Using Chemical Composition and Antioxidant Activity in Evaluation of Enological By-Products According to Type, Vinification Style, Season, and Grape Variety
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Solvents
2.2. Samples
2.3. Protein Content
2.4. Phenolic Extraction
2.5. Total Phenolic Content (TPC)
2.6. HPLC-DAD Analysis of Polyphenolic Compounds
2.7. Antioxidant Capacity
2.7.1. DPPH Assay
2.7.2. ABTS Assay
2.8. Cyclic Voltammetry
2.9. Statistical Analysis
3. Results and Discussion
3.1. Climatic Conditions
3.2. Protein Content
3.3. Phenolic Composition
3.4. Antioxidant Activity
3.4.1. DPPH and ABTS
3.4.2. Cyclic Voltammetry
3.5. Linear Discriminant Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and Future Strategies for Wine Yeast Lees Valorization. Food Res. Internat. 2020, 137, 109352. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity—A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Dwyer, K.; Hosseinian, F.; Rod, M. The Market Potential of Grape Waste Alternatives. J. Food Res. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M.; Arlorio, M.; Coïsson, J.D. Spent Grape Pomace as a Still Potential By-Product. Int. J. Food Sci. Technol. 2015, 50, 2022–2031. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J. Wine Lees as a Source of Antioxidant Compounds. Antioxidants 2019, 8, 45. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pérez-Espinosa, A.; Moreno-Caselles, J.; Pérez-Murcia, M.D. Agrochemical Characterisation of the Solid By-Products and Residues from the Winery and Distillery Industry. Waste Manag. 2008, 28, 372–380. [Google Scholar] [CrossRef]
- Rodríguez Montealegre, R.; Romero Peces, R.; Chacón Vozmediano, J.L.; Martínez Gascueña, J.; García Romero, E. Phenolic Compounds in Skins and Seeds of Ten Grape Vitis Vinifera Varieties Grown in a Warm Climate. J. Food Comp. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Ruberto, G.; Renda, A.; Daquino, C.; Amico, V.; Spatafora, C.; Tringali, C.; Tommasi, N. Polyphenol Constituents and Antioxidant Activity of Grape Pomace Extracts from Five Sicilian Red Grape Cultivars. Food Chem. 2007, 100, 203–210. [Google Scholar] [CrossRef]
- Pérez-Bibbins, B.; Torrado-Agrasar, A.; Salgado, J.M.; Oliveira, R.P.d.S.; Domínguez, J.M. Potential of Lees from Wine, Beer and Cider Manufacturing as a Source of Economic Nutrients: An Overview. Waste Manag. 2015, 40, 72–81. [Google Scholar] [CrossRef]
- Rodrigo, R.; Miranda, A.; Vergara, L. Modulation of Endogenous Antioxidant System by Wine Polyphenols in Human Disease. Clin. Chim. Acta 2011, 412, 410–424. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-Rich US Foods. J. Food Comp. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of Measurement and Evaluation of Natural Antioxidant Capacity/Activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; Van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant Activity, Total Phenolics and Flavonoids Contents: Should We Ban in Vitro Screening Methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef]
- Finley, J.W.; Kong, A.-N.; Hintze, K.J.; Jeffery, E.H.; Ji, L.L.; Lei, X.G. Antioxidants in Foods: State of the Science Important to the Food Industry. J. Agric. Food Chem. 2011, 59, 6837–6846. [Google Scholar] [CrossRef]
- Balentine, D.A.; Dwyer, J.T.; Erdman, J.W.; Ferruzzi, M.G.; Gaine, P.C.; Harnly, J.M.; Kwik-Uribe, C.L. Recommendations on Reporting Requirements for Flavonoids in Research. Am. J. Clin. Nutr. 2015, 101, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Arribas, A.S.; Martínez-Fernández, M.; Chicharro, M. The Role of Electroanalytical Techniques in Analysis of Polyphenols in Wine. TrAC Trends Anal. Chem. 2012, 34, 78–96. [Google Scholar] [CrossRef]
- Tufan, A.N.; Baki, S.; Güçlü, K.; Özyürek, M.; Apak, R. A Novel Differential Pulse Voltammetric (DPV) Method for Measuring the Antioxidant Capacity of Polyphenols-Reducing Cupric Neocuproine Complex. J. Agric. Food Chem. 2014, 62, 7111–7117. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Zou, H.; Waterhouse, A.L. A Cyclic Voltammetry Method Suitable for Characterizing Antioxidant Properties of Wine and Wine Phenolics. J. Agric. Food Chem. 2001, 49, 1957–1965. [Google Scholar] [CrossRef]
- Lino, F.M.A.; Sá, L.Z.; Torres, I.; Rocha, M.; Dinis, T.; Ghedini, P.; Somerset, V.; Gil, E. Voltammetric and Spectrometric Determination of Antioxidant Capacity of Selected Wines. Electrochim. Acta 2014, 128, 25–31. [Google Scholar] [CrossRef]
- de Oliveira Neto, G.C.; de Jesus Cardoso Correia, A.; Schroeder, A.M. Economic and Environmental Assessment of Recycling and Reuse of Electronic Waste: Multiple Case Studies in Brazil and Switzerland. Resour. Conserv. Recycl. 2017, 127, 42–55. [Google Scholar] [CrossRef]
- Kilmartin, P.A.; Hsu, C.F. Characterisation of Polyphenols in Green, Oolong, and Black Teas, and in Coffee, Using Cyclic Voltammetry. Food Chem. 2003, 82, 501–512. [Google Scholar] [CrossRef]
- Jiao, Y.; Kilmartin, P.A.; Fan, M.; Quek, S.Y. Assessment of Phenolic Contributors to Antioxidant Activity of New Kiwifruit Cultivars Using Cyclic Voltammetry Combined with HPLC. Food Chem. 2018, 268, 77–85. [Google Scholar] [CrossRef]
- Vilas-Boas, Â.; Valderrama, P.; Fontes, N.; Geraldo, D.; Bento, F. Evaluation of Total Polyphenol Content of Wines by Means of Voltammetric Techniques: Cyclic Voltammetry vs Differential Pulse Voltammetry. Food Chem. 2019, 276, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gorton, L.; Åkesson, B. Electrochemical Studies on Antioxidants in Bovine Milk. Anal. Chim. Acta 2002, 474, 137–146. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Hernanz, D.; Luisa Escudero-Gilete, M.; Heredia, F.J. Antioxidant Potential of White Grape Pomaces: Phenolic Composition and Antioxidant Capacity Measured by Spectrophotometric and Cyclic Voltammetry Methods. Food Res. Internat. 2014, 66, 150–157. [Google Scholar] [CrossRef]
- Jara Palacios, M.J.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. The Use of Grape Seed Byproducts Rich in Flavonoids to Improve the Antioxidant Potential of Red Wines. Molecules 2016, 21, 1526. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Gonçalves, S.; Heredia, F.J.; Hernanz, D.; Romano, A. Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour. Antioxidants 2020, 9, 675. [Google Scholar] [CrossRef]
- Yang, Y.; Mu, S. Antioxidant Activities and Radical Scavenging Activities of Flavonoids Studied by the Electrochemical Methods and ESR Technique Based on the Novel Paramagnetic Properties of Poly(Aniline-Co-5-Aminosalicylic Acid). Electrochim. Acta 2013, 109, 663–670. [Google Scholar] [CrossRef]
- Rodrigues, A.; Silva Ferreira, A.C.; Guedes de Pinho, P.; Bento, F.; Geraldo, D. Resistance to Oxidation of White Wines Assessed by Voltammetric Means. J. Agric. Food Chem. 2007, 55, 10557–10562. [Google Scholar] [CrossRef]
- Yakovleva, K.E.; Kurzeev, S.A.; Stepanova, E.V.; Fedorova, T.V.; Kuznetsov, B.A.; Koroleva, O.V. Characterization of Plant Phenolic Compounds by Cyclic Voltammetry. Appl. Biochem. Microbiol. 2007, 43, 661–668. [Google Scholar] [CrossRef]
- Zhang, D.; Chu, L.; Liu, Y.; Wang, A.; Ji, B.; Wu, W.; Zhou, F.; Wei, Y.; Cheng, Q.; Cai, S.; et al. Analysis of the Antioxidant Capacities of Flavonoids under Different Spectrophotometric Assays Using Cyclic Voltammetry and Density Functional Theory. J. Agric. Food Chem. 2011, 59, 10277–10285. [Google Scholar] [CrossRef]
- He, J.-B.; Yuan, S.-J.; Du, J.-Q.; Hu, X.-R.; Wang, Y. Voltammetric and Spectral Characterization of Two Flavonols for Assay-Dependent Antioxidant Capacity. Bioelectrochemistry 2009, 75, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Jara Palacios, M.J.; Begines, E.; Heredia, F.J.; Escudero-Gilete, M.L.; Hernanz, D. Effectiveness of Cyclic Voltammetry in Evaluation of the Synergistic Effect of Phenolic and Amino Acids Compounds on Antioxidant Activity: Optimization of Electrochemical Parameters. Foods 2024, 13, 906. [Google Scholar] [CrossRef]
- Ji, D.; Liu, Z.; Liu, L.; Low, S.S.; Lu, Y.; Yu, X.; Zhu, L.; Li, C.; Liu, Q. Smartphone-Based Integrated Voltammetry System for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid with Graphene and Gold Nanoparticles Modified Screen-Printed Electrodes. Biosens. Bioelectron. 2018, 119, 55–62. [Google Scholar] [CrossRef]
- Gupta, I.; Young, A.M.J. Metabotropic Glutamate Receptor Modulation of Dopamine Release in the Nucleus Accumbens Shell Is Unaffected by Phencyclidine Pretreatment: In Vitro Assessment Using Fast-Scan Cyclic Voltammetry Rat Brain Slices. Brain Res. 2018, 1687, 155–161. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.J.; O’Boyle, K.M.; Lowry, J.P. Effects of a Combination of 3,4-Methylenedioxymeth Amphetamine and Caffeine on Real Time Stimulated Dopamine Release in the Rat Striatum: Studies Using Fast Cyclic Voltammetry. J. Neurosci. Methods 2018, 300, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Rezaeinasab, M.; Benvidi, A.; Gharaghani, S.; Abbasi, S.; Zare, H.R. Deciphering the Inhibition Effect of Thymoquinone on Xanthine Oxidase Activity Using Differential Pulse Voltammetry in Combination with Theoretical Studies. Enzym. Microb. Technol. 2019, 121, 29–36. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995.
- Baca-Bocanegra, B.; Nogales-Bueno, J.; Hernández-Hierro, J.M.; Heredia, F.J. Optimization of Protein Extraction of Oenological Interest from Grape Seed Meal Using Design of Experiments and Response Surface Methodology. Foods 2021, 10, 79. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Heredia, F.J.; Escudero-Gilete, M.L.; Hernanz, D.; Gordillo, B.; Meléndez-Martínez, A.J.; Vicario, I.M.; González-Miret, M.L. Influence of the Refrigeration Technique on the Colour and Phenolic Composition of Syrah Red Wines Obtained by Pre-Fermentative Cold Maceration. Food Chem. 2010, 118, 377–383. [Google Scholar] [CrossRef]
- Gordillo, B.; Cejudo-Bastante, M.J.; Rodríguez-Pulido, F.J.; Lourdes González-Miret, M.; Heredia, F.J. Application of the Differential Colorimetry and Polyphenolic Profile to the Evaluation of the Chromatic Quality of Tempranillo Red Wines Elaborated in Warm Climate. Influence of the Presence of Oak Wood Chips during Fermentation. Food Chem. 2013, 141, 2184–2190. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espín, J.C.; Wichers, H.J. An Easy and Fast Test to Compare Total Free Radical Scavenger Capacity of Foodstuffs. Phytochem. Anal. 2000, 11, 330–338. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Abouelenein, D.; Mustafa, A.M.; Caprioli, G.; Ricciutelli, M.; Sagratini, G.; Vittori, S. Phenolic and nutritional profiles, and antioxidant activity of grape pomaces and seeds from Lacrima di Morro d’Alba and Verdicchio varieties. Food Biosci. 2023, 53, 102808. [Google Scholar] [CrossRef]
- Balmaseda, A.; Miot-Sertier, C.; Lytra, G.; Poulain, B.; Reguant, C.; Lucas, P.; Nioi, C. Application of White Wine Lees for Promoting Lactic Acid Bacteria Growth and Malolactic Fermentation in Wine. Int. J. Food Microbiol. 2024, 413, 110583. [Google Scholar] [CrossRef]
- Bonnefond, C.; Camarasa, C.; Moutounet, M.; Salmon, J.-M. New Trends on Yeast Autolysis and Wine Ageing on Lees: A Bibliographic Review. J. Internat. Sci. Vigne Vin. 2002, 36, 49–69. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Barcia, M.T.; Pertuzatti, P.B.; Gómez-Alonso, S.; Godoy, H.T.; Hermosín-Gutiérrez, I. Phenolic Composition of Grape and Winemaking By-Products of Brazilian Hybrid Cultivars BRS Violeta and BRS Lorena. Food Chem. 2014, 159, 95–105. [Google Scholar] [CrossRef]
- Mena, P.; Ascacio-Valdés, J.A.; Gironés-Vilaplana, A.; Del Rio, D.; Moreno, D.A.; García-Viguera, C. Assessment of Pomegranate Wine Lees as a Valuable Source for the Recovery of (Poly)Phenolic Compounds. Food Chem. 2014, 145, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Nikolić-Milojević, N.L.; Mošić, I.S.; Karabegović, I.T.; Lazić, M.L.; Nikolić, N.; Perić, S.R.; Golubović, S.S.; Davidović, D.N.; Veličković, D.T. Influence of the Time of Maceration on Phenolic Composition of Wines Produced from the Indigenous Variety Prokupac. Biol. Nyssana 2020, 11, 121–128. [Google Scholar] [CrossRef]
- González-Manzano, S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Extraction of Flavan-3-Ols from Grape Seed and Skin into Wine Using Simulated Maceration. Anal. Chim. Acta 2004, 513, 283–289. [Google Scholar] [CrossRef]
- Rankine, B.C.; Fornachon, J.C.M.; Bornm, E.W.; Cellier, K.M. Influence of Grape Variety, Climate and Soil on Grape Composition and on the Composition and Quality of Table Wines. Vitis 2017, 10, 33. [Google Scholar]
- Alén-Ruiz, F.; García-Falcón, M.S.; Pérez-Lamela, M.C.; Martínez-Carballo, E.; Simal-Gándara, J. Influence of Major Polyphenols on Antioxidant Activity in Mencía and Brancellao Red Wines. Food Chem. 2009, 113, 53–60. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.; Torres, C.; Oliveira, A.; Pereira, J.; Amaral, J.; Poeta, P. Chemical Composition, Antioxidant and Antimicrobial Activity of Phenolic Compounds Extracted from Wine Industry by-Products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Makhotkina, O.; Kilmartin, P.A. Hydrolysis and Formation of Volatile Esters in New Zealand Sauvignon Blanc Wine. Food Chem. 2012, 135, 486–493. [Google Scholar] [CrossRef]
- Cosio, M.S.; Buratti, S.; Mannino, S.; Benedetti, S. Use of an Electrochemical Method to Evaluate the Antioxidant Activity of Herb Extracts from the Labiatae Family. Food Chem. 2006, 97, 725–731. [Google Scholar] [CrossRef]
- Rebelo, M.J.; Rego, R.; Ferreira, M.; Oliveira, M.C. Comparative Study of the Antioxidant Capacity and Polyphenol Content of Douro Wines by Chemical and Electrochemical Methods. Food Chem. 2013, 141, 566–573. [Google Scholar] [CrossRef]
Type By-Product | Vinification Typology | Variety | Season | |
---|---|---|---|---|
PRsT22 | Pomace | Rosè | Tempranillo | 2022 |
PRsY22 | Pomace | Rosè | Syrah | 2022 |
PRT22 | Pomace | Red | Tempranillo | 2022 |
PRYC22 | Pomace | Red | Syrah chips | 2022 |
PRY22 | Pomace | Red | Syrah | 2022 |
PWZ22 | Pomace | White | Zalema | 2022 |
LRYT22 | Lees | Red | Syrah:Tempranillo 50:50 | 2022 |
LWZ22 | Lees | White | Zalema | 2022 |
PRYT23 | Pomace | Red | Syrah:Tempranillo 50:50 | 2023 |
PRT23 | Pomace | Red | Tempranillo | 2023 |
PWZ23 | Pomace | White | Zalema | 2023 |
LRYT23 | Lees | Red | Syrah:Tempranillo 50:50 | 2023 |
LWZ23 | Lees | White | Zalema | 2023 |
MWA23 | Seed meal | White | Airén | 2023 |
PRsT22 | PRsY22 | PRT22 | PRYC22 | PRY22 | PWZ22 | LRYT22 | LWZ22 | PRYT23 | PRT23 | PWZ23 | LRYT23 | LWZ23 | MWA23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protein content | 3.96 | 5.12 | 12.47 | 10.49 | 12.21 | 9.59 | 32.24 | 15.74 | 12.24 | 12.57 | 8.86 | 20.44 | 13.92 | 11.72 |
(0.01) | (0.04) | (0.55) | (1.29) | (2.18) | (0.77) | (0.98) | (1.53) | (0.88) | (1.49) | (0.81) | (0.36) | (0.78) | (0.72) | |
Total monomeric anthocyanins | 5090.18 | 1354.16 | 3447.12 | 1080.96 | 2053.06 | nd | 3982.77 | nd | 134.12 | 1691.74 | nd | 1976.47 | nd | nd |
(682.80) | (78.37) | (367.60) | (71.10) | (93.78) | (212.35) | (4.87) | (292.46) | (93.65) | ||||||
Total flavonols | 418.90 | 113.90 | 297.89 | 121.93 | 217.92 | 726.84 | 416.08 | nd | 96.10 | 148.47 | 422.12 | 225.35 | nd | 24.88 |
(58.99) | (3.46) | (44.84) | (20.90) | (25.44) | (36.51) | (7.93) | (7.82) | (15.22) | (33.29) | (33.18) | (1.00) | |||
Total HACD | 376.15 | 99.95 | 82.08 | 57.71 | 66.74 | 67.53 | 235.77 | 90.77 | 6.21 | 97.58 | 17.77 | 1177.67 | 0.63 | 5.88 |
(14.34) | (17.09) | (1.59) | (12.39) | (9.95) | (3.87) | (18.55) | (28.76) | (0.99) | (3.88) | (3.32) | (213.51) | (0.07) | (1.17) | |
Total hydroxybenzoic acids | 261.65 | 159.29 | 463.63 | 305.30 | 320.28 | 293.14 | 327.50 | nd | 233.66 | 291.38 | 312.08 | 260.74 | nd | 364.95 |
(29.73) | (15.92) | (77.87) | (39.98) | (29.52) | (26.88) | (28.37) | (4.07) | (12.82) | (23.16) | (14.10) | (39.49) | |||
Total monomeric flavan-3-ols | 554.48 | 443.71 | 720.44 | 732.98 | 1130.41 | 860.90 | 619.25 | nd | 326.36 | 1257.91 | 548.93 | 415.59 | 273.47 | 690.61 |
(105.15) | (33.54) | (93.00) | (65.71) | (82.25) | (67.77) | (57.27) | (6.53) | (124.76) | (25.03) | (16.10) | (6.94) | (56.07) | ||
Total procyanidins | 1199.22 | 704.06 | 2473.68 | 755.32 | 877.44 | 2397.97 | 585.39 | nd | 1119.89 | 1726.34 | 1223.57 | 1463.59 | 118.55 | 1174.14 |
(64.93) | (76.27) | (132.19) | (56.47) | (106.26) | (220.58) | (54.48) | (45.87) | (46.17) | (62.61) | (121.17) | (2.56) | (62.27) | ||
TPC | 32.64 | 16.29 | 35.71 | 23.80 | 29.09 | 34.66 | 37.88 | 7.06 | 11.56 | 32.31 | 16.55 | 32.73 | 4.11 | 4.77 |
(1.49) | (0.69) | (2.52) | (1.10) | (1.11) | (3.24) | (3.49) | (0.75) | (0.58) | (1.63) | (0.83) | (0.35) | (0.31) | (0.67) | |
DPPH | 229.53 | 79.02 | 330.59 | 123.84 | 186.49 | 332.95 | 244.53 | 7.84 | 34.53 | 211.37 | 100.07 | 200.01 | 18.38 | 41.95 |
(42.02) | (21.44) | (28.03) | (9.52) | (2.42) | (15.03) | (10.01) | (0.82) | (2.30) | (47.61) | (1.91) | (14.93) | (0.68) | (2.62) | |
ABTS | 404.53 | 157.22 | 490.81 | 215.59 | 293.76 | 424.32 | 362.84 | 79.77 | 71.23 | 529.03 | 204.93 | 557.89 | 89.75 | 105.23 |
(93.30) | (19.09) | (28.62) | (2.91) | (5.88) | (43.02) | (43.60) | (5.59) | (5.49) | (43.09) | (20.36) | (32.74) | (2.03) | (33.53) |
PRsT22 | PRsY22 | PRT22 | PRYC22 | PRY22 | PWZ22 | LRYT22 | LWZ22 | PRYT23 | PRT23 | PWZ23 | LRYT23 | LWZ23 | MWA23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Monomeric anthocyanins | ||||||||||||||
Delphinidin-3-glucoside | 387.74 | 73.62 | 146.10 | 59.87 | 66.45 | nd | 138.66 | nd | nd | 62.03 | nd | 98.72 | nd | nd |
(77.34) | (6.48) | (14.15) | (0.92) | (10.01) | (1.96) | (2.85) | (4.46) | |||||||
Cyanidin-3-glucoside | 95.32 | 58.66 | 61.60 | 0.00 | 0.00 | nd | 59.67 | nd | nd | 61.04 | nd | 60.99 | nd | nd |
(10.46) | (3.08) | (2.56) | (0.00) | (0.00 | (2.66) | (3.06) | (4.09) | |||||||
Petunidin-3-glucoside | 400.93 | 86.63 | 215.61 | 62.66 | 85.41 | nd | 184.24 | nd | nd | 63.66 | nd | 131.11 | nd | nd |
(70.92) | (10.50) | (25.01) | (1.72) | (20.73) | (5.64) | (8.04) | (6.87) | |||||||
Peonidin-3-glucoside | 188.82 | 86.75 | 102.61 | 73.23 | 105.63 | nd | 114.36 | nd | nd | 136.13 | nd | 77.21 | nd | nd |
(25.98) | (13.02) | (5.22) | (7.32) | (12.66) | (8.42) | (14.39) | (4.22) | |||||||
Malvidin-3-glucoside | 1558.75 | 276.27 | 1118.87 | 139.30 | 437.47 | nd | 980.28 | nd | 69.68 | 482.13 | nd | 620.57 | nd | nd |
(256.23) | (3.50) | (148.25) | (17.53) | (58.42) | (17.76) | (2.78) | (87.01) | (32.06) | ||||||
Petunidin-3-acetyl-glucoside | 127.81 | 74.01 | 96.70 | 71.79 | 81.97 | nd | 89.82 | nd | nd | 66.07 | nd | 89.67 | nd | nd |
(12.71) | (6.08) | (6.82) | (16.22) | (23.97) | (2.39) | (2.09) | (6.50) | |||||||
Peonidin-3-acetyl-glucoside | 78.35 | 63.07 | 66.91 | 68.72 | 157.53 | nd | 65.39 | nd | nd | 66.13 | nd | 70.64 | nd | nd |
(5.42) | (1.04) | (4.39) | (4.65) | (19.30) | (6.60) | (5.18) | (1.68) | |||||||
Malvidin-3-acetyl-glucoside | 312.11 | 170.48 | 212.94 | 119.17 | 295.00 | nd | 274.26 | nd | nd | 102.12 | nd | 232.39 | nd | nd |
(40.48) | (4.35) | (35.87) | (5.22) | (25.85) | (29.02) | (15.18) | (8.13) | |||||||
Delphinidin-3-p-coumaroyl-glucoside | 248.55 | 69.49 | 200.03 | 84.24 | 109.80 | nd | 237.59 | nd | nd | 73.25 | nd | 88.06 | nd | nd |
(34.26) | (7.65) | (48.89) | (12.55) | (28.39) | (3.13) | (8.85) | (3.60) | |||||||
Petunidin-3-p-coumaroyl-glucoside | 148.37 | 75.89 | 120.49 | 82.46 | 103.23 | nd | 110.64 | nd | nd | 74.13 | nd | 74.62 | nd | nd |
(19.06) | (12.13) | (20.07) | (9.31) | (11.61) | (9.85) | (7.54) | (3.09) | |||||||
Peonidin-3-p-coumaroyl-glucoside | 125.91 | 75.10 | 100.85 | 70.59 | 97.59 | nd | 183.05 | nd | nd | 109.42 | nd | 72.89 | nd | nd |
(8.36) | (11.84) | (15.13) | (0.47) | (3.74) | (8.31) | (24.41) | (2.35) | |||||||
Malvidin-3-p-coumaroyl-glucoside | 1192.73 | 176.48 | 828.75 | 163.80 | 439.72 | nd | 1308.01 | nd | 64.44 | 320.13 | nd | 266.43 | nd | nd |
(119.56) | (12.89) | (35.55) | (33.11) | (39.24) | (111.47) | (2.22) | (119.36) | (22.87) | ||||||
Flavonols | ||||||||||||||
Myricetin-3-glucuronide | 56.52 | 6.62 | 28.04 | 2.27 | 2.24 | nd | 39.82 | nd | 5.18 | nd | 9.23 | 38.86 | nd | nd |
(9.22) | (0.36) | (4.58) | (0.02) | (0.08) | (1.08) | (1.04) | (1.19) | (5.14) | ||||||
Myricetin-3-glucoside | 115.52 | 16.26 | 71.32 | 10.30 | 15.26 | nd | 124.33 | nd | 8.26 | nd | nd | 37.57 | nd | nd |
(14.59) | (0.55) | (8.68) | (1.85) | (4.05) | (2.55) | (0.62) | (3.84) | |||||||
Quercetin-3-glucuronide | 48.23 | 12.32 | 29.52 | 43.98 | 51.50 | 347.23 | 34.75 | nd | 21.89 | 90.04 | 226.02 | 114.02 | nd | 7.34 |
(12.53) | (0.91) | (2.93) | (8.07) | (6.83) | (13.01) | (0.98) | (3.70) | (10.93) | (15.59) | (19.05) | (1.14) | |||
Quercetin-3-glucoside | 81.31 | 29.31 | 59.59 | 36.23 | 47.52 | 301.35 | 96.11 | nd | 22.75 | 15.67 | 122.48 | nd | nd | 6.86 |
(11.42) | (1.49) | (11.65) | (7.27) | (9.09) | (19.04) | (2.87) | (1.66) | (0.73) | (10.76) | (0.39) | ||||
Laricitrin-3-glucoside | 62.49 | 27.95 | 59.48 | 2.27 | 20.16 | nd | 71.79 | nd | 3.60 | 6.45 | 13.46 | nd | nd | 0.00 |
(7.33) | (1.31) | (9.03) | (0.02) | (0.41) | (1.28) | (0.18) | (0.74) | (1.16) | 0.00 | |||||
Kaempherol-3-glucoside | 28.70 | 14.69 | 25.71 | 17.23 | 6.26 | nd | 36.16 | nd | 9.40 | 4.08 | 39.89 | 6.88 | nd | 0.00 |
(3.71) | (3.34) | (3.60) | (3.07) | (1.07) | (0.60) | (0.92) | (1.00) | (4.51) | (2.57) | 0.00 | ||||
Isorhamnetin-3-glucoside | 7.74 | 4.61 | 7.87 | 4.90 | 34.92 | nd | 10.91 | nd | 9.27 | 8.54 | 3.04 | nd | nd | 0.00 |
(0.58) | (0.14) | (1.68) | (0.86) | (6.51) | (0.14) | (1.15) | (0.83) | (0.14) | 0.00 | |||||
Syringetin-3-glucoside | 18.40 | 2.15 | 16.35 | 4.76 | 40.06 | 78.26 | 2.21 | nd | 15.76 | 23.70 | 8.01 | 28.02 | nd | 10.67 |
(1.91) | (0.08) | (2.71) | (0.02) | (4.05) | (4.72) | (0.10) | (1.12) | (3.07) | (0.50) | (4.01) | (1.09) | |||
HACD | ||||||||||||||
trans-Caftaric acid | 216.40 | 76.97 | 64.97 | 44.23 | 55.73 | 52.02 | 150.28 | 85.66 | nd | 66.67 | nd | 901.50 | nd | nd |
(13.04) | (13.54) | (0.00) | (7.94) | (8.11) | (4.23) | (13.25) | (25.48) | (2.95) | (230.21) | |||||
trans-Coutaric acid | 159.75 | 22.99 | 17.12 | 13.48 | 11.00 | 15.52 | 85.49 | 5.11 | 6.21 | 30.91 | 17.77 | 276.17 | 0.63 | 5.88 |
(23.84) | (3.58) | (1.59) | (4.64) | (2.15) | (1.72) | (5.29) | (5.43) | (0.99) | (0.93) | (3.32) | (31.99) | (0.07) | (1.17) | |
Hydroxybenzoic acids | ||||||||||||||
Gallic acid | 204.89 | 159.29 | 400.34 | 242.95 | 258.67 | 223.38 | 268.73 | nd | 176.96 | 237.89 | 240.91 | 260.74 | nd | 290.03 |
(28.86) | (15.92) | (76.11) | (37.88) | (26.03) | (25.79) | (27.96) | (3.76) | (13.58) | (17.67) | (14.10) | (36.18) | |||
Protocatechuic acid | 56.76 | nd | 63.30 | 62.35 | 61.61 | 69.75 | 58.77 | nd | 56.69 | 53.49 | 71.17 | nd | nd | 74.92 |
(0.90) | (1.76) | (4.51) | (3.49) | (1.09) | (2.31) | (0.94) | (0.95) | (5.54) | (3.33) | |||||
Monomeric flavan-3-ols | ||||||||||||||
(+)-catechin | 160.38 | 102.62 | 161.58 | 189.34 | 260.68 | 272.66 | 150.41 | nd | 111.69 | 445.71 | 159.18 | 118.28 | 128.76 | 244.55 |
(67.90) | (14.49) | (45.25) | (15.43) | (18.30) | (26.03) | (11.96) | (3.54) | (46.69) | (12.14) | (11.59) | (1.69) | (25.13) | ||
(-)-epicatechin | 142.33 | 135.34 | 120.65 | 221.24 | 349.72 | 187.69 | 112.19 | nd | 106.48 | 476.02 | 134.74 | 154.58 | 144.71 | 182.51 |
(8.11) | (17.39) | (19.80) | (25.75) | (39.67) | (12.89) | (4.69) | (3.31) | (50.20) | (6.15) | (2.89) | (5.38) | (13.12) | ||
Epigallocatechin gallate | 130.91 | 104.80 | 243.87 | 322.41 | 520.01 | 254.02 | 356.65 | nd | 108.20 | 188.18 | 135.37 | 142.73 | nd | 129.55 |
(12.47) | (4.25) | (22.45) | (40.57) | (44.45) | (28.27) | (41.85) | (0.21) | (24.57) | (6.10) | (7.39) | (6.77) | |||
Epicatechin gallate | 120.87 | 100.95 | 194.34 | nd | nd | 146.52 | nd | nd | nd | 147.99 | 119.64 | nd | nd | 134.00 |
(29.86) | (6.55) | (7.50) | (18.46) | (5.56) | (10.64) | (12.30) | ||||||||
Procyanidins | ||||||||||||||
Procyanidin B1 | 236.06 | 146.18 | 346.11 | 223.18 | 240.65 | 528.74 | 175.14 | nd | 115.42 | 234.33 | 240.76 | 148.13 | 118.55 | 156.08 |
(33.40) | (40.46) | (67.89) | (24.10) | (23.24) | (71.51) | (16.44) | (2.23) | (10.39) | (13.13) | (29.57) | (2.56) | (12.87) | ||
Trimer1 | nd | nd | 342.93 | nd | nd | 233.90 | nd | nd | 215.35 | 171.44 | 165.82 | 254.96 | nd | 151.87 |
(24.91) | (18.33) | (10.22) | (10.07) | (8.76) | (40.36) | (8.55) | ||||||||
Tetramer1 | nd | nd | 111.11 | nd | nd | 123.46 | nd | nd | 99.32 | 133.57 | 104.24 | 206.13 | nd | 157.65 |
(6.77) | (3.01) | (3.20) | (5.66) | (4.44) | (11.95) | (9.17) | ||||||||
Procyanidin B4 | nd | nd | nd | nd | nd | 223.58 | nd | nd | 146.45 | 177.21 | 113.83 | 169.45 | nd | nd |
(20.22) | (3.20) | (5.30) | (4.17) | (8.12) | ||||||||||
Trimer2 | nd | nd | 114.44 | nd | nd | 141.68 | 107.99 | nd | 97.42 | 105.24 | 115.55 | 104.90 | nd | 101.21 |
(5.30) | (8.51) | (5.81) | (2.62) | (3.91) | (4.28) | (1.21) | (4.00) | |||||||
Procyanidin B2 | 174.48 | 136.68 | 218.80 | 167.99 | 241.56 | 253.11 | 134.72 | nd | 110.74 | 226.82 | 129.92 | 102.79 | nd | 119.00 |
(8.22) | (10.37) | (10.99) | (20.37) | (17.72) | (21.95) | (18.34) | (0.56) | (16.15) | (7.41) | (2.40) | (9.82) | |||
Galloyled procyanidin1 | 122.15 | nd | 107.04 | 127.87 | 159.38 | 132.82 | 167.53 | nd | 32.59 | 128.56 | nd | nd | nd | nd |
(7.17) | (3.29) | (2.76) | (34.15) | (6.66) | (16.21) | (56.45) | (6.36) | |||||||
Galloyled procyanidin2 | 161.96 | 115.31 | 115.69 | nd | nd | 147.92 | nd | nd | 95.55 | 115.96 | 101.97 | 110.93 | nd | 112.17 |
(19.65) | (14.00) | (5.71) | (12.48) | (4.06) | (1.36) | (3.17) | (5.27) | (5.85) | ||||||
Procyanidin C1 | 330.58 | 190.23 | 407.91 | 236.28 | 235.85 | 342.55 | nd | nd | 105.59 | 250.62 | 123.64 | 172.31 | nd | 144.10 |
(32.55) | (26.32) | (19.29) | (21.59) | (35.81) | (41.17) | (3.18) | (12.44) | (7.71) | (16.44) | (9.79) | ||||
Tetramer2 | 174.00 | 115.65 | 709.63 | nd | nd | 270.21 | nd | nd | 101.46 | 182.59 | 127.83 | 194.00 | nd | 98.06 |
(12.47) | (6.48) | (27.61) | (36.38) | (8.92) | (5.06) | (31.18) | (20.57) | (2.41) |
Type of By-Product | Type of Vinification | Variety | Season | |||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
Protein content | 21.4869 | 0.0000 * | 10.2207 | 0.0003 | 6.9090 | 0.0001 * | 0.0704 | 0.7922 |
Delphinidin-3-glucoside | 1.1621 | 0.3234 | 21.7220 | 0.0000 * | 7.4659 | 0.0001 * | 7.5627 | 0.0089 * |
Cyanidin-3-glucoside | 1.1070 | 0.3407 | 24.7429 | 0.0000 * | 15.9574 | 0.0000 * | 1.7532 | 0.1930 |
Petunidin-3-glucoside | 1.1359 | 0.3315 | 19.9067 | 0.0000 * | 8.8995 | 0.0000 * | 8.8933 | 0.0049 * |
Peonidin-3-glucoside | 2.8097 | 0.0725 | 38.5572 | 0.0000 * | 25.3454 | 0.0000 * | 7.1646 | 0.0107 * |
Malvidin-3-glucoside | 1.1562 | 0.3252 | 15.9904 | 0.0000 * | 14.7451 | 0.0000 * | 6.5419 | 0.0144 * |
Petunidin-3-acetyl-glucoside | 2.3111 | 0.1126 | 46.1809 | 0.0000 * | 19.1250 | 0.0000 * | 10.2036 | 0.0027 * |
Peonidin-3-acetyl-glucoside | 2.6798 | 0.0812 | 24.0100 | 0.0000 * | 19.0462 | 0.0000 * | 9.1005 | 0.0044 * |
Malvidin-3-acetyl-glucoside | 1.6964 | 0.1966 | 29.6938 | 0.0000 * | 12.0466 | 0.0000 * | 11.9453 | 0.0013 * |
Delphinidin-3-p-coumaroyl-glucoside | 1.2966 | 0.2850 | 17.5439 | 0.0000 * | 8.9484 | 0.0000 * | 14.2096 | 0.0005 * |
Petunidin-3-p-coumaroyl-glucoside | 2.6015 | 0.0870 | 39.1970 | 0.0000 * | 19.9935 | 0.0000 * | 14.5569 | 0.0005 * |
Peonidin-3-p-coumaroyl-glucoside | 1.6985 | 0.1962 | 27.1266 | 0.0000 * | 11.6200 | 0.0000 * | 9.2703 | 0.0041 * |
Malvidin-3-p-coumaroyl-glucoside | 0.9924 | 0.3799 | 11.0346 | 0.0002 * | 7.0980 | 0.0001 * | 10.7318 | 0.0022 * |
Total monomeric anthocyanins | 1.3740 | 0.2651 | 21.0211 | 0.0000 * | 12.0318 | 0.0000 * | 10.3194 | 0.0026 * |
Myricetin-3-glucuronide | 1.5271 | 0.2299 | 7.7824 | 0.0014 * | 6.2504 | 0.0003 * | 2.1205 | 0.1531 |
Myricetin-3-glucoside | 1.1881 | 0.3156 | 8.3101 | 0.0010 * | 5.2362 | 0.0010 * | 9.2332 | 0.0042 * |
Quercetin-3-glucuronide | 2.4956 | 0.0955 | 2.6274 | 0.0850 | 2.2018 | 0.0755 | 0.0338 | 0.8552 |
Quercetin-3-glucoside | 3.1057 | 0.0560 | 1.6033 | 0.2142 | 1.4793 | 0.2207 | 5.3475 | 0.0260 * |
Laricitrin-3-glucoside | 1.0254 | 0.3681 | 8.7682 | 0.0007 * | 4.4619 | 0.0029 * | 15.3702 | 0.0003 * |
Kaempherol-3-glucoside | 2.5301 | 0.0927 | 2.4320 | 0.1011 | 1.3702 | 0.2584 | 2.2918 | 0.1379 |
Isorhamnetin-3-glucoside | 3.5373 | 0.0387 * | 6.9775 | 0.0026 * | 6.4709 | 0.0002 * | 4.5496 | 0.0391 * |
Syringetin-3-glucoside | 2.7646 | 0.0754 | 0.4528 | 0.6392 | 0.4303 | 0.8244 | 0.8467 | 0.3630 |
Total flavonols | 3.6125 | 0.0364 * | 0.1341 | 0.8749 | 1.2906 | 0.2895 | 5.1079 | 0.0293 * |
trans-Caftaric acid | 4.9941 | 0.0117 * | 2.1134 | 0.1345 | 2.9531 | 0.0247 * | 0.8802 | 0.3538 |
trans-Coutaric acid | 3.2407 | 0.0499 * | 3.6986 | 0.0338 * | 3.9647 | 0.0058 * | 0.3818 | 0.5401 |
Total HACD | 4.7227 | 0.0146 * | 2.4244 | 0.1018 | 3.2903 | 0.0151 * | 0.7664 | 0.3866 |
Gallic acid | 6.3135 | 0.0042 * | 6.6547 | 0.0033 * | 4.5655 | 0.0025 * | 0.3133 | 0.5788 |
Protocatechuic acid | 16.8666 | 0.0000 * | 1.4405 | 0.2491 | 2.0386 | 0.0964 | 0.1733 | 0.6794 |
Total hydroxybenzoic acids | 9.3103 | 0.0005 * | 5.2796 | 0.0094 * | 4.0609 | 0.0050 * | 0.3158 | 0.5773 |
(+)-catechin | 6.3862 | 0.0040 * | 1.5540 | 0.2242 | 2.3240 | 0.0629 | 1.4620 | 0.2337 |
(-)-epicatechin | 4.1560 | 0.0231 * | 3.5513 | 0.0383 * | 2.6991 | 0.0359 * | 1.3736 | 0.2481 |
Epigallocatechin gallate | 2.5339 | 0.0923 | 10.2250 | 0.0003 * | 3.4604 | 0.0118 * | 9.9943 | 0.0030 * |
Epicatechin gallate | 12.2647 | 0.0001 * | 2.0550 | 0.1417 | 12.2232 | 0.0000 * | 0.0217 | 0.8836 |
Total monomeric flavan-3-ols | 8.8587 | 0.0007 ** | 3.8254 | 0.0304 * | 3.3509 | 0.0138 * | 0.2105 | 0.6489 |
Procyanidin B1 | 8.3814 | 0.0009 | 0.0640 | 0.9381 | 1.1236 | 0.3655 | 3.3322 | 0.0754 |
Trimer1 | 1.3179 | 0.2794 | 3.6109 | 0.0364 * | 2.8841 | 0.0273 * | 6.1974 | 0.0171 * |
Tetramer1 | 2.9224 | 0.0657 | 3.3437 | 0.0457 * | 4.2311 | 0.0040 * | 23.3446 | 0.0000 * |
Procyanidin B4 | 1.4147 | 0.2552 | 1.8387 | 0.1725 | 2.2713 | 0.0680 | 9.5185 | 0.0037 * |
Trimer2 | 0.8589 | 0.4315 | 5.3686 | 0.0087 * | 5.3208 | 0.0009 * | 6.3720 | 0.0157 * |
Procyanidin B2 | 22.5022 | 0.0000 * | 4.4378 | 0.0183 * | 3.8705 | 0.0066 * | 4.8810 | 0.0329 * |
Galloyled procyanidin1 | 4.1695 | 0.0229 * | 6.9101 | 0.0027 * | 3.3756 | 0.0133 * | 16.5583 | 0.0002 * |
Galloyled procyanidin2 | 7.4004 | 0.0019 * | 4.3391 | 0.0199 * | 3.9339 | 0.0060 * | 1.3416 | 0.2536 |
Procyanidin C1 | 21.2518 | 0.0000 * | 3.3544 | 0.0453 * | 7.3258 | 0.0001 * | 5.0077 | 0.0309 * |
Tetramer2 | 2.7007 | 0.0797 | 0.6470 | 0.5291 | 5.0278 | 0.0014 * | 0.5261 | 0.4725 |
Total procyanidins | 7.7590 | 0.0015 * | 1.1378 | 0.3309 | 2.6852 | 0.0367 * | 0.0015 | 0.9691 |
TPC | 5.2927 | 0.0093 * | 10.6994 | 0.0002 | 6.3306 | 0.0003 * | 8.4611 | 0.0059 * |
DPPH | 3.4099 | 0.0432 * | 3.2896 | 0.0478 | 3.4061 | 0.0127 * | 8.3582 | 0.0062 * |
ABTS | 2.0060 | 0.1482 | 5.7148 | 0.0067 | 5.9640 | 0.0004 * | 0.6494 | 0.4251 |
Epa1 | Ipa1 | Epa2 | Ipa2 | Epc1 | Ipc1 | Qanodic | |
---|---|---|---|---|---|---|---|
PRsT22 | 0.43 | 2.48 | 0.67 | 4.49 | 0.34 | −1.49 | 2.49 |
(0.00) | (0.16) | (0.00) | (0.18) | (0.00) | (0.08) | (0.10) | |
PRsY22 | 0.44 | 2.06 | 0.67 | 3.28 | 0.33 | −1.38 | 1.99 |
(0.00) | (0.28) | (0.00) | (0.27) | (0.00) | (0.13) | (0.14) | |
PRT22 | 0.42 | 2.64 | 0.68 | 4.89 | 0.32 | −1.62 | 2.65 |
(0.00) | (0.28) | (0.00) | (0.26) | (0.00) | (0.13) | (0.14) | |
PRYC22 | 0.43 | 2.71 | 0.66 | 3.98 | 0.34 | −1.69 | 2.31 |
(0.00) | (0.45) | (0.00) | (0.41) | (0.00) | (0.22) | (0.23) | |
PRY22 | 0.44 | 2.68 | 0.66 | 4.34 | 0.34 | −1.57 | 2.44 |
(0.00) | (0.32) | (0.00) | (0.26) | (0.00) | (0.16) | (0.12) | |
PWZ22 | 0.47 | 2.58 | 0.69 | 4.17 | 0.33 | −1.39 | 2.31 |
(0.00) | (0.20) | (0.00) | (0.26) | (0.00) | (0.07) | (0.11) | |
LRYT22 | 0.42 | 2.83 | 0.67 | 4.59 | 0.34 | −1.52 | 2.64 |
(0.00) | (0.31) | (0.00) | (0.28) | (0.00) | 0.14 | (0.16) | |
LWZ22 | 0.42 | 1.71 | 0.65 | 2.15 | 0.33 | −0.42 | 1.73 |
(0.00) | ()0.12 | (0.00) | (0.22) | (0.00) | (0.08) | (0.14) | |
PRYT23 | 0.42 | 1.66 | 0.65 | 2.15 | 0.33 | −1.18 | 1.49 |
(0.00) | (0.02) | (0.00) | (0.31) | (0.00) | (0.03) | (0.11) | |
PRT23 | 0.43 | 2.49 | 0.67 | 4.51 | 0.36 | −1.25 | 2.39 |
(0.00) | (0.25) | (0.00) | (0.09) | (0.00) | (0.07) | (0.05) | |
PWZ23 | 0.41 | 2.31 | 0.64 | 3.19 | 0.32 | −1.65 | 2.01 |
(0.00) | (0.65) | (0.00) | (0.68) | (0.00) | (0.26) | (0.27) | |
LRYT23 | 0.41 | 2.55 | 0.66 | 4.03 | 0.33 | −1.44 | 2.29 |
(0.00) | (0.11) | (0.00) | (0.15) | (0.00) | (0.07) | (0.06) | |
LWZ23 | 0.41 | 1.37 | 0.64 | 1.78 | 0.37 | −0.96 | 1.40 |
(0.00) | (0.30) | (0.00) | (0.32) | (0.00) | (0.18) | (0.16) | |
MWA23 | 0.42 | 2.44 | 0.66 | 2.60 | 0.34 | −1.47 | 1.70 |
(0.00) | (0.13) | (0.00) | (0.17) | (0.00) | (0.02) | (0.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Garrido, A.B.; Jara-Palacios, M.J.; Escudero-Gilete, M.L.; Cejudo-Bastante, M.J. Using Chemical Composition and Antioxidant Activity in Evaluation of Enological By-Products According to Type, Vinification Style, Season, and Grape Variety. Foods 2025, 14, 2405. https://doi.org/10.3390/foods14142405
Mora-Garrido AB, Jara-Palacios MJ, Escudero-Gilete ML, Cejudo-Bastante MJ. Using Chemical Composition and Antioxidant Activity in Evaluation of Enological By-Products According to Type, Vinification Style, Season, and Grape Variety. Foods. 2025; 14(14):2405. https://doi.org/10.3390/foods14142405
Chicago/Turabian StyleMora-Garrido, Ana Belén, María José Jara-Palacios, M. Luisa Escudero-Gilete, and María Jesús Cejudo-Bastante. 2025. "Using Chemical Composition and Antioxidant Activity in Evaluation of Enological By-Products According to Type, Vinification Style, Season, and Grape Variety" Foods 14, no. 14: 2405. https://doi.org/10.3390/foods14142405
APA StyleMora-Garrido, A. B., Jara-Palacios, M. J., Escudero-Gilete, M. L., & Cejudo-Bastante, M. J. (2025). Using Chemical Composition and Antioxidant Activity in Evaluation of Enological By-Products According to Type, Vinification Style, Season, and Grape Variety. Foods, 14(14), 2405. https://doi.org/10.3390/foods14142405