 | 64.29% |
Isoleucine | 1756 | 2195 | 80 | 60 | 2927 | 100 | 1756 | 60.00% |
Leucine | 2300 | 5750 | 40 | 180 | 1278 | 330 | 697 | 54.55% |
Threonine | 1350 | 2500 | 54 | 60 | 2250 | 110 | 1227 | 54.55% |
Methionine | 1300 | 120 | 11 | 10 | 13,000 | 50 | 2600 | 20.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indelicato, S.; Lino, C.; Bongiorno, D.; Orecchio, S.; D’Agostino, F.; Indelicato, S.; Todaro, A.; Parafati, L.; Avellone, G. Cricket Flour for a Sustainable Pasta: Increasing the Nutritional Profile with a Safe Supplement. Foods 2025, 14, 2404. https://doi.org/10.3390/foods14142404
Indelicato S, Lino C, Bongiorno D, Orecchio S, D’Agostino F, Indelicato S, Todaro A, Parafati L, Avellone G. Cricket Flour for a Sustainable Pasta: Increasing the Nutritional Profile with a Safe Supplement. Foods. 2025; 14(14):2404. https://doi.org/10.3390/foods14142404
Chicago/Turabian StyleIndelicato, Serena, Claudia Lino, David Bongiorno, Silvia Orecchio, Fabio D’Agostino, Sergio Indelicato, Aldo Todaro, Lucia Parafati, and Giuseppe Avellone. 2025. "Cricket Flour for a Sustainable Pasta: Increasing the Nutritional Profile with a Safe Supplement" Foods 14, no. 14: 2404. https://doi.org/10.3390/foods14142404
APA StyleIndelicato, S., Lino, C., Bongiorno, D., Orecchio, S., D’Agostino, F., Indelicato, S., Todaro, A., Parafati, L., & Avellone, G. (2025). Cricket Flour for a Sustainable Pasta: Increasing the Nutritional Profile with a Safe Supplement. Foods, 14(14), 2404. https://doi.org/10.3390/foods14142404