The Effects of Iron-Bearing Minerals on the Community Diversity and Physiological Activity of Prokaryotic Microorganisms in Pit Mud Used for Strong-Flavor baijiu Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Determination of the Physicochemical Properties of the Samples
2.3. High-Throughput Sequencing and Isolation of the Lacticaseibacillus Strain
2.4. Preparation and Characterization of Goethite
2.5. The Effects of Goethite on the Growth and Metabolism of Lacticaseibacillus paracasei JN01
2.5.1. The Static Culture Experiment
2.5.2. Determination of Physicochemical Indexes
3. Results
3.1. The Physicochemical Properties of Pit Mud and Yellow Soil
3.2. The Composition and Structural Characteristics of the Prokaryotic Communities
3.3. The Correlation Analysis Between the Prokaryotic Communities and Environmental Factors
3.4. The Effects of Goethite on the Growth and Metabolism of Strain JN01
4. Discussion
4.1. Differences in the Prokaryotic Community Composition Between Pit Mud and Yellow Soil
4.2. The Effects of Iron-Bearing Minerals in Pit Mud on the Prokaryotic Community Structure
4.3. The Mechanism of Goethite’s Effect on Strain JN01’s Physiology and Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, J.; Chen, L.; Yang, S.; Li, Y.; Jin, L.; He, X.; He, L.; Ao, X.; Liu, S.; Liu, A.; et al. Metagenome and analysis of metabolic potential of the microbial community in pit mud used for Chinese strong-flavor liquor production. Food Res. Int. 2021, 143, 110294. [Google Scholar] [CrossRef]
- Liu, H.; Sun, B. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef]
- Hu, X.; Du, H.; Ren, C.; Xu, Y. Illuminating anaerobic microbial community and cooccurrence patterns across a quality gradient in Chinese liquor fermentation pit muds. Appl. Environ. Microbiol. 2016, 82, 2506–2515. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Cai, Z.; Du, C.; Li, Z.; Guo, X.; Wang, Y.; Ma, D.; Zhang, B.; Zheng, Y. Interrelated spatiotemporal variations between bacterial community and physicochemical factors in pit mud of Chinese strong-flavor Baijiu. LWT 2024, 192, 115630. [Google Scholar] [CrossRef]
- Guan, T.; Lin, Y.; Chen, K.; Ou, M.; Zhang, J. Physicochemical factors affecting microbiota dynamics during traditional solid-state fermentation of Chinese strong-flavor baijiu. Front. Microbiol. 2020, 11, 2090. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, B.; Fan, G.; Teng, C.; Xiong, K.; Zhu, Y.; Li, J.; Li, X. The brewing process and microbial diversity of strong flavour Chinese spirits: A review. J. Inst. Brew. 2017, 123, 5–12. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, Y.; Wang, Y.; Zhou, Q.; Li, A.; Liu, G.; Li, J.; Xing, X. Prokaryotic communities in multidimensional bottom-pit-mud from old and young pits used for the production of Chinese Strong-Flavor Baijiu. Food Chem. 2020, 312, 126084. [Google Scholar] [CrossRef]
- Chai, L.J.; Qian, W.; Zhong, X.Z.; Zhang, X.J.; Lu, Z.M.; Zhang, S.Y.; Wang, S.T.; Shen, C.H.; Shi, J.S.; Xu, Z.H. Mining the factors driving the evolution of the pit mud microbiome under the impact of long-term production of strong-flavor baijiu. Appl. Environ. Microbiol. 2021, 87, e0088521. [Google Scholar] [CrossRef]
- Xia, H.; Jin, Y.; Zhao, D.; Zhou, R.; Zheng, J.; Wu, C. Mining the factors driving the succession of microbial community in pit mud used for the production of Nongxiangxing baijiu. LWT 2024, 195, 115806. [Google Scholar] [CrossRef]
- Jiao, K.; Deng, B.; Song, P.; Ding, H.; Liu, H.; Lian, B. Difference analysis of the composition of iron (hydr)oxides and dissolved organic matter in pit mud of different pit ages in Luzhou Laojiao and its implications for the ripening process of pit mud. Foods 2023, 12, 3962. [Google Scholar] [CrossRef]
- Dong, H.; Huang, L.; Zhao, L.; Zeng, Q.; Liu, X.; Sheng, Y.; Shi, L.; Wu, G.; Jiang, H.; Li, F.; et al. A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. Natl. Sci. Rev. 2022, 9, nwac128. [Google Scholar] [CrossRef] [PubMed]
- Lian, B.; Hu, Q.; Chen, J.; Ji, J.; Teng, H.H. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 2006, 70, 5522–5535. [Google Scholar] [CrossRef]
- Lian, B.; Wang, B.; Pan, M.; Liu, C.; Teng, H.H. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim. Cosmochim. Acta 2008, 72, 87–98. [Google Scholar] [CrossRef]
- Uroz, S.; Kelly, L.C.; Turpault, M.; Lepleux, C.; Frey-Klett, P. The mineralosphere concept: Mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends Microbiol. 2015, 23, 751–762. [Google Scholar] [CrossRef]
- Wu, S.; Konhauser, K.O.; Chen, B.; Huang, L. “Reactive mineral sink” drives soil organic matter dynamics and stabilization. npj Mater. Sustain. 2023, 1, 3. [Google Scholar] [CrossRef]
- Ma, W.; Peng, D.; Walker, S.L.; Cao, B.; Gao, C.H.; Huang, Q.; Cai, P. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. npj Biofilm. Microbomes 2017, 3, 4. [Google Scholar] [CrossRef]
- Williams, L.B.; Metge, D.W.; Eberl, D.D.; Harvey, R.W.; Turner, A.G.; Prapaipong, P.; Poret-Peterson, A.T. What makes a natural clay antibacterial? Environ. Sci. Technol. 2011, 45, 3768–3773. [Google Scholar] [CrossRef]
- Liang, L.; Vigderovich, H.; Sivan, O.; Hou, J.; Niu, M.; Yorshansky, O.; Zhang, T.; Bosco-Santos, A.; Wang, F. Iron (oxyhydr)oxides shift the methanogenic community in deep sea methanic sediment—Insights from long-term high-pressure incubations. Sci. Total Environ. 2022, 848, 157590. [Google Scholar] [CrossRef] [PubMed]
- Jeewani, P.H.; Chen, L.; Van Zwieten, L.; Shen, C.; Guggenberger, G.; Luo, Y.; Xu, J. Shifts in the bacterial community along with root-associated compartments of maize as affected by goethite. Biol. Fertil. Soils 2020, 56, 1201–1210. [Google Scholar] [CrossRef]
- Jeewani, P.H.; Van Zwieten, L.; Zhu, Z.; Ge, T.; Guggenberger, G.; Luo, Y.; Xu, J. Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients. Soil Biol. Biochem. 2021, 160, 108312. [Google Scholar] [CrossRef]
- Wang, X.; Dong, H.; Zeng, Q.; Xia, Q.; Zhang, L.; Zhou, Z. Reduced iron-containing clay minerals as antibacterial agents. Environ. Sci. Technol. 2017, 51, 7639–7647. [Google Scholar] [CrossRef] [PubMed]
- Stookey, L.L. Ferrozine: A new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779–781. [Google Scholar] [CrossRef]
- Xue, J.; Deng, Y.; Luo, Y.; Du, Y.; Yang, Y.; Cheng, Y.; Xie, X.; Gan, Y.; Wang, Y. Unraveling the impact of iron oxides-organic matter complexes on iodine mobilization in alluvial-lacustrine aquifers from central Yangtze River Basin. Sci. Total Environ. 2022, 814, 151930. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Chen, J.; Castellano, M.J.; Ye, C.; Zhang, N.; Miao, Y.; Zheng, H.; Li, J.; Ding, W. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation. Glob. Change Biol. 2022, 28, 7410–7427. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, K.; Mucci, A.; Ouellet, A.; Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 2012, 483, 198–200. [Google Scholar] [CrossRef]
- Ohno, T.; Parr, T.B.; Gruselle, M.C.I.; Fernandez, I.J.; Sleighter, R.L.; Hatcher, P.G. Molecular composition and biodegradability of soil organic matter: A case study comparing two New England forest types. Environ. Sci. Technol. 2014, 48, 7229–7236. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Huang, X.; Li, L.; Li, T.; Duan, Y.; Ling, N.; Yu, G. Rejuvenation of iron oxides enhances carbon sequestration by the ‘iron gate’ and ‘enzyme latch’ mechanisms in a rice-wheat cropping system. Sci. Total Environ. 2022, 839, 156209. [Google Scholar] [CrossRef]
- Veselá, K.; Kumherová, M.; Klojdová, I.; Solichová, K.; Horáčková, Š.; Plocková, M. Selective culture medium for the enumeration of Lactobacillus plantarum in the presence of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. LWT 2019, 114, 108365. [Google Scholar] [CrossRef]
- Hou, Y.; Duan, Y.; Wu, G.; Zhang, J.; Luo, X.; Zhang, M.; Pang, H.; Hao, Y.; Wang, Y.; Cai, Y.; et al. Antibacterial activity, probiotic potential, and biocontrol efficacy of two lactic acid bacteria against Penicillium expansum on fresh grapes. Foods 2025, 14, 493. [Google Scholar] [CrossRef]
- Cai, P.; Huang, Q.; Walker, S.L. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system. Environ. Sci. Technol. 2013, 47, 1896–1903. [Google Scholar] [CrossRef]
- Atkinson, R.J.; Posner, A.M.; Quirk, J.P. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. J. Phys. Chem. 1967, 71, 550–558. [Google Scholar] [CrossRef]
- Gallagher, S.R. Quantitation of DNA and RNA with absorption and fluorescence spectroscopy. Curr. Protoc. Immunol. 2017, 116, A.3L.1–A.3L.14. [Google Scholar] [CrossRef]
- Koch, H.; Lücker, S.; Albertsen, M.; Kitzinger, K.; Herbold, C.; Spieck, E.; Nielsen, P.H.; Wagner, M.; Daims, H. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl. Acad. Sci. USA 2015, 112, 11371–11376. [Google Scholar] [CrossRef]
- Dyksma, S.; Pester, M. Oxygen respiration and polysaccharide degradation by a sulfate-reducing acidobacterium. Nat. Commun. 2023, 14, 6337. [Google Scholar] [CrossRef]
- Ward, L.M.; Hemp, J.; Shih, P.M.; McGlynn, S.E.; Fischer, W.W. Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer. Front. Microbiol. 2018, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Jin, Z.; Ali, A.; Wang, C.; Liu, J. Caproic acid—Producing bacteria in Chinese baijiu brewing. Front. Microbiol. 2022, 13, 883142. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Z. Chemical & physical factors in pit mud aging & formation of aged pits. Liquor.-Mak. Sci. Technol. 2002, 1, 31–33. [Google Scholar]
- Qian, W.; Lu, Z.; Chai, L.; Zhang, X.; Li, Q.; Wang, S.; Shen, C.; Shi, J.; Xu, Z. Cooperation within the microbial consortia of fermented grains and pit mud drives organic acid synthesis in strong-flavor Baijiu production. Food Res. Int. 2021, 147, 110449. [Google Scholar] [CrossRef]
- Grabowski, A.; Tindall, B.J.; Bardin, V.; Blanchet, D.; Jeanthon, C. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int. J. Syst. Evol. Microbiol. 2005, 55, 1113–1121. [Google Scholar] [CrossRef]
- McInerney, M.J.; Bryant, M.P.; Hespell, R.B.; Costerton, J.W. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 1981, 41, 1029–1039. [Google Scholar] [CrossRef]
- Imachi, H.; Sakai, S.; Kubota, T.; Miyazaki, M.; Saito, Y.; Takai, K. Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino-acid-utilizing bacterium isolated from marine subsurface sediment. Int. J. Syst. Evol. Microbiol. 2016, 66, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tang, Y.; Guo, X.; Zhao, K.; Tian, X.; Liu, Y.; Yao, W.; Deng, B.; Ren, D.; Zhang, X. Deep sequencing reveals high bacterial diversity and phylogenetic novelty in pit mud from Luzhou Laojiao cellars for Chinese strong-flavor Baijiu. Food Res. Int. 2017, 102, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Felchner-Zwirello, M.; Winter, J.; Gallert, C. Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer. Appl. Microbiol. Biotechnol. 2013, 97, 9193–9205. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Dong, D. Improvement of caproic acid production in a Clostridium kluyveri H068 and Methanogen 166 co-culture fermentation system. AMB Express. 2018, 8, 175. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, C.; Mao, Z.; Zhang, F.; Dong, L.; Song, C.; Chen, Y.; Fu, X.; Ao, Z.; Xiong, Y.; et al. Structure and metabolic function of spatiotemporal pit mud microbiome. Environ. Microbiome 2025, 20, 10. [Google Scholar] [CrossRef]
- Liu, M.; Tang, Y.; Guo, X.; Zhao, K.; Penttinen, P.; Tian, X.; Zhang, X.; Ren, D.; Zhang, X. Structural and functional changes in prokaryotic communities in artificial pit mud during Chinese baijiu production. mSystems 2020, 5, e00829-19. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Y.; He, H.; Zhang, H.; Liu, G.; Wang, L.; Liu, L.; Li, J. Correlation between physicochemical factors and total bacterial count in different grades of Nongxiang flavored pit mud. Food Ferment. Ind. 2019, 45, 89–94. [Google Scholar]
- Gadol, H.J.; Elsherbini, J.; Kocar, B.D. Methanogen productivity and microbial community composition varies with iron oxide mineralogy. Front. Microbiol. 2021, 12, 705501. [Google Scholar] [CrossRef]
- He, Z.; Yang, C.; Tang, C.; Liu, W.; Zhou, A.; Ren, Y.; Wang, A. Response of anaerobic digestion of waste activated sludge to residual ferric ions. Bioresour. Technol. 2021, 322, 124536. [Google Scholar] [CrossRef]
- Wang, X.; Gong, Y.; Sun, C.; Wang, Z.; Sun, Y.; Yu, Q.; Zhang, Y. New insights into inhibition of high Fe(III) content on anaerobic digestion of waste-activated sludge. Sci. Total Environ. 2024, 916, 170147. [Google Scholar] [CrossRef]
- Patzner, M.S.; Mueller, C.W.; Malusova, M.; Baur, M.; Nikeleit, V.; Scholten, T.; Hoeschen, C.; Byrne, J.M.; Borch, T.; Kappler, A.; et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat. Commun. 2020, 11, 6329. [Google Scholar] [CrossRef]
- Tao, Y.; Li, J.; Rui, J.; Xu, Z.; Zhou, Y.; Hu, X.; Wang, X.; Liu, M.; Li, D.; Li, X. Prokaryotic communities in pit mud from different—Aged cellars used for the production of Chinese strong-flavored liquor. Appl. Environ. Microbiol. 2014, 80, 2254–2260. [Google Scholar] [CrossRef]
- Ren, D.; Liu, S.; Qin, H.; Huang, M.; Han, X.; Zhang, S.; Mao, J. Heterogenetic mechanism in multidimensional pit mud with different fermentation years: From microbial structure dynamic succession to metabolism phenotypes. Food Res. Int. 2024, 192, 114770. [Google Scholar] [CrossRef]
- Liu, Z.; Mukherjee, M.; Wu, Y.; Huang, Q.; Cai, P. Increased particle size of goethite enhances the antibacterial effect on human pathogen Escherichia coli O157:H7: A Raman spectroscopic study. J. Hazard. Mater. 2021, 405, 124174. [Google Scholar] [CrossRef] [PubMed]
- Glasauer, S.; Langley, S.; Beveridge, T.J. Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: Cell-bound fine-grained minerals are not always formed de novo. Appl. Environ. Microbiol. 2001, 67, 5544–5550. [Google Scholar] [CrossRef]
- Appel, C.; Ma, L.Q.; Dean Rhue, R.; Kennelley, E. Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma 2003, 113, 77–93. [Google Scholar] [CrossRef]
- Lin, D.; Cai, P.; Peacock, C.L.; Wu, Y.; Gao, C.; Peng, W.; Huang, Q.; Liang, W. Towards a better understanding of the aggregation mechanisms of iron (hydr)oxide nanoparticles interacting with extracellular polymeric substances: Role of pH and electrolyte solution. Sci. Total Environ. 2018, 645, 372–379. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, Y.; Han, S.; Rui, X.; Ma, K.; Zhang, C.; Wang, G.; Li, W. Effects of genes required for exopolysaccharides biosynthesis in Lacticaseibacillus paracasei S-NB on cell surface characteristics and probiotic properties. Int. J. Biol. Macromol. 2023, 224, 292–305. [Google Scholar] [CrossRef]
- Yu, Y.; Zong, M.; Lao, L.; Wen, J.; Pan, D.; Wu, Z. Adhesion properties of cell surface proteins in Lactobacillus strains in the GIT environment. Food Funct. 2022, 13, 319–398. [Google Scholar] [CrossRef]
- Chamnongpol, S.; Dodson, W.; Cromie, M.J.; Harris, Z.L.; Groisman, E.A. Fe(III)-mediated cellular toxicity. Mol. Microbiol. 2002, 45, 711–719. [Google Scholar] [CrossRef]
Sample | HT | PM2 | PM40 | PM100 |
---|---|---|---|---|
pH | 6.17 ± 0.03 b | 4.08 ± 0.03 d | 5.06 ± 0.19 c | 6.58 ± 0.13 a |
MC (%) | 7.72 ± 0.40 d | 23.51 ± 1.31 c | 32.41 ± 2.70 b | 43.00 ± 2.21 a |
TFe (g/kg) | 31.57 ± 0.94 a | 24.01 ± 1.36 b | 19.98 ± 0.50 c | 15.20 ± 0.24 d |
Fe(II) (g/kg) | 0.46 ± 0.03 d | 0.75 ± 0.02 c | 1.98 ± 0.13 b | 3.91 ± 0.24 a |
Fe(III) (g/kg) | 31.11 ± 0.97 a | 23.25 ± 1.36 b | 17.99 ± 0.39 c | 11.30 ± 0.40 d |
Fe(II)/Fe(III) | 0.01 ± 0.00 c | 0.03 ± 0.00 c | 0.11 ± 0.01 b | 0.35 ± 0.03 a |
Fed (g/kg) | 12.26 ± 0.40 a | 10.47 ± 0.28 b | 9.34 ± 0.36 c | 8.81 ± 0.06 d |
Feo (g/kg) | 1.55 ± 0.19 d | 3.69 ± 0.03 c | 6.12 ± 0.10 b | 7.50 ± 0.42 a |
Fec (g/kg) | 10.72 ± 0.49 a | 6.78 ± 0.26 b | 3.21 ± 0.44 c | 1.30 ± 0.41 d |
Sample | Observed ASVs | Chao1 | Shannon | Simpson |
---|---|---|---|---|
HT | 1020.75 ± 140.07 a | 1031.87 ± 159.39 a | 7.67 ± 0.34 a | 0.99 ± 0.00 a |
PM2 | 637.00 ± 204.52 b | 657.80 ± 200.99 b | 5.71 ± 0.97 b | 0.93 ± 0.04 cd |
PM40 | 616.25 ± 93.68 b | 632.35 ± 102.13 b | 6.22 ± 0.46 b | 0.96 ± 0.02 bc |
PM100 | 1110.50 ± 164.80 a | 1153.26 ± 159.39 a | 7.10 ± 0.46 a | 0.97 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, K.; Deng, B.; Song, P.; Wang, L.; Lian, B. The Effects of Iron-Bearing Minerals on the Community Diversity and Physiological Activity of Prokaryotic Microorganisms in Pit Mud Used for Strong-Flavor baijiu Production. Foods 2025, 14, 1883. https://doi.org/10.3390/foods14111883
Jiao K, Deng B, Song P, Wang L, Lian B. The Effects of Iron-Bearing Minerals on the Community Diversity and Physiological Activity of Prokaryotic Microorganisms in Pit Mud Used for Strong-Flavor baijiu Production. Foods. 2025; 14(11):1883. https://doi.org/10.3390/foods14111883
Chicago/Turabian StyleJiao, Kairui, Bo Deng, Ping Song, Liwei Wang, and Bin Lian. 2025. "The Effects of Iron-Bearing Minerals on the Community Diversity and Physiological Activity of Prokaryotic Microorganisms in Pit Mud Used for Strong-Flavor baijiu Production" Foods 14, no. 11: 1883. https://doi.org/10.3390/foods14111883
APA StyleJiao, K., Deng, B., Song, P., Wang, L., & Lian, B. (2025). The Effects of Iron-Bearing Minerals on the Community Diversity and Physiological Activity of Prokaryotic Microorganisms in Pit Mud Used for Strong-Flavor baijiu Production. Foods, 14(11), 1883. https://doi.org/10.3390/foods14111883