Safety Risk Assessment and Classification of Cadmium in Grain Processing Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Preprocessing
2.3. Dietary Exposure Assessment Method
2.3.1. Nemerow Integrated Pollution Index
2.3.2. Target Cancer Risk
2.3.3. Target Hazard Quotient
2.4. Risk Classification Method
Algorithm 1: k-means++ clustering |
Input: X: a data set containing N samples |
Output: Set of Centroids () |
1: Choose an initial center uniformly at random from X |
2: Choose the next center , selecting with probability |
//where denotes the minimum distance between sample x to the previously computed centroid; is the centroid selected from the given dataset X// |
3: Repeat Step (2) until we have chosen a total of ‘K’ Centers |
4: Proceed as with the conventional k-means++ algorithm in [38] |
5: Return |
2.5. Clustering Evaluation Method
2.5.1. Silhouette Coefficient
2.5.2. Dunn Index
2.5.3. Davies–Bouldin Index
2.5.4. Voting Scheme
- (i)
- The number of clusters with the best index performance is given A points;
- (ii)
- The number of clusters with the second-best performance is given (A-1) points;
- (iii)
- The number of clusters with the third-best performance is given (A-2) points;
- (iv)
- The number of clusters with the fourth-best performance is given (A-3) points;
- (v)
- The number of clusters with the worst performance is given 1 point.
3. Results
3.1. Cadmium Pollution in Grain Processing Products
3.2. Risk Assessment Results
3.2.1. Provincial Risk Assessment Results
3.2.2. Municipal Risk Assessment Results
3.3. Risk Classification
3.3.1. Determination of Clustering Center
3.3.2. Risk Level of Cadmium
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ochoa, M.; Tierra, W.; Tupuna-Yerovi, D.S.; Guanoluisa, D.; Otero, X.L.; Ruales, J. Assessment of cadmium and lead contamination in rice farming soils and rice (Oryza sativa L.) from Guayas province in Ecuador. Environ. Pollut. 2020, 260, 114050. [Google Scholar] [PubMed]
- Kumar, S.; Sharma, D.; Rao, S.; Lim, W.M.; Mangla, S.K. Past, present, and future of sustainable finance: Insights from big data analytics through machine learning of scholarly research. Ann. Oper. Res. 2022, 345, 1061–1104. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Fang, H.; Pan, X.; Zhu, B.; Chen, J.; Wang, J.; Zhang, R.; Chen, L.; Qi, X.; Zhang, H. Cadmium Exposure in Aquatic Products and Health Risk Classification Assessment in Residents of Zhejiang, China. Foods 2023, 12, 3094. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Cai, H.; Luo, B.; Duan, S.; Yang, J.; Zhang, N.; He, Y.; Wu, A.; Liu, H. Recent Progress of Mycotoxin in Various Food Products—Human Exposure and Health Risk Assessment. Foods 2025, 14, 865. [Google Scholar] [CrossRef]
- Lopes de Sousa Jabbour, A.B.; Jabbour, C.J.C.; Godinho Filho, M.; Roubaud, D. Industry 4.0 and the circular economy: A proposed research agenda and original roadmap for sustainable operations. Ann. Oper. Res. 2018, 270, 273–286. [Google Scholar] [CrossRef]
- Ünlü, R.; Xanthopoulos, P. Estimating the number of clusters in a dataset via consensus clustering. Expert Syst. Appl. 2019, 125, 33–39. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, Q.; Wang, S.; Jiang, T.; Dong, W. Prediction of Safety Risk Levels of Benzopyrene Residues in Edible Oils in China Based on the Variable-Weight Combined LSTM-XGBoost Prediction Model. Foods 2023, 12, 2241. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Pouillot, R.; Skjerdal, T.; Carrasco, E.; Teixeira, P.; Stasiewicz, M.J.; Hasegawa, A.; De Oliveira Mota, J.; Guillier, L.; Cadavez, V.; et al. A Quantitative Risk Assessment Model for Listeria monocytogenes in Ready-to-Eat Smoked and Gravad Fish. Foods 2024, 13, 3831. [Google Scholar] [CrossRef]
- Cantoral, A.; Collado-López, S.; Betanzos-Robledo, L.; Lamadrid-Figueroa, H.; García-Martínez, B.A.; Ríos, C.; Díaz-Ruiz, A.; Mariscal-Moreno, R.M.; Téllez-Rojo, M.M. Dietary Risk Assessment of Cadmium Exposure Through Commonly Consumed Foodstuffs in Mexico. Foods 2024, 13, 3649. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Geng, Z.; Liu, Y.; Guo, L.; Xiao, G. Spatial analysis of heavy metals in meat products in China during 2015–2017. Food Control 2019, 104, 174–180. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Wu, Q.; Song, W.; Liu, L.; Wu, Y.; Gong, Z. Preparation and characterization of carboxymethyl starch from cadmium-contaminated rice. Food Chem. 2020, 308, 125674. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cheng, H.; Tao, S. The challenges and solutions for cadmium-contaminated rice in China: A critical review. Environ. Int. 2016, 92, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Dashora, K. A Fuzzy ISM approach for modeling electronic traceability in agri-food supply chain in India. Ann. Oper. Res. 2022, 315, 2115–2133. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, C.; Li, T.; Xu, S.; Liu, L.; Ju, M. A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. Sci. Total Environ. 2017, 599, 721–731. [Google Scholar] [CrossRef]
- Shahriar, S.; Rahman, M.M.; Naidu, R. Geographical variation of cadmium in commercial rice brands in Bangladesh: Human health risk assessment. Sci. Total Environ. 2022, 716, 137049. [Google Scholar] [CrossRef]
- Brathwaite, J.; Mohammed, F.K. A preliminary health risk assessment of heavy metals in local and imported rice grains marketed in Trinidad and Tobago, WI. Hum. Ecol. Risk Assess. Int. J. 2018, 26, 295–309. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, C.; Zhang, Q.; Li, Y.; Chen, Z.; Li, M. Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control 2010, 21, 1757–1763. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Yang, W.; Wang, D.; Wang, M.; Zhou, F.; Huang, J.; Xue, M.; Dinh, Q.T.; Liang, D. Heavy metals and associated health risk of wheat grain in a traditional cultivation area of Baoji, Shaanxi, China. Environ. Monit. Assess. 2019, 191, 428. [Google Scholar] [CrossRef]
- Wei, J.; Gao, J.; Cen, K. Levels of eight heavy metals and health risk assessment considering food consumption by China’s residents based on the 5th China total diet study. Sci. Total Environ. 2019, 689, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Zhang, H.; Scheckel, K.G.; Li, L. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China. Environ. Monit. Assess. 2016, 188, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.Q.; Wang, Z.; Zhang, Q.C.; Wang, Z.Z.; Cheng, B.L. Establishment and application of risk classification model for lead in vegetables based on spectral clustering algorithms. Food Sci. Nutr. 2022, 10, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Baczewski, A.D.; Beaudet, T.D.; Benali, A.; Bennett, M.C.; Berrill, M.A.; Blunt, N.S.; Borda, E.J.L.; Casula, M.; Ceperley, D.M.; et al. QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids. J. Phys. Condens. Matter 2018, 30, 195901. [Google Scholar] [CrossRef] [PubMed]
- Markowski, A.S.; Mannan, M.S. Fuzzy risk matrix. J. Hazard. Mater. 2008, 159, 152–157. [Google Scholar] [CrossRef]
- Ma, B.; Han, Y.; Cui, S.; Geng, Z.; Chu, C. Risk early warning and control of food safety based on an improved analytic hierarchy process integrating quality control analysis method. Food Control 2020, 108, 106824. [Google Scholar] [CrossRef]
- Liu, C.L.; Chang, T.H.; Li, H.H. Clustering documents with labeled and unlabeled documents using fuzzy semi-K means. Fuzzy Sets Syst. 2013, 221, 48–64. [Google Scholar] [CrossRef]
- Kuo, R.J.; Setiawan, M.R.; Nguyen, T.P.Q. Sequential clustering and classification 459 using deep learning technique and multi-objective sine-cosine algorithm. Comput. Ind. Eng. 2022, 173, 108695. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, J. Taxi passenger hot spot mining based on a refined K-means++ algorithm. IEEE Access 2021, 9, 6587–6598. [Google Scholar] [CrossRef]
- Alguliyev, R.M.; Sukhostat, L.V. Parallel batch k-means++ for Big data 432 clustering. Comput. Ind. Eng. 2021, 152, 107023. [Google Scholar] [CrossRef]
- Wu, B.; Guo, S.; Zhang, L.; Li, F. Risk forewarning model for rice grain Cd pollution based on Bayes theory. Sci. Total Environ. 2018, 618, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Popovic, A.R.; Djinovic-Stojanovic, J.M.; Djordjevic, D.S.; Relic, D.J.; Vranic, D.V.; Milijasevic, M.P.; Pezo, L.L. Levels of toxic elements in canned fish from the Serbian markets and their health risks assessment. J. Food Compos. Anal. 2018, 67, 70–76. [Google Scholar] [CrossRef]
- Niu, B.; Zhang, H.; Zhou, G.; Zhang, S.; Yang, Y.; Deng, X.; Chen, Q. Safety risk assessment and early warning of chemical contamination in vegetable oil. Food Control 2021, 125, 107970. [Google Scholar] [CrossRef]
- Geng, Z.; Zhao, S.; Tao, G.; Han, Y. Early warning modeling and analysis based on analytic hierarchy process integrated extreme learning machine (AHP-ELM): Application to food safety. Food Control 2017, 78, 33–42. [Google Scholar] [CrossRef]
- Ma, L.; Yang, Z.; Li, L.; Wang, L. Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China. Environ. Sci. Pollut. Res. 2016, 23, 17058–17066. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Wang, C.; Wu, Y. Human health risk assessment of cadmium via dietary intake by children in Jiangsu Province, China. Environ. Geochem. Health 2017, 39, 29–41. [Google Scholar] [CrossRef]
- Hu, C.H.; Zhang, X.L.; Li, C.Q.; Li, C.S.; Wang, J.X.; Jian, S.Q. real-time flood classification forecasting based on K-means++ clustering and neural network. Water Resour. Manag. 2022, 36, 103–117. [Google Scholar]
- Liu, C.; Nagler, O.; Tremmel, F.; Unterreitmeier, M.; Frick, J.J.; Patil, R.P.; Gu, X.W.; Senesky, D.G. Cluster-based acoustic emission signal processing and loading rate effects study of nanoindentation on thin film stack structures. Mech. Syst. Signal Process. 2022, 165, 108301. [Google Scholar] [CrossRef]
- Manochandar, S.; Punniyamoorthy, M.; Jeyachitra, R.K. Development of new seed with modified validity measures for K-means++ clustering. Comput. Ind. Eng. 2020, 141, 106290. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Lund, P.D.; Fan, Q.; Dong, T.; Liang, Y.; Hong, J. A novel clustering algorithm for grouping and cascade utilization of retired Li-ion batteries. J. Energy Storage 2020, 29, 101303. [Google Scholar] [CrossRef]
Province | Products | Range (mg/kg) | Mean (mg/kg) | Standard Deviation | Variation Coefficient |
---|---|---|---|---|---|
Shanghai | Rice | 0.16000 | 0.01260 | 0.02154 | 1.70917 |
Wheat flour | 0.03800 | 0.01363 | 0.00747 | 0.54822 | |
Other | 0.07200 | 0.00923 | 0.01430 | 1.54953 | |
Inner Mongolia | Rice | 0.11000 | 0.00291 | 0.00910 | 3.12391 |
Wheat flour | 0.04000 | 0.00975 | 0.00597 | 0.61213 | |
Other | 0.23000 | 0.00621 | 0.01315 | 2.11749 | |
Beijing | Rice | 0.18000 | 0.00662 | 0.01954 | 2.95102 |
Wheat flour | 0.08200 | 0.01207 | 0.01003 | 0.83087 | |
Other | 0.75000 | 0.02294 | 0.08647 | 3.76889 | |
Jilin | Rice | 0.09800 | 0.00264 | 0.00652 | 2.46670 |
Wheat flour | 0.05100 | 0.00756 | 0.00718 | 0.95025 | |
Other | 0.18000 | 0.00441 | 0.01315 | 2.98026 | |
Sichuan | Rice | 0.58000 | 0.06715 | 0.08546 | 1.27270 |
Wheat flour | 0.08400 | 0.01887 | 0.01347 | 0.71379 | |
Other | 0.89000 | 0.02519 | 0.08833 | 3.50729 | |
Ningxia | Rice | 0.04000 | 0.00249 | 0.00497 | 1.99629 |
Wheat flour | 0.04200 | 0.01061 | 0.00810 | 0.76323 | |
Other | 0.14000 | 0.00867 | 0.01898 | 2.18872 | |
Guangdong | Rice | 0.52000 | 0.07912 | 0.05992 | 0.75728 |
Wheat flour | 0.10000 | 0.01387 | 0.00959 | 0.69141 | |
Other | 0.60800 | 0.04118 | 0.06208 | 1.50750 | |
Guangxi | Rice | 0.60000 | 0.09311 | 0.06649 | 0.71413 |
Wheat flour | 0.03900 | 0.01527 | 0.00858 | 0.56205 | |
Other | 0.35000 | 0.04268 | 0.06159 | 1.44314 | |
Jiangsu | Rice | 0.20000 | 0.01766 | 0.02129 | 1.20557 |
Wheat flour | 0.06600 | 0.01261 | 0.01013 | 0.80349 | |
Other | 0.53000 | 0.01187 | 0.04428 | 3.73079 | |
Jiangxi | Rice | 0.85000 | 0.11262 | 0.07652 | 0.67942 |
Wheat flour | 0.04000 | 0.01273 | 0.00747 | 0.58670 | |
Other | 0.23000 | 0.06516 | 0.05304 | 0.81390 | |
Hebei | Rice | 0.33000 | 0.00432 | 0.01975 | 4.56663 |
Wheat flour | 0.08800 | 0.00874 | 0.01034 | 1.18327 | |
Other | 0.12000 | 0.00644 | 0.01194 | 1.85387 | |
Henan | Rice | 0.17000 | 0.01282 | 0.03040 | 2.37192 |
Wheat flour | 0.09600 | 0.02267 | 0.01441 | 0.63551 | |
Other | 0.07500 | 0.00768 | 0.01188 | 1.54634 | |
Zhejiang | Rice | 0.51000 | 0.03934 | 0.05523 | 1.40402 |
Wheat flour | 0.04200 | 0.01363 | 0.00810 | 0.59409 | |
Other | 0.15000 | 0.01441 | 0.02382 | 1.65280 | |
Hubei | Rice | 0.47000 | 0.06689 | 0.05038 | 0.75318 |
Wheat flour | 0.04200 | 0.01981 | 0.00818 | 0.41272 | |
Other | 0.62000 | 0.02171 | 0.05397 | 2.48594 | |
Hunan | Rice | 0.90000 | 0.10986 | 0.10554 | 0.96069 |
Wheat flour | 0.06600 | 0.01766 | 0.01058 | 0.59878 | |
Other | 0.52000 | 0.10089 | 0.11111 | 1.10139 | |
Fujian | Rice | 0.65000 | 0.07029 | 0.07143 | 1.01620 |
Wheat flour | 0.04200 | 0.01616 | 0.00609 | 0.37670 | |
Other | 0.55000 | 0.03059 | 0.06568 | 2.14671 | |
Liaoning | Rice | 0.20000 | 0.00836 | 0.01732 | 2.07111 |
Wheat flour | 0.04900 | 0.00867 | 0.00891 | 1.02725 | |
Other | 0.15000 | 0.00638 | 0.01165 | 1.82807 | |
Shaanxi | Rice | 0.60000 | 0.04752 | 0.06668 | 1.40316 |
Wheat flour | 0.06200 | 0.00967 | 0.00875 | 0.90467 | |
Other | 0.38000 | 0.01864 | 0.03265 | 1.75161 | |
Qinghai | Rice | 0.07100 | 0.00648 | 0.01008 | 1.55508 |
Wheat flour | 0.05000 | 0.01045 | 0.00830 | 0.79397 | |
Other | 0.13000 | 0.01424 | 0.02562 | 1.79932 | |
Heilongjiang | Rice | 0.08200 | 0.00141 | 0.00522 | 3.68673 |
Wheat flour | 0.06800 | 0.00656 | 0.00823 | 1.25482 | |
Other | 0.09500 | 0.00252 | 0.00887 | 3.52440 | |
Average | Rice | 0.90000 | 0.04887 | 0.06798 | 1.39111 |
Wheat flour | 0.10000 | 0.01369 | 0.01161 | 0.84851 | |
other | 0.89000 | 0.01590 | 0.04380 | 2.75427 |
Province | Rice | Wheat Flour | Other | ||||||
---|---|---|---|---|---|---|---|---|---|
NIPI | TCR | THQ | NIPI | TCR | THQ | NIPI | TCR | THQ | |
Shanghai | 0.56744 | 0.00030 | 0.46869 | 0.28548 | 0.00077 | 0.24568 | 0.25664 | 0.00031 | 0.44365 |
Inner Mongolia | 0.38904 | 0.00000 | 0.20768 | 0.29112 | 0.00099 | 0.32882 | 0.81347 | 0.00041 | 0.39805 |
Beijing | 0.63683 | 0.00000 | 0.40297 | 0.58608 | 0.00095 | 0.34383 | 2.65289 | 0.00000 | 1.37258 |
Jilin | 0.34661 | 0.00000 | 0.26022 | 0.36456 | 0.00093 | 0.36031 | 0.63659 | 0.00000 | 0.36531 |
Sichuan | 2.06431 | 0.00279 | 2.55259 | 0.60878 | 0.00144 | 0.57769 | 3.14788 | 0.00065 | 1.01163 |
Ningxia | 0.14169 | 0.00000 | 0.15369 | 0.30632 | 0.00105 | 0.38423 | 0.49592 | 0.00042 | 0.45440 |
Guangdong | 1.85964 | 0.00354 | 1.23811 | 0.71388 | 0.00063 | 0.18845 | 2.15453 | 0.00091 | 1.05923 |
Guangxi | 2.14671 | 0.00675 | 2.42424 | 0.29616 | 0.00121 | 0.39553 | 1.24660 | 0.00157 | 2.20096 |
Jiangsu | 0.70986 | 0.00072 | 0.56892 | 0.47514 | 0.00078 | 0.29998 | 1.87430 | 0.00011 | 0.38687 |
Jiangxi | 3.03147 | 0.00674 | 2.03157 | 0.29682 | 0.00088 | 0.26731 | 0.84518 | 0.00428 | 1.81238 |
Hebei | 1.16683 | 0.00000 | 0.35552 | 0.62532 | 0.00075 | 0.40542 | 0.42487 | 0.00000 | 0.38983 |
Henan | 0.60275 | 0.00000 | 2.42990 | 0.6975 | 0.00319 | 1.23962 | 0.26655 | 0.00061 | 0.78425 |
Zhejiang | 1.80848 | 0.00177 | 2.93829 | 0.31224 | 0.00154 | 0.49378 | 0.53277 | 0.00090 | 1.20911 |
Hubei | 1.67844 | 0.00568 | 2.29040 | 0.32836 | 0.00192 | 0.51687 | 2.19337 | 0.00078 | 1.16200 |
Hunan | 3.20560 | 0.00856 | 4.83029 | 0.48312 | 0.00162 | 0.52680 | 1.87276 | 0.00623 | 5.21521 |
Fujian | 2.31150 | 0.00570 | 2.76165 | 0.31822 | 0.00155 | 0.41425 | 1.94755 | 0.00083 | 2.00143 |
Liaoning | 0.70772 | 0.00045 | 0.64105 | 0.35186 | 0.00100 | 0.45251 | 0.53081 | 0.00040 | 0.37520 |
Shaanxi | 2.12796 | 0.00082 | 2.35158 | 0.44370 | 0.00077 | 0.30048 | 1.34512 | 0.00082 | 0.91450 |
Qinghai | 0.25207 | 0.00053 | 0.72869 | 0.36120 | 0.00176 | 0.70067 | 0.46237 | 0.00120 | 0.44365 |
Helongjiang | 0.28996 | 0.00000 | 0.09656 | 0.48306 | 0.00035 | 0.24141 | 0.33599 | 0.00000 | 0.39805 |
Grain Processing Products Category | City | Risk Level | Province |
---|---|---|---|
Other | Ganzi | 5 | Sichuan |
Other | Changping | 4 | Beijing |
Rice | Chengdu | 4 | Sichuan |
Rice | Meishan | 4 | Sichuan |
Rice | Mianyang | 4 | Sichuan |
Rice | Ziyang | 4 | Sichuan |
Rice | Pingxiang | 4 | Jiangxi |
Rice | Hengshui | 4 | Hebei |
Rice | Jinhua | 4 | Zhejiang |
Rice | Enshi | 4 | Hubei |
Other | Changde | 4 | Hunan |
Rice | Changde | 4 | Hunan |
Other | Zhuzhou | 4 | Hunan |
Rice | Zhuzhou | 4 | Hunan |
Rice | Xiangtan | 4 | Hunan |
Rice | Yiyang | 4 | Hunan |
Other | Hengyang | 4 | Hunan |
Rice | Hengyang | 4 | Hunan |
Rice | Shaoyang | 4 | Hunan |
Rice | Chenzhou | 4 | Hunan |
Rice | Changsha | 4 | Hunan |
Other | Putian | 4 | Fujian |
Rice | Wheat Flour | Other | |
---|---|---|---|
Cd | 0.2 | 0.1 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Dou, W.; Wang, Z.; Xu, X.; Jiang, T. Safety Risk Assessment and Classification of Cadmium in Grain Processing Products. Foods 2025, 14, 1882. https://doi.org/10.3390/foods14111882
Zhang Q, Dou W, Wang Z, Xu X, Jiang T. Safety Risk Assessment and Classification of Cadmium in Grain Processing Products. Foods. 2025; 14(11):1882. https://doi.org/10.3390/foods14111882
Chicago/Turabian StyleZhang, Qingchuan, Wenjie Dou, Zheng Wang, Xuemei Xu, and Tongqiang Jiang. 2025. "Safety Risk Assessment and Classification of Cadmium in Grain Processing Products" Foods 14, no. 11: 1882. https://doi.org/10.3390/foods14111882
APA StyleZhang, Q., Dou, W., Wang, Z., Xu, X., & Jiang, T. (2025). Safety Risk Assessment and Classification of Cadmium in Grain Processing Products. Foods, 14(11), 1882. https://doi.org/10.3390/foods14111882