Comparing the Metabolic Characteristics of Hyacinth Bean (Lablab purpureus L.) Seeds from Five Local Varieties by UHPLC-QE HF HRMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. UHPLC-QE HF HRMS Analysis
2.3. Identification and Quantification of Non-Volatile Metabolites
2.4. Analysis of Antioxidant Capacity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Metabolic Properties of Hyacinth Beans Seed
3.2. Identification of Differential Metabolites Among Different Hyacinth Bean Seeds
3.3. Characteristic Metabolites in Chongming White Hyacinth Bean(SCLW) Seeds
3.4. Variation in Antioxidant Activities of Different Hyacinth Bean Seeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yesuph, D.S.; Dalka, D.D.; Baye, M.T. Underutilized and neglected crop species and their role in enhancing household food security amid climate change, Wolaita Zone, Ethiopia. Heliyon 2025, 11, e42345. [Google Scholar] [CrossRef] [PubMed]
- Subagio, A.; Morita, N. Effects of protein isolate from hyacinth beans (Lablab purpureus (L.) Sweet) seeds on cake characteristics. Food Sci. Technol. Res. 2008, 14, 12–17. [Google Scholar] [CrossRef]
- Habib, H.M.; Theuri, S.W.; Kheadr, E.E.; Mohamed, F.E. Functional, bioactive, biochemical, and physicochemical properties of the lablab bean. Food Funct. 2017, 8, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.H.; Xia, Z.S.; Tang, P.L.; Deng, J.G.; Hao, E.; Du, Z.G.; Jia, F.; Wang, X.D.; Li, Z.H.; Fan, L.L.; et al. Botany, traditional uses, phytochemistry, pharmacology, edible uses, and quality control of Lablab semen Album: A systematic review. J. Ethnopharmacol. 2024, 334, 118507. [Google Scholar] [CrossRef]
- Morris, J.B. Morphological and reproductive characterization in hyacinth bean, Lablab purpureus (L.) sweet germplasm with clinically proven nutraceutical and pharmaceutical traits for use as a medicinal food. J. Diet. Suppl. 2009, 6, 263–279. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The pharmacology and medical importance of Dolichos lablab (Lablab purpureus)-a review. IOSR J. Pharm. 2017, 7, 22–30. [Google Scholar] [CrossRef]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants; Sri Satguru Publications: New Delhi, India, 1995; Volume 1. [Google Scholar]
- Im, A.R.; Kim, Y.H.; Kim, Y.H.; Yang, W.K.; Kim, S.H.; Song, K.H. Dolichos lablab protects against Nonalcoholic fatty liver disease in mice fed high-fat diets. J. Med. Food. 2017, 20, 1222–1232. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Ke, R.J.; Jiang, P.R.; Yang, L.J.; Chen, J.Y. Effect of white lentil polysaccharides on the apoptosis of human gastric cancer cells and its mechanism. Chin. J. Appl. Physiol. 2018, 34, 268–272. (In Chinese) [Google Scholar] [CrossRef]
- Li, W.J.; Chu, Y.L.; Pan, Y.X.; Fu, W.W.; Jing, Z.; Hu, X.Q.; Yao, Y.F.; Chen, R.Y. Hypoglycemic effects of polysaccharide from Dolichos lablab L. via Hypothalamic-Pituitary-Adrenal Axis. Food Ind. Sci. Technol. 2022, 43, 361–367. (In Chinese) [Google Scholar]
- Maundu, P.M.; Ngugi, G.W.; Kabuye, C.H.S. Traditional Food Plants of Kenya; Resource Centre for Indigenous Knowledge: Seisia, Australia; National Museums of Kenya: Nairobi, Kenya, 1999. [Google Scholar]
- Lu, Z.L.; Li, W.Z. Process study of diabetic supplementary food. Food Ind. Sci. Technol. 2005, 26, 113–115. (In Chinese) [Google Scholar] [CrossRef]
- Akter, F.; Islam, M.A.; Yeasmen, N.; Bhuiyan, M.H.R.; Aziz, M.G.; Alim, M.A. Development of protein-rich biscuit utilising lablab bean seed: A sustainable management of underutilised plant protein in Bangladesh. Int. J. Food Sci. Technol. 2024, 59, 545–551. [Google Scholar] [CrossRef]
- Pandey, D.K.; Singh, S.; Dubey, S.K.; Mehra, T.S.; Dixit, S.; Sawargaonkar, G. Nutrient profiling of lablab bean (Lablab purpureus) from north-eastern India: A potential legume for plant-based meat alternatives. J. Food Compos. Anal. 2023, 119, 105252. [Google Scholar] [CrossRef]
- Kumaria, M.; Naresha, P.; Acharyaa, G.C.; Laxminarayanab, K.; Singhc, H.S.; Raghud, T.S. Nutritional diversity of Indian lablab bean (Lablab purpureus (L.) Sweet): An approach towards biofortification. South. Afr. J. Bot. 2022, 149, 189–195. [Google Scholar] [CrossRef]
- Gujral, H.S.; Sharma, P.; Gupta, N.; Wani, A.A. Antioxidant properties of legumes and their morphological fractions as affected by cooking. Food Sci. Biotechnol. 2013, 22, 187–194. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Wang, J.; Chen, Y.; Yin, X.; Shi, G.; Li, H.; Hu, Z.; Liang, X. Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation. BMC Cancer 2016, 16, 578. [Google Scholar] [CrossRef]
- Russo, A.; Cardile, V.; Lombardo, L.; Vanella, L.; Acquaviva, R. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J. Nutr. Biochem. 2006, 17, 103–108. [Google Scholar] [CrossRef]
- Shu, G.W.; He, Y.X.; Lei, N.; Cao, J.L.; Chen, H.; Chen, L. Cellulase-assisted extraction of polysaccharides from white hyacinth bean: Characterization of antioxidant activity and promotion for probiotics proliferation. Molecules 2017, 22, 1764. [Google Scholar] [CrossRef]
- Guo, X.; Ji, J.; Zhang, J.; Hou, X.; Fu, X.; Luo, Y.; Mei, Z.; Feng, Z. Anti-inflammatory and osteoprotective effects of Chikusetsusaponin IVa on rheumatoid arthritis via the JAK/STAT signaling pathway. Phytomedicine 2021, 93, 153801. [Google Scholar] [CrossRef]
- Duan, J.; Yin, Y.; Cui, J.; Yan, J.; Zhu, Y.; Guan, Y.; Wei, G.; Weng, Y.; Wu, X.; Guo, C.; et al. Chikusetsu saponin IVa ameliorates cerebral ischemia Reperfusion injury in diabetic mice via Adiponectin-mediated AMPK/GSK-3β pathway in vivo and in vitro. Mol. Neurobiol. 2016, 53, 728–743. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xi, M.M.; Li, Y.W.; Duan, J.L.; Wang, L.; Weng, Y.; Jia, N.; Cao, S.S.; Li, R.L.; Wang, C.; et al. Insulinotropic effect of Chikusetsusaponin IVa in diabetic rats and pancreatic β-cells. J. Ethnopharmacol. 2015, 164, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Yue, D.W. Study on chemical constituents, antioxidant and hypoglycemic activities of flavonoids from Flos. Dolichoris lablab L. Anhui Univ. Eng. 2021, 3, 4–6. [Google Scholar] [CrossRef]
- Kim, T.H.; Ku, S.K.; Lee, I.C.; Bae, J.S. Anti-inflammatory effects of kaempferol-3-O-sophoroside in human endothelial cells. Inflamm. Res. 2012, 61, 217–224. [Google Scholar] [CrossRef]
- Shyaula, S.L.; Abbas, G.; Samina, H.S.; Sattar, A. Synthesis and antiglycation activity of kaempferol-3-O-rutinoside (nicotiflorin). Med. Chem. 2012, 8, 415–420. [Google Scholar] [CrossRef]
- Li, R.; Guo, M.; Zhang, G.; Xu, X.; Li, Q. Neuroprotection of nicotiflorin in permanent focal cerebral ischemia and in neuronal cultures. Biol. Pharm. Bull. 2006, 29, 1868–1872. [Google Scholar] [CrossRef]
- Xiao, P.G. Newly Compiled Journal of Traditional Chinese Medicine: Volume 2; Chemical Industry Press: Beijing, China, 2022; pp. 190–194. [Google Scholar]
- Liu, Y.; Shen, N.; Xin, H.W.; Yu, L.L.; Xu, Q.; Cui, Y.L. Unsaturated fatty acids in natural edible resources, a systematic review of classification, resources, biosynthesis, biological activities and application. Food Biosci. 2023, 53, 102790. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis; Wiley Online Library: Hoboken, NJ, USA, 2002. [Google Scholar]
- Dossou, S.S.K.; Xu, F.T.; You, J.; Zhou, R.; Li, D.H.; Wang, L.H. Widely targeted metabolome profiling of different colored sesame (Sesamum indicum L.) seeds provides new insight into their antioxidant activities. Food Res. Int. 2022, 151, 110850. [Google Scholar] [CrossRef]
- Chen, X.Q.; Yang, Y.; Yang, X.L.; Zhu, G.X.; Lu, X.Z.; Jia, F.; Diao, B.B.; Yu, S.C.; Ali, A.; Zhang, H.Y.; et al. Investigation of flavonoid components and their associated antioxidant capacity in different pigmented rice varieties. Food Res. Int. 2022, 161, 111726. [Google Scholar] [CrossRef]
- Feng, Y.H.; Fan, X.; Zhang, S.; Wu, T.; Bai, L.; Wang, H.Y.; Ma, Y.T.; Guan, X.; Wang, C.Y.; Yang, H.Z. Effects of variety and origin on the metabolic and texture characteristics of quinoa seeds based on ultrahigh-performance liquid chromatography coupled with high-field quadrupole-orbitrap high-resolution mass spectrometry. Food Res. Int. 2022, 162, 111693. [Google Scholar] [CrossRef]
- He, L.; Hu, Q.; Zhang, J.K.; Xing, R.R.; Zhao, Y.S.; Yu, N.; Chen, Y. An integrated untargeted metabolomic approach reveals the quality characteristics of black soybeans from different geographical origins in China. Food Res. Int. 2023, 169, 112908. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Patel, D.K. Therapeutic Potential of a Bioactive Flavonoids Glycitin from Glycine max: A Review on Medicinal Importance, Pharmacological Activities and Analytical Aspects. Curr. Tradit. Med. 2023, 9, e130522204766. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.Q.; Xu, X.Y.; Dong, X.; Pan, Y.F.; Sun, X.B.; Luo, Y. Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK- mediated mitochondria protection in early diabetic retinopathy. Pharmacol. Res. 2025, 211, 107562. [Google Scholar] [CrossRef]
- Xu, H.L.; Chen, G.H.; Wu, Y.T.; Xie, L.P.; Tan, Z.B.; Liu, B.; Fan, H.J.; Chen, H.M.; Huang, G.Q.; Liu, M.; et al. Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway. J. Ginseng Res. 2022, 46, 156–166. [Google Scholar] [CrossRef]
- Fonseca-Hernández, D.; Lugo-Cervantes, E.D.C.; Escobedo-Reyes, A.; Mojica, L. Black bean (Phaseolus vulgaris L.) polyphenolic extract exerts antioxidant and antiaging potential. Molecules 2021, 26, 6716. [Google Scholar] [CrossRef]
- Madrera, R.R.; Negrillo, A.C.; Valles, B.S.; Fernández, J.J.F. Phenolic content and antioxidant activity in seeds of common bean (Phaseolus vulgaris L.). Foods 2021, 10, 864. [Google Scholar] [CrossRef]
- Boniface, P.K.; Singh, M.; Verma, S.; Feroz, A.S. RP-HPLC-DAD method for the identification of two potential antioxidant agents namely verminoside and 1-O-(E)-caffeoyl-β-gentiobiose from Spathodea campanulata leaves. Nat. Prod. Res. 2015, 29, 676–680. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Qi, J.; Zhu, D.N.; Yu, B.Y. Homoisoflavonoids from Ophiopogon japonicus and Its Oxygen Free Radicals (OFRs) Scavenging Effects. Chin. J. Nat. Med. 2008, 6, 201–204. [Google Scholar] [CrossRef]
- Deters, M.; Knochenwefel, H.; Lindhorst, D.; Koal, T.; Meyer, H.H.; Hänsel, W.; Kaever, R.V. Different curcuminoids inhibit T-lymphocyte proliferation independently of their radical scavenging activities. Pharm. Res. 2008, 25, 1822–1827. [Google Scholar] [CrossRef]
- Mazzaracchio, P.; Tozzi, S.; Boga, C.; Forlani, L.; Barbiroli, G. Interaction between gliadins and anthocyan derivatives. Food Chem. 2011, 129, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.N.; Li, W.; Sang, H.L.; Jang, H.D.; Kim, Y.H. Antioxidant and anti-osteoporotic effects of anthraquinones and related constituents from the aqueous dissolved Aloe exudates. Nat. Prod. Res. 2017, 31, 2810–2813. [Google Scholar] [CrossRef] [PubMed]
Class | SCLW vs. SLP | SCLW vs. SP | SLW vs. SLP | SLW vs. SP | YLW vs. SLP | YLW vs. SP | SLW vs. SCLW | YLW vs. SCLW | YLW vs. SLW | SLP vs. SP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | D | U | D | U | D | U | D | U | D | U | D | U | D | U | D | U | D | U | D | |
Amino acids and Peptides | 6 | 12 | 6 | 20 | 15 | 29 | 13 | 35 | 11 | 28 | 12 | 32 | 15 | 34 | 11 | 31 | 10 | 10 | 1 | 8 |
Carbohydrates | 6 | 2 | 9 | 3 | 6 | 7 | 8 | 6 | 9 | 4 | 8 | 7 | 4 | 9 | 5 | 7 | 1 | 0 | 1 | 1 |
Fatty acids | 25 | 10 | 15 | 10 | 20 | 32 | 18 | 34 | 20 | 25 | 25 | 33 | 12 | 41 | 22 | 36 | 12 | 11 | 5 | 5 |
Phenolic acids | 17 | 11 | 17 | 14 | 17 | 9 | 17 | 17 | 18 | 13 | 19 | 18 | 18 | 14 | 17 | 13 | 7 | 4 | 3 | 13 |
Flavonoids | 32 | 25 | 30 | 29 | 15 | 62 | 15 | 62 | 19 | 53 | 17 | 59 | 21 | 52 | 28 | 44 | 39 | 8 | 3 | 9 |
Lignans and Coumarins | 15 | 6 | 12 | 2 | 16 | 11 | 16 | 8 | 13 | 4 | 13 | 7 | 11 | 13 | 13 | 9 | 6 | 5 | 1 | 4 |
Isoflavonoids | 4 | 3 | 3 | 3 | 6 | 4 | 7 | 4 | 6 | 3 | 6 | 4 | 7 | 2 | 6 | 3 | 2 | 3 | 2 | 2 |
Terpenoids | 38 | 7 | 27 | 15 | 36 | 21 | 33 | 27 | 43 | 19 | 36 | 28 | 28 | 36 | 34 | 33 | 16 | 11 | 4 | 16 |
Alkaloids | 11 | 6 | 10 | 11 | 16 | 16 | 12 | 18 | 16 | 12 | 15 | 16 | 12 | 18 | 13 | 14 | 5 | 4 | 0 | 4 |
Polyketides | 7 | 2 | 3 | 2 | 5 | 8 | 6 | 10 | 5 | 7 | 6 | 9 | 6 | 10 | 7 | 9 | 6 | 4 | 2 | 1 |
Other | 18 | 6 | 16 | 9 | 11 | 14 | 8 | 22 | 12 | 12 | 11 | 14 | 7 | 19 | 9 | 16 | 6 | 5 | 2 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Huang, Z.; Pan, L.; Meng, H.; Zhu, W.; Yan, J. Comparing the Metabolic Characteristics of Hyacinth Bean (Lablab purpureus L.) Seeds from Five Local Varieties by UHPLC-QE HF HRMS. Foods 2025, 14, 1939. https://doi.org/10.3390/foods14111939
Yu L, Huang Z, Pan L, Meng H, Zhu W, Yan J. Comparing the Metabolic Characteristics of Hyacinth Bean (Lablab purpureus L.) Seeds from Five Local Varieties by UHPLC-QE HF HRMS. Foods. 2025; 14(11):1939. https://doi.org/10.3390/foods14111939
Chicago/Turabian StyleYu, Li, Zhiwu Huang, Luzhao Pan, Hengyu Meng, Weimin Zhu, and Jun Yan. 2025. "Comparing the Metabolic Characteristics of Hyacinth Bean (Lablab purpureus L.) Seeds from Five Local Varieties by UHPLC-QE HF HRMS" Foods 14, no. 11: 1939. https://doi.org/10.3390/foods14111939
APA StyleYu, L., Huang, Z., Pan, L., Meng, H., Zhu, W., & Yan, J. (2025). Comparing the Metabolic Characteristics of Hyacinth Bean (Lablab purpureus L.) Seeds from Five Local Varieties by UHPLC-QE HF HRMS. Foods, 14(11), 1939. https://doi.org/10.3390/foods14111939