Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,227)

Search Parameters:
Keywords = protein content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6983 KB  
Article
Assembly, Characterization and Comparative Analysis of the Complete Mitogenome of Small-Leaved Eriobotrya seguinii (Maleae, Rosaceae)
by Muhammad Idrees, Fardous Mohammad Safiul Azam, Meng Li, Zhiyong Zhang, Hui Wang and Yunyun Lv
Genes 2026, 17(1), 107; https://doi.org/10.3390/genes17010107 (registering DOI) - 20 Jan 2026
Abstract
Background. Eriobotrya seguinii (Lév.) Cardot ex Guillaumin (Rosaceae, Maleae) is native to China and inhabits various altitudes within the subtropical biome of the Yunnan-Guizhou Plateau. The complexity of the plant mitogenome has impeded a systematic description of this species, leading to a limited [...] Read more.
Background. Eriobotrya seguinii (Lév.) Cardot ex Guillaumin (Rosaceae, Maleae) is native to China and inhabits various altitudes within the subtropical biome of the Yunnan-Guizhou Plateau. The complexity of the plant mitogenome has impeded a systematic description of this species, leading to a limited understanding of its evolutionary position. Methods. In this study, we constructed, annotated, characterized, and compared the complete E. seguinii mitogenome with previously reported Eriobotrya japonica. Results. The E. seguinii mitogenome exhibited a typical circular architecture, spanning 372,899 bp in length, with a GC content of 46%, making it the smallest and highest GC content of any known Eriobotrya species. It encodes 71 unique genes, comprising 47 protein-coding genes, 20 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. The genome contains rich repetitive sequences, with mononucleotides, A/T bias, and forward and palindromic repeats being the most prevalent. The predominant codons were GCU (Ala) and UAU (Tyr), with frequencies of 1.54 and 1.53, respectively. Thirteen genes (atp9, atp6, atp1, rps14, sdh4, sdh3, rps12, rnaseH, nad1, nad6, nad7, rpl16, and mttB) demonstrated high Pi values, ranging from 0.84 to 1. The evolutionary lineage of E. seguinii was explored using mitogenome data from 19 genera within the Rosaceae family, revealing that Eriobotrya species are monophyletic and closely related to E. japonica (MN481990). Conclusions. Understanding the mitogenome characteristics of E. seguinii enhances our understanding of its genesis and classification based on mitochondrial genome data. This study provides additional evidence for future research on the evolutionary relationships among species in the Rosaceae family. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 9874 KB  
Article
Porous Curdlan–Whey Protein Isolate Scaffolds Obtained by Combined Method for Cartilage Tissue Engineering Application
by Aleksandra Hnydka, Julia Higuchi, Agnieszka Grzelak and Katarzyna Klimek
Materials 2026, 19(2), 404; https://doi.org/10.3390/ma19020404 - 20 Jan 2026
Abstract
The aim of this study was to develop porous curdlan (Cur)–whey protein isolate (WPI) biomaterials and evaluate their properties as potential cartilage scaffolds. A novel combined fabrication method involving ion-exchange dialysis, porogen leaching, freezing, and freeze-drying was employed to obtain a porous structure. [...] Read more.
The aim of this study was to develop porous curdlan (Cur)–whey protein isolate (WPI) biomaterials and evaluate their properties as potential cartilage scaffolds. A novel combined fabrication method involving ion-exchange dialysis, porogen leaching, freezing, and freeze-drying was employed to obtain a porous structure. Two types of scaffolds differing in protein content (5 wt.% and 7.5 wt.%) were fabricated and designated as Cur_WPI_5% and Cur_WPI_7.5%, respectively. The microstructure of the biomaterials was analyzed using stereomicroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). Physicochemical properties, including wettability and absorption capacity, were also evaluated. In addition, the viability and proliferation of osteoblasts (hFOB 1.19 cell line) in direct contact with scaffolds were assessed. The results demonstrated that both biomaterials exhibited a porous, rough, and hydrophilic structure, as well as a high liquid absorption capacity. Cell culture studies revealed that the Cur_WPI_7.5% scaffold showed greater cytocompatibility, promoting not only osteoblast viability and but also proliferation in vitro. Overall, these findings demonstrate that the developed curdlan/WPI scaffolds, particularly Cur_WPI_7.5%, possess structural and physicochemical properties favorable for cartilage tissue regeneration, highlighting their potential as promising scaffold for future applications. Full article
Show Figures

Graphical abstract

27 pages, 2278 KB  
Article
Germination as a Sustainable Green Pre-Treatment for the Recovery and Enhancement of High-Value Compounds in Broccoli and Kale
by Christine (Neagu) Dragomir, Corina Dana Misca, Sylvestre Dossa, Daniela Stoin, Ariana Velciov, Călin Jianu, Isidora Radulov, Mariana Suba, Catalin Ianasi and Ersilia Alexa
Molecules 2026, 31(2), 350; https://doi.org/10.3390/molecules31020350 - 19 Jan 2026
Abstract
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate [...] Read more.
Germination is widely recognized as an effective strategy to enhance the nutritional quality and reduce anti-nutritional factors in plant foods. This study evaluated the impact of germination on Cruciferous vegetables (family Cruciferae or Brassicaceae) broccoli and kale by assessing changes in proximate composition, macro- and microelement profiles, total and individual polyphenols, phytic acid content, antimicrobial activity, and structural characteristics using Fourier Transform Infrared Spectroscopy (FTIR) and Small- and Wide-Angle X-ray Scattering (SAXS/WAXS) analyses. Germination significantly increased protein content (30.33% in broccoli sprouts and 30.21% in kale sprouts), total phenolic content (424.40 mg/100 g in broccoli sprouts and 497.94 mg/100 g in kale sprouts), and essential minerals, while reducing phytic acid levels in both species (up to 82.20%). Antimicrobial effects were matrix-dependent, being detected in broccoli and kale seed powders, while no inhibitory activity was observed for the corresponding sprout powders under the tested conditions. FTIR spectra indicated notable modifications in functional groups related to carbohydrates, proteins, and phenolic compounds, while SAXS analysis revealed structural reorganizations at the nanoscale. Overall, germination improved the nutritional and phytochemical quality of broccoli and kale while decreasing anti-nutritional compounds, highlighting its potential to enhance the health-promoting value of Brassica sprouts. Full article
Show Figures

Figure 1

15 pages, 724 KB  
Article
Chemical Characterization of Extracts Derived from Apple, Sour Cherry, and Sweet Cherry Seed Oils
by Marek Szmigielski, Marek Domin, Piotr Kiczorowski, Marta Krajewska, Jolanta Piekut, Marzena Smolewska and Małgorzata Szczepanik
Agriculture 2026, 16(2), 255; https://doi.org/10.3390/agriculture16020255 - 19 Jan 2026
Abstract
Numerous sectors of the food processing and oleochemical industries require oils with specific physicochemical properties. Fruit processing generates substantial waste potentially containing valuable raw materials for oil extraction. The significant volumes of apples and cherries processed in Poland prompted an assessment of their [...] Read more.
Numerous sectors of the food processing and oleochemical industries require oils with specific physicochemical properties. Fruit processing generates substantial waste potentially containing valuable raw materials for oil extraction. The significant volumes of apples and cherries processed in Poland prompted an assessment of their seeds’ suitability as oil sources. Seed dry matter, protein, and oil content were determined. The extracted oils were analyzed for acid value (AV), peroxide value (PV), oxidative stability, fatty acid composition, and sterol and tocopherol content. The predominant higher fatty acids identified in the sour cherry and sweet cherry kernel oils were linoleic acid (C18:2, n-6), with mean concentrations of 45.82% and 29.23%, respectively, and oleic acid (C18:1, n-9), accounting for 41.54% and 46.59%, respectively. Additional fatty acids detected included palmitic acid C16:0 (6.23% and 5.91%), palmitoleic acid C16:1, n-7 (0.29%), stearic acid C18:0 (1.36% and 3.11%), arachidic acid C20:0 (1.13%), α-eleostearic acid C18:3 (5.07% and 9.48%), and α-linolenic acid C18:3, n-3 (4.09%). Given the substantial proportion of the oil fraction containing numerous potentially biologically active compounds, including nutritionally valuable fatty acids, tocopherols, and phytosterols, apple, sour cherry, and sweet cherry seeds demonstrate considerable potential as raw materials for applications in the food, pharmaceutical, and cosmetics industries. Full article
15 pages, 3854 KB  
Article
Characteristics and Phylogenetic Considerations of the Newly Sequenced Mitochondrial Genome of Teratoscincus scincus (Gekkota: Sphaerodactylidae)
by Zhiqiang Ge, Zhengyu Zhang, Zelu Mu and Linqiang Zhong
Biology 2026, 15(2), 185; https://doi.org/10.3390/biology15020185 - 19 Jan 2026
Abstract
Sphaerodactylidae play a crucial role in ecosystems, possessing significant ecological, scientific, and conservation value. They contribute to pest control and the maintenance of ecological balance, and also provide abundant materials for research in evolutionary biology and biodiversity. To refine the phylogenetic position of [...] Read more.
Sphaerodactylidae play a crucial role in ecosystems, possessing significant ecological, scientific, and conservation value. They contribute to pest control and the maintenance of ecological balance, and also provide abundant materials for research in evolutionary biology and biodiversity. To refine the phylogenetic position of Teratoscincus scincus within the Sphaerodactylidae using mitogenomic data, this study sequenced the complete mitochondrial genome of T. scincus using the Illumina NovaSeq Xplus platform, and subsequently performed assembly, annotation, and analysis. The phylogenetic relationships of T. scincus within the Sphaerodactylidae were analyzed using 13 protein-coding genes (PCGs) from the mitochondrial genome via Bayesian inference (BI) and maximum likelihood (ML) methods. The complete mitochondrial genome of T. scincus is 16,943 bp in length and consists of 13 PCGs, 22 tRNA genes, 2 rRNA genes, and 1 control region (D-loop). The base composition shows a distinct AT preference, with the highest A + T content (56.3%) found in the PCGs region. A phylogenetic tree was constructed based on the amino acid sequences of 13 PCGs from the mitochondrial genomes of nine Sphaerodactylidae species retrieved from GenBank and the newly sequenced T. scincus generated in this study. The results confirm that T. scincus belongs to the genus Teratoscincus within the family Sphaerodactylidae. Phylogenetic analysis reveals that T. scincus and Teratoscincus keyserlingii cluster into a monophyletic group, suggesting a close phylogenetic relationship. Additionally, the phylogenetic tree provides new molecular evidence for understanding the formation mechanism of Sphaerodactylidae diversity. This study not only enriches the mitochondrial genome database of Sphaerodactylidae but also lays an important foundation for subsequent research on the adaptive evolution and conservation biology of T. scincus. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

23 pages, 8593 KB  
Article
Genome-Wide Identification of CmPOD Genes and Partial Functional Characterization of CmPOD52 in Lignin-Related Granulation of ‘Sanhong’ Pomelo (Citrus maxima)
by Yunxuan Liu, Xinjia Wang, Rong Lian, Yan Zhao, Yurong Zhou, Yuan Yu, Wenqin She, Zhixiong Guo, Heli Pan and Tengfei Pan
Horticulturae 2026, 12(1), 106; https://doi.org/10.3390/horticulturae12010106 - 19 Jan 2026
Abstract
The granulation of pomelo (Citrus maxima) juice sacs severely compromises fruit quality and is closely associated with lignin accumulation, a process catalyzed by peroxidases (PODs). Analysis of ‘Sanhong’ pomelo juice sacs collected 175–215 days after flowering revealed that bound peroxidase (BPOD) [...] Read more.
The granulation of pomelo (Citrus maxima) juice sacs severely compromises fruit quality and is closely associated with lignin accumulation, a process catalyzed by peroxidases (PODs). Analysis of ‘Sanhong’ pomelo juice sacs collected 175–215 days after flowering revealed that bound peroxidase (BPOD) activity paralleled changes in lignin content, suggesting a potential role for BPOD in lignin biosynthesis. A total of 71 CmPOD genes were identified in the pomelo genome through integrated HMMER and BLAST analyses. Among them, CmPOD52 was selected for functional characterization based on its alkaline peroxidase properties, absence of a CE domain, predicted extracellular localization, and gradually increasing expression pattern revealed by RT-qPCR. Its transient overexpression in ‘Sanhong’ pomelo juice sacs for 36 h increased BPOD activity 2.06-fold (p < 0.01) compared to the empty vector control, indicating that CmPOD52 may be a BPOD gene. The recombinant CmPOD52 protein was expressed in a prokaryotic system, purified, and used in enzymatic assays with sinapyl alcohol as the substrate. The recombinant CmPOD52 protein, assayed at 272 nm with controls (substrate-only blank and heat-inactivated protein), showed an activity of 13.67 ± 0.9 U. The experimental group showed new products, identified by mass spectrometry as sinapyl alcohol dimers, thus suggesting that the recombinant protein catalyzes the dehydrogenation and polymerization of sinapyl alcohol monomers. This study identified CmPOD52, a gene potentially involved in lignin polymerization in pomelo juice sacs, offering a key candidate for further in vivo validation. Full article
Show Figures

Figure 1

14 pages, 297 KB  
Article
Water Renewal Rate and Temperature on the Growth Performance and Physiology of Piaractus brachypomus in a Recirculating Aquaculture System (RAS)
by Pedro P. C. Pedras, Zandhor Lipovetsky, Fábio A. C. dos Santos, André de S. Souza, Luisa A. A. Silva, Gustavo S. da C. Júlio, Imaculada de M. C. Ananias, Sidney dos S. Silva, Ronald K. Luz and Gisele C. Favero
Fishes 2026, 11(1), 64; https://doi.org/10.3390/fishes11010064 - 19 Jan 2026
Abstract
This study evaluated the effects of water renewal rate and temperature on the growth performance and physiological responses of juvenile Piaractus brachypomus reared in a recirculating aquaculture system (RAS). A total of 336 fish (1.35 ± 0.24 g) were distributed in six RAS [...] Read more.
This study evaluated the effects of water renewal rate and temperature on the growth performance and physiological responses of juvenile Piaractus brachypomus reared in a recirculating aquaculture system (RAS). A total of 336 fish (1.35 ± 0.24 g) were distributed in six RAS units under two water renewal rates (42 and 128 L h−1) and three temperatures (26, 29, and 32 °C) for 45 days. Temperature was the main factor affecting growth, with higher final weight and total length at 29 and 32 °C throughout the experimental period. Water renewal rate significantly influenced feeding efficiency and energy allocation. Higher renewal (128 L h−1) increased dissolved oxygen and daily feed intake and resulted in higher hemoglobin levels and hepatic lipid deposition, particularly at 32 °C, indicating greater metabolic activity. Conversely, the lower renewal rate (42 L h−1) was associated with better feed conversion ratios at 29 °C and higher muscle lipid content at 26 °C, suggesting reduced energy expenditure. Hematocrit, total plasma protein, and cholesterol were primarily influenced by temperature, with higher values at 29 and 32 °C, while glucose, triglycerides, and liver enzymes were unaffected. Overall, temperatures of 29–32 °C optimized growth, while water renewal rate modulated feed utilization, physiological responses, and lipid deposition. These findings highlight the importance of jointly optimizing temperature and water renewal rate in RAS to enhance growth performance and metabolic balance in juvenile P. brachypomus. Full article
(This article belongs to the Special Issue Advances in the Physiology of Aquatic Organisms)
17 pages, 3130 KB  
Article
ColiFormer: A Transformer-Based Codon Optimization Model Balancing Multiple Objectives for Enhanced E. coli Gene Expression
by Saketh Baddam, Omar Emam, Abdelrahman Elfikky, Francesco Cavarretta, George Luka, Ibrahim Farag and Yasser Sanad
Bioengineering 2026, 13(1), 114; https://doi.org/10.3390/bioengineering13010114 - 19 Jan 2026
Abstract
Codon optimization is widely used to improve heterologous gene expression in Escherichia coli. However, many existing methods focus primarily on maximizing the codon adaptation index (CAI) and neglect broader aspects of biological context. In this study, we present ColiFormer, a transformer-based codon [...] Read more.
Codon optimization is widely used to improve heterologous gene expression in Escherichia coli. However, many existing methods focus primarily on maximizing the codon adaptation index (CAI) and neglect broader aspects of biological context. In this study, we present ColiFormer, a transformer-based codon optimization framework fine-tuned on 3676 high-expression E. coli genes curated from the NCBI database. Built on the CodonTransformer BigBird architecture, ColiFormer employs self-attention mechanisms and a mathematical optimization method (the augmented Lagrangian approach) to balance multiple biological objectives simultaneously, including CAI, GC content, tRNA adaptation index (tAI), RNA stability, and minimization of negative cis-regulatory elements. Based on in silico evaluations on 37,053 native E. coli genes and 80 recombinant protein targets commonly used in industrial studies, ColiFormer demonstrated significant improvements in CAI and tAI values, maintained GC content within biologically optimal ranges, and reduced inhibitory cis-regulatory motifs compared with established codon optimization approaches, while maintaining competitive runtime performance. These results represent computational predictions derived from standard in silico metrics; future experimental work is anticipated to validate these computational predictions in vivo. ColiFormer has been released as an open-source tool alongside the benchmark datasets used in this study. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

24 pages, 1476 KB  
Review
Antioxidant Activity of Maillard Reaction Products in Dairy Products: Formation, Influencing Factors, and Applications
by Hong Lan, Jinjing Xu, Xiaolong Lu, Xinyue Hu, Liteng Peng, Qingyou Liu, Fei Ye and Hao Qi
Foods 2026, 15(2), 351; https://doi.org/10.3390/foods15020351 - 18 Jan 2026
Viewed by 54
Abstract
Dairy products contain complex types and contents of proteins, lipids, and lactose. The Maillard reaction (MR) occurs between proteins and reducing sugars during the processing and storage of dairy products. Maillard reaction products (MRPs) have garnered attention for their potential antioxidant activity. MRPs [...] Read more.
Dairy products contain complex types and contents of proteins, lipids, and lactose. The Maillard reaction (MR) occurs between proteins and reducing sugars during the processing and storage of dairy products. Maillard reaction products (MRPs) have garnered attention for their potential antioxidant activity. MRPs include melanoidins, reductones, and volatile heterocyclic compounds, which affect flavor and color. Relevant literature was identified through a structured search of PubMed and Web of Science; studies were included if they investigated MRPs in dairy products and reported antioxidant-related outcomes. This review offers a comprehensive overview of the MR in dairy products, systematically investigating the influence of protein, reducing sugars, and their ratios, as well as reaction conditions (process technology, temperature, time, pH, and water activity) on the formation and antioxidant activity of MRPs. The review also covers current applications and the future potential of MRPs as natural antioxidants in dairy products. Although MRPs effectively delay lipid oxidation and enhance stability in dairy products, research on their molecular structure and antioxidant mechanisms remains insufficient. Future research should focus on understanding the multifactorial synergistic effects within the complex dairy matrix, elucidating the molecular structure and extraction of antioxidant substances, and developing regulatory techniques to balance the antioxidant properties of MRPs with the safety concerns of potential harmful byproducts. Full article
Show Figures

Figure 1

15 pages, 666 KB  
Article
Serum Chemerin Levels in Polish Women with PCOS-Phenotype D
by Justyna Kuliczkowska-Płaksej, Jowita Halupczok-Żyła, Łukasz Gojny, Agnieszka Zembska, Aneta Zimoch, Monika Skrzypiec-Spring, Marek Bolanowski and Aleksandra Jawiarczyk-Przybyłowska
J. Clin. Med. 2026, 15(2), 772; https://doi.org/10.3390/jcm15020772 - 17 Jan 2026
Viewed by 215
Abstract
Objectives: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder with diverse pathogenetic mechanisms and clinical manifestations. Phenotype D PCOS is characterized by oligomenorrhoea and polycystic ovaries without hyperandrogenism. Altered adipokine profiles may contribute to reproductive and metabolic disturbances. Chemerin is an adipokine involved [...] Read more.
Objectives: Polycystic ovary syndrome (PCOS) is a heterogeneous disorder with diverse pathogenetic mechanisms and clinical manifestations. Phenotype D PCOS is characterized by oligomenorrhoea and polycystic ovaries without hyperandrogenism. Altered adipokine profiles may contribute to reproductive and metabolic disturbances. Chemerin is an adipokine involved in inflammatory and metabolic processes. It remains unclear whether altered chemerin levels in PCOS reflect metabolic dysfunction alone or are directly associated with hyperandrogenism. The aim of this study was to compare serum chemerin levels in women with normoandrogenic PCOS and a control group. Methods: This cross-sectional preliminary study included 49 women with phenotype D PCOS and 40 healthy, age- and body mass index (BMI)-matched controls. Anthropometric, biochemical, hormonal parameters, and serum chemerin concentrations were assessed. Results: Serum chemerin concentrations did not differ significantly between the groups. In the PCOS group, the 95% confidence interval ranged from 198.61 to 234.37, while in the controls, it ranged from 187.13 to 216.21. In women with PCOS, chemerin showed significant positive correlations with weight, BMI, waist and hip circumference, total adipose tissue, and both gynoid and android fat content. Positive correlations were also observed with highly sensitive C-reactive protein (hs-CRP), insulin, glucose, triglycerides, and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and a negative correlation was found with high-density lipoprotein (HDL) cholesterol. Chemerin was weakly negatively correlated with sex hormone binding globulin (SHBG) and positively correlated with the free androgen index (FAI). In the control group, chemerin correlated positively with CRP, insulin, triglycerides, total and gynoid adipose tissue, and negatively correlated with HDL cholesterol and SHBG. Conclusions Although chemerin levels did not differ from controls, chemerin was associated with metabolic and inflammatory markers in both groups. These findings should be considered preliminary due to the limited sample size. Chemerin may reflect metabolic and inflammatory status rather than hyperandrogenism in normoandrogenic PCOS. Full article
(This article belongs to the Topic Gynecological Endocrinology Updates)
Show Figures

Figure 1

20 pages, 1798 KB  
Article
Genetic Diversity of Prolamin Loci Related to Grain Quality in Durum Wheat (Triticum durum Desf.) in Kazakhstan
by Maral Utebayev, Svetlana Dashkevich, Oksana Kradetskaya, Irina Chilimova, Ruslan Zhylkybaev, Tatyana Zhigula, Tatyana Shelayeva, Gulmira Khassanova, Kulpash Bulatova, Vladimir Tsygankov, Marat Amangeldin and Yuri Shavrukov
Life 2026, 16(1), 157; https://doi.org/10.3390/life16010157 - 17 Jan 2026
Viewed by 90
Abstract
The technological properties of durum wheat grain are determined by prolamins (gliadins and glutenins). Information on the allelic composition of key loci remains incomplete despite existing global studies examining prolamin variability. This highlighted the need to study these traits in durum wheat in [...] Read more.
The technological properties of durum wheat grain are determined by prolamins (gliadins and glutenins). Information on the allelic composition of key loci remains incomplete despite existing global studies examining prolamin variability. This highlighted the need to study these traits in durum wheat in Kazakhstan. The effects of specific gliadin components with high- and low-molecular-weight glutenin fractions on gluten quality are also not fully clarified. This study aimed to characterise allelic diversity at prolamin-coding loci and evaluate associated grain quality traits. Using native and denaturing SDS-electrophoresis, 181 tetraploid wheat accessions from Kazakhstan, an International germplasm collection, and 26 breeding lines were analysed for allelic variation and associations with protein content, gluten content, gluten index, and SDS-sedimentation. The γ45 gliadin component and Glu-A3a allele were positively associated with SDS-sedimentation and gluten index, while Glu-B3b had a negative effect. Distinct prolamin profiles were observed among accessions from different ecological and geographical locations. These results support the selection of superior durum wheat genotypes and enable the identification of favourable allele combinations at the Gli-1, Gli-2, Glu-1, and Glu-3 loci in cultivars from Kazakhstan. Comparison with global tetraploid wheat germplasm collections demonstrates unique genetic diversity in genotypes, providing a valuable basis for breeding programs aimed at improving grain and gluten quality in durum wheat in Kazakhstan and Central Asian countries. Full article
(This article belongs to the Special Issue Advances in Plant Biotechnology and Molecular Breeding)
Show Figures

Figure 1

16 pages, 3024 KB  
Article
CDE6 Regulates Chloroplast Ultrastructure and Affects the Sensitivity of Rice to High Temperature
by Shihong Yang, Biluo Li, Pan Qi, Wuzhong Yin, Liang Xu, Siqi Liu, Chiyu Wang, Xiaoqing Yang, Xin Gu and Yungao Hu
Plants 2026, 15(2), 284; https://doi.org/10.3390/plants15020284 - 17 Jan 2026
Viewed by 130
Abstract
Chloroplasts are key organelles in plants that carry out photosynthesis, convert light energy into chemical energy, and synthesize organic compounds. In this study, a stably heritable chlorophyll-deficient mutant was screened from the ethyl methanesulfonate-induced mutation library of Wuyunjing 21 (WYJ21). This mutant was [...] Read more.
Chloroplasts are key organelles in plants that carry out photosynthesis, convert light energy into chemical energy, and synthesize organic compounds. In this study, a stably heritable chlorophyll-deficient mutant was screened from the ethyl methanesulfonate-induced mutation library of Wuyunjing 21 (WYJ21). This mutant was designated as chlorophyll deficient 6 (cde6). The cde6 mutant exhibits a low chlorophyll content, photosynthetic defects, an impaired chloroplast structure, a significant reduction in the number of stacked thylakoid layers, and a yellow-green leaf phenotype in the early tillering stage. Through MutMap analysis, it was found that the cde6 mutant harbors a single-base mutation (T→A) in the LOC_Os07g38300 gene. This mutation results in an amino acid substitution from valine (Val) to aspartic acid (Asp) in the encoded protein, thereby affecting the protein’s structure and function. The mutation of CDE6 leads to decreased expression of genes related to chloroplast development and chlorophyll biosynthesis. Further studies revealed that the CDE6, a potential chloroplast ribosome recycle factor, leads to high temperature sensitivity in rice when mutated. As high-temperature stress is a primary constraint to global rice productivity, the identification of CDE6 provides a genetic target for improving thermotolerance. In conclusion, these findings demonstrate that CDE6 plays a crucial role in chloroplast biogenesis and provide new insights into its regulatory function in high-temperature tolerance. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 5812 KB  
Article
Ferulic Acid Attenuates Heat Stress-Induced Hepatic and Intestinal Oxidative Stress and Cholesterol Metabolism Dysregulation in Juvenile Blunt Snout Bream (Megalobrama amblycephala)
by Yan Lin, Xiangjun Leng, Linjie Qian, Linghong Miao, Xiaoqin Li, Wenqiang Jiang, Siyue Lu and Zhengyan Gu
Int. J. Mol. Sci. 2026, 27(2), 925; https://doi.org/10.3390/ijms27020925 (registering DOI) - 16 Jan 2026
Viewed by 163
Abstract
Ferulic acid (FA) is a green feed additive. To investigate the molecular mechanisms by which FA attenuates heat stress-induced hepatic and intestinal oxidative stress, as well as cholesterol metabolism disorders in Megalobrama amblycephala (9.75 ± 0.04 g), individuals were fed diets supplemented with [...] Read more.
Ferulic acid (FA) is a green feed additive. To investigate the molecular mechanisms by which FA attenuates heat stress-induced hepatic and intestinal oxidative stress, as well as cholesterol metabolism disorders in Megalobrama amblycephala (9.75 ± 0.04 g), individuals were fed diets supplemented with 0, 100, or 200 mg/kg FA for eight weeks, followed by exposure to heat stress at 34 °C for 48 h. The results indicated that FA supplementation reduced malondialdehyde levels and downregulation genes involved in inflammatory responses (e.g., interleukin-6), apoptosis (e.g., caspase 8), and endoplasmic reticulum stress (e.g., immunoglobulin binding protein) (p < 0.05), which collectively alleviated heat stress-induced hepatic and intestinal oxidative stress. FA supplementation increased the expression of ATP-binding cassette transporter A1, apolipoprotein A1, and liver X receptor α (p < 0.05), and restored liver and plasma TC levels to pre-stress levels (p < 0.05). Additionally, FA ameliorated the heat stress-induced dysbiosis of the intestinal microbiota and modulated the composition and abundance of metabolites in intestinal contents and plasma, some of which are associated with cholesterol metabolism. In conclusion, dietary FA can alleviate heat stress-induced hepatic and intestinal oxidative stress, maintain the stability of the intestinal microbiota and regulate metabolic profiles, and improve the cholesterol metabolism disorders caused by heat stress. Full article
Show Figures

Graphical abstract

19 pages, 749 KB  
Article
Evaluation of the Chemical and Sensory Composition of a Marshmallow Product Enriched with Tomato Pomace Powder (Lycopersicon esculentum)
by Dumitrița Flaiș and Mircea Oroian
Appl. Sci. 2026, 16(2), 951; https://doi.org/10.3390/app16020951 - 16 Jan 2026
Viewed by 63
Abstract
This study evaluated the physicochemical, antioxidant, and sensory properties of marshmallows enriched with tomato pomace (Lycopersicon esculentum), a by-product rich in fiber and bioactive compounds. Formulations with 0–6% pomace (Control, P1–P3) were analyzed during 20 days of storage. Tomato pomace addition [...] Read more.
This study evaluated the physicochemical, antioxidant, and sensory properties of marshmallows enriched with tomato pomace (Lycopersicon esculentum), a by-product rich in fiber and bioactive compounds. Formulations with 0–6% pomace (Control, P1–P3) were analyzed during 20 days of storage. Tomato pomace addition increased crude fiber (from 0.00% to 0.42%) and protein (from 4.62% to 7.05%), while lipid and ash contents remained low (<0.15% and <0.90%, respectively). Carbohydrates ranged around 57–64 g/100 g, resulting in energy values near 270 kcal/100 g. Antioxidant activity (DPPH) increased from 34% in the control to 44% in enriched samples, confirming the contribution of polyphenols and carotenoids. Sensory evaluation (n = 20, 10-point scale) showed good overall acceptability, with enriched samples maintaining color and texture during storage. The results demonstrate that tomato pomace enhances the nutritional and antioxidant profile of marshmallows without negatively affecting sensory quality, supporting its use as a functional ingredient in confectionery formulations. Full article
10 pages, 255 KB  
Article
Genetic Parameters of Egg Quality Traits and Albumen Density in White Leghorn Chickens
by Anqi Chen, Haiyan Wang, Dengjing Zuo, Haiying Li, Huie Wang, Zhonghua Ning, Liping Ban, Changqing Qu, Xiaoyu Zhao and Lujiang Qu
Animals 2026, 16(2), 284; https://doi.org/10.3390/ani16020284 - 16 Jan 2026
Viewed by 86
Abstract
The conventional method for detecting protein content in egg albumen is the Kjeldahl method, but this method cannot be applied in practical production due to cost limitations. Therefore, we developed albumen density (AD), which had certain potential application value in low-cost and efficient [...] Read more.
The conventional method for detecting protein content in egg albumen is the Kjeldahl method, but this method cannot be applied in practical production due to cost limitations. Therefore, we developed albumen density (AD), which had certain potential application value in low-cost and efficient evaluation of albumen protein content. We calculated the heritability of AD in White Leghorn (WL) chickens and its correlation with average albumen protein quantity (AAP), total albumen protein quantity (TAP), albumen weight (AW), albumen volume (AV), egg weight (EW), albumen height (AH), haugh unit (HU), and yolk color (YC). It is worth noting that albumen protein content was measured in a small subset of samples. The average value of AD in eggs was 0.97 and its heritability was less than 0.1. The average value of AAP in eggs was 10.1%, and the average value of TAP in eggs was 2.95 g. There were significant positive correlations between AAP, TAP, AW, AV, AD, and EW, and there were strong positive genetic and phenotypic correlations between EW, AW, AV, and AD. The results of this study indicated that AD might have potential value as a supplementary tool for albumen protein trait selection in breeding. Full article
(This article belongs to the Section Poultry)
Back to TopTop