Rice Bran Stabilisation and Oil Extraction Using the Microwave-Assisted Method and Its Effects on GABA and Gamma-Oryzanol Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Rice Bran (RB) Samples
2.3. Rice Bran (RB) Stabilisation
2.4. Stability Evaluation Tests
2.4.1. Acid Value (AV) Analysis
2.4.2. Water Absorption Capacity (WAC)
2.4.3. Moisture Content (MC)
2.5. Optimisation of Microwave-Assisted Extraction (MAE)
2.6. Gamma-Oryzanol (GO) Quantification
2.7. Gamma-Aminobutyric Acid (GABA) Quantification
2.8. Fatty Acid Composition
2.9. Statistical Analysis
3. Results and Discussion
3.1. Rice Bran Stabilisation Parameters
3.2. Rice Bran Oil (RBO) Extraction Optimisation by the MAE
3.3. Rice Bran Oil Fatty Acid Composition
3.4. GO and GABA Contents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Hoed, V.; Depaemelaere, G.; Ayala, J.V.; Santiwattana, P.; Verhe, R.; De Greyt, W. Influence of chemical refining on the major and minor components of rice brain oil. J. Am. Oil Chem. Soc. 2006, 83, 315–321. [Google Scholar] [CrossRef]
- Saunders, R.M. Rice bran: Composition and potential food uses. Food Rev. Int. 1985, 1, 465–495. [Google Scholar] [CrossRef]
- Esa, N.M.; Ling, T.B.; Peng, L.S. By-products of rice processing: An overview of health benefits and applications. Rice Res. Open Access 2013, 1, 107. [Google Scholar]
- Orthoefer, F.T. Rice Bran Oil. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2020; pp. 1–25. [Google Scholar]
- Shinomiya, M.; Morisaki, N.; Matsuoka, N.; Izumi, S.; Saito, Y.; Kumagai, A.; Mitani, K.; Morita, S. Effects of gamma-oryzanol on lipid metabolism in rats fed high-cholesterol diet. Tohoku J. Exp. Med. 1983, 141, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rukmini, C.; Raghuram, T.C. Nutritional and biochemical aspects of the hypolipidemic action of rice bran oil: A review. J. Am. Coll. Nutr. 1991, 10, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Nehus, Z.T.; Badger, T.M.; Fang, N. Quantification of vitamin E and γ-oryzanol components in rice germ and bran. J. Agric. Food Chem. 2007, 55, 7308–7313. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, Q.N.; Yang, T.; Liang, Y.; Nie, Y.; Luo, Y.; Shen, J.J.; Fu, X.J.; Tang, Y.P.; Luo, F.J. Oryzanol Modifies High Fat Diet-Induced Obesity, Liver Gene Expression Profile, and Inflammation Response in Mice. J. Agric. Food Chem. 2017, 65, 8374–8385. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaragoud, G.; Geetha, V.; Sharanappa, T.; Kumar, A.S.M.; Kumar, C.H.; Kumar, G.S. Hypolipidemic and Antioxidant Properties of Oryzanol Concentrate in Reducing Diabetic Nephropathy via SREBP1 Downregulation Rather than beta-Oxidation. Mol. Nutr. Food Res. 2018, 62, 11. [Google Scholar] [CrossRef]
- Bumrungpert, A.; Chongsuwat, R.; Phosat, C.; Butacnum, A. Rice Bran Oil Containing Gamma-Oryzanol Improves Lipid Profiles and Antioxidant Status in Hyperlipidemic Subjects: A Randomised Double-Blind Controlled Trial. J. Altern. Complement Med. 2019, 25, 353–358. [Google Scholar] [CrossRef]
- Francisqueti, F.V.; Minatel, I.O.; Ferron, A.J.T.; Bazan, S.G.Z.; Silva, V.D.; Garcia, J.L.; de Campos, D.H.S.; Ferreira, A.L.; Moreto, F.; Cicogna, A.C.; et al. Effect of Gamma-Oryzanol as Therapeutic Agent to Prevent Cardiorenal Metabolic Syndrome in Animals Submitted to High Sugar-Fat Diet. Nutrients 2017, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Kozuka, C.; Sunagawa, S.; Ueda, R.; Higa, M.; Tanaka, H.; Shimizu-Okabe, C.; Ishiuchi, S.; Takayama, C.; Matsushita, M.; Tsutsui, M.; et al. γ-Oryzanol protects pancreatic β-cells against endoplasmic reticulum stress in male mice. Endocrinology 2015, 156, 1242–1250. [Google Scholar] [CrossRef] [Green Version]
- Doello, S.; Liang, Z.B.; Cho, I.K.; Kim, J.B.; Li, Q.X. Cytotoxic Effects of 24-Methylenecyloartanyl Ferulate on A549 Nonsmall Cell Lung Cancer Cells through MYBBP1A Up-Regulation and AKT and Aurora B Kinase Inhibition. J. Agric. Food Chem. 2018, 66, 3726–3733. [Google Scholar] [CrossRef] [PubMed]
- Castanho, A.; Lageiro, M.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sokovic, M.; Cunha, L.M.; Brites, C. Exploiting the bioactive properties of γ-oryzanol from bran of different exotic rice varieties. Food. Funct. 2019, 10, 2382–2389. [Google Scholar] [CrossRef]
- Kim, S.P.; Kang, M.Y.; Nam, S.H.; Friedman, M. Dietary rice bran component gamma-oryzanol inhibits tumor growth in tumor-bearing mice. Mol. Nutr. Food Res. 2012, 56, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Massarolo, K.C.; Ribeiro, A.C.; Furlong, E.B.; Soares, L.A.d.S. Effect of particle size of rice bran on gamma-oryzanol content and compounds. J. Cereal Sci. 2017, 75, 54–60. [Google Scholar] [CrossRef]
- Boonstra, E.; de Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 2015, 6, 1520. [Google Scholar] [CrossRef] [Green Version]
- Petroff, O.A. GABA and glutamate in the human brain. Neuroscientist 2002, 8, 562–573. [Google Scholar] [CrossRef]
- Ramos-Ruiz, R.; Poirot, E.; Flores-Mosquera, M. GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food Agric. 2018, 4, 89. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, H.-y.; Chen, F.; Wang, X. Purification and characterisation of glutamate decarboxylase from rice germ. Food Chem. 2007, 101, 1670–1676. [Google Scholar] [CrossRef]
- Saikusa, T.; Horino, T.; Mori, Y. Distribution of Free Amino Acids in the Rice Kernel and Kernel Fractions and the Effect of Water Soaking on the Distribution. J. Agric. Food Chem. 1994, 42, 1122–1125. [Google Scholar] [CrossRef]
- Pokkanta, P.; Sookwong, P.; Tanang, M.; Setchaiyan, S.; Boontakham, P.; Mahatheeranont, S. Simultaneous determination of tocols, gamma-oryzanols, phytosterols, squalene, cholecalciferol and phylloquinone in rice bran and vegetable oil samples. Food Chem. 2019, 271, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Rao, R.; Liuzzo, J. Microwave-heating for rice bran stabilisation. J. Microw. Power Electromagn. Energy 1993, 28, 156–164. [Google Scholar] [CrossRef]
- Prabhakar, J.V.; Venkatesh, K.V.L. A simple chemical method for stabilisation of rice bran. J. Am. Oil Chem. Soc. 1986, 63, 644–646. [Google Scholar] [CrossRef]
- Nunes, G.S.; Gomes, J.C.; Cruz, R.; Coelho, D.T. Stabilization of rice bran by heat-treatment. Arq. Biol. Tecnol. 1991, 34, 583–591. [Google Scholar]
- Pourali, O.; Asghari, F.S.; Yoshida, H. Simultaneous rice bran oil stabilisation and extraction using sub-critical water medium. J. Food Eng. 2009, 95, 510–516. [Google Scholar] [CrossRef]
- Pourali, O.; Asghari, F.S.; Yoshida, H. A Rapid and Ecofriendly Treatment Technique for Rice Bran Oil Stabilization and Extraction under Sub-Critical Water Condition. In Proceedings of the Wcecs 2009: WorldCongress on Engineering and Computer Science, San Francisco, CA, USA, 20–22 October 2009; Ao, S.I., Douglas, C., Grundfest, W.S., Burgstone, J., Eds.; Newswood Limited: Hong Kong, China, 2009; Volumes I and II, p. 109, Lecture Notes in Engineering and Computer Science. [Google Scholar]
- Thanonkaew, A.; Wongyai, S.; McClements, D.J.; Decker, E.A. Effect of stabilisation of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza saltiva L.). LWT-Food Sci. Technol. 2012, 48, 231–236. [Google Scholar] [CrossRef]
- Rizk, L.F.; Basyony, A.E.; Doss, H.A. Effect of microwave and air-drying of parboiled rice on stabilisation of rice bran oil. Grasas Y Aceites 1995, 46, 160–164. [Google Scholar] [CrossRef]
- Sharma, H.R.; Chauhan, G.S.; Agrawal, K. Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. Int. J. Food Prop. 2004, 7, 603–614. [Google Scholar] [CrossRef]
- Lakkakula, N.R.; Lima, M.; Walker, T. Rice bran stabilisation and rice bran oil extraction using ohmic heating. Bioresour. Technol. 2004, 92, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Kleisiaris, F.; Mygdalia, A.; Katsantonis, D. Stabilization of rice bran and its effect on bioactive compounds content, antioxidant activity and storage stability during infrared radiation heating. J. Cereal Sci. 2018, 80, 135–142. [Google Scholar] [CrossRef]
- Lavanya, M.N.; Saikiran, K.C.S.; Venkatachalapathy, N. Stabilization of rice bran milling fractions using microwave heating and its effect on storage. J. Food Sci. Technol. Mysore 2019, 56, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, B.; Kumarasiri, M.P.M.; Gangodavilage, N.C. Effect of method of stabilisation on aqueous extraction of rice bran oil. Food Bioprod. Processing 2009, 87, 108–114. [Google Scholar] [CrossRef]
- Kanitkar, A.; Sabliov, C.M.; Balasubramanian, S.; Lima, M.; Boldor, D. Microwave-assisted extraction of soybean and rice bran oil: Yield and extraction kinetics. Trans. Asabe 2011, 54, 1387–1394. [Google Scholar] [CrossRef]
- Pandey, R.; Shrivastava, S.L. Comparative evaluation of rice bran oil obtained with two-step microwave assisted extraction and conventional solvent extraction. J. Food Eng. 2018, 218, 106–114. [Google Scholar] [CrossRef]
- Camel, V. Microwave-assisted solvent extraction of environmental samples. TrAC Trends Anal. Chem. 2000, 19, 229–248. [Google Scholar] [CrossRef]
- Malekian, F.; Rao, R.M.; Prinyawiwatkul, W.; Marshall, W.E.; Windhauser, M.; Ahmedna, M. Lipase and Lipoxygenase Activity, Functionality, and Nutrient Losses in Rice Bran during Storage; LSU Agricultural Experiment Station Reports; LSU AgCenter: Baton Rouge, LA, USA, 2000. [Google Scholar]
- International Organization for Standardization. Milled Cereal Products—Determination of Fat Acidity; ISO Standard No. 7305; ISO: Geneva, Switzerland, 2019; Available online: https://www.iso.org/standard/70009.html (accessed on 22 February 2022).
- Sosulski, F.W. The Centrifuge Method for Determining Flour Absorption in Hard Red Spring Wheats. Cereal Chem. 1962, 39, 344–349. [Google Scholar]
- International Organization for Standardization. Animal Feeding Stuffs—Determination of Moisture and Other Volatile Matter Content; ISO Standard No 6496; ISO: Geneva, Switzerland, 1999; Available online: https://www.iso.org/standard/12871.html (accessed on 22 February 2022).
- Zigoneanu, I.G.; Wilhams, L.; Xu, Z.; Sabliov, C.M. Determination of antioxidant components in rice bran oil extracted by microwave-assisted method. Bioresour. Technol. 2008, 99, 4910–4918. [Google Scholar] [CrossRef]
- Lageiro, M.M.; Castanho, A.; Pereira, C.; Calhelha, R.C.; Ferreira, I.; Brites, C. Assessment of gamma oryzanol variability, an attractive rice bran bioactive compound. Emir. J. Food Agric. 2020, 32, 38–46. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.; van der Werf, W.; Duan, L. Optimising soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. J. Funct. Food. 2014, 10, 283–291. [Google Scholar] [CrossRef]
- International Organization for Standardization. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters, Part 2: Preparation of Methyl Esters of Fatty Acids; ISO Standard No 12966-2; ISO: Geneva, Switzerland, 2017; Available online: https://www.iso.org/standard/72142.html (accessed on 22 February 2022).
- Ramezanzadeh, F.M.; Rao, R.M.; Windhauser, M.; Prinyawiwatkul, W.; Marshall, W.E. Prevention of oxidative rancidity in rice bran during storage. J. Agric. Food Chem. 1999, 47, 2997–3000. [Google Scholar] [CrossRef]
- Ling, B.; Liu, X.; Zhang, L.; Wang, S. Effects of temperature, moisture, and metal salt content on dielectric properties of rice bran associated with radio frequency heating. Sci. Rep. 2018, 8, 4427. [Google Scholar] [CrossRef] [PubMed]
- Molteberg, E.L.; Magnus, E.M.; Bjorge, J.M.; Nilsson, A. Sensory and chemical studies of lipid oxidation in raw and heat-treated oat flours. Cereal Chem. 1996, 73, 579–587. [Google Scholar]
- Galliard, T. Hydrolytic and oxidative-degradation of lipids during storage of wholemeal flour—Effects of bran and germ components. J. Cereal Sci. 1986, 4, 179–192. [Google Scholar] [CrossRef]
- Cui, Y.M.; Hao, P.F.; Liu, B.J.; Meng, X.H. Effect of traditional Chinese cooking methods on fatty acid profiles of vegetable oils. Food Chem. 2017, 233, 77–84. [Google Scholar] [CrossRef]
- Rudzinska, M.; Hassanein, M.M.M.; Abdel-Razek, A.G.; Ratusz, K.; Siger, A. Blends of rapeseed oil with black cumin and rice bran oils for increasing the oxidative stability. J. Food Sci. Technol. Mysore 2016, 53, 1055–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, S.L.; Boo, H.C.; Muhamad, K.; Sulaiman, R.; Umanan, F.; Chong, G.H. Effect of Subcritical Carbon Dioxide Extraction and Bran Stabilization Methods on Rice Bran Oil. J. Am. Oil Chem. Soc. 2015, 92, 393–402. [Google Scholar] [CrossRef]
- Goffman, F.D.; Pinson, S.; Bergman, C. Genetic diversity for lipid content and fatty acid profile in rice bran. J. Am. Oil Chem. Soc. 2003, 80, 485–490. [Google Scholar] [CrossRef]
- Nakajima, S.; Takai, M.; Hayashi, C.; Tsuno, T.; Endo, Y. Autoxidation of Fish Oil Blended with Rice Bran Oil. J. Oleo Sci. 2017, 66, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Maszewska, M.; Florowska, A.; Dluzewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Zbikowska, A. Oxidative Stability of Selected Edible Oils. Molecules 2018, 23, 1746. [Google Scholar] [CrossRef] [Green Version]
- SACN. Saturated Fats and Health; SACN Report; Scientific Advisory Committee on Nutrition (SACN): London, UK, 2019. Available online: https://www.gov.uk/government/publications/saturated-fats-and-health-sacn-report (accessed on 22 February 2022).
- Khuwijitjaru, P.; Yuenyong, T.; Pongsawatmanit, R.; Adachi, S. Degradation Kinetics of Gamma-Oryzanol in Antioxidant-Stripped Rice Bran Oil during Thermal Oxidation. J. Oleo Sci. 2009, 58, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyoizumi, T.; Kosugi, T.; Toyama, Y.; Nakajima, T. Effects of high-temperature cooking on the gamma-aminobutyric acid content and antioxidant capacity of germinated brown rice (Oryza sativa L.). CyTA-J. Food 2021, 19, 360–369. [Google Scholar] [CrossRef]
- Le, P.H.; Le, T.T.; Raes, K. Effects of pH and heat treatment on the stability of gamma-aminobutyric acid (GABA) in germinated soymilk. J. Food Processing Preserv. 2020, 44, 7. [Google Scholar] [CrossRef]
- Srisang, N.; Prachayawarakorn, S.; Varanyanond, W.; Soponronnarit, S. Germinated Brown Rice Drying by Hot Air Fluidization Technique. Dry. Technol. 2011, 29, 55–63. [Google Scholar] [CrossRef]
- Chungcharoen, T.; Prachayawarakorn, S.; Tungtrakul, P.; Soponronnarit, S. Effects of Germination Process and Drying Temperature on Gamma-Aminobutyric Acid (GABA) and Starch Digestibility of Germinated Brown Rice. Dry. Technol. 2014, 32, 742–753. [Google Scholar] [CrossRef]
- Shin, T.-S.; Godber, J.S.; Martin, D.E.; Wells, J.H. Hydrolytic Stability and Changes in E Vitamers and Oryzanol of Extruded Rice Bran During Storage. J. Food Sci. 1997, 62, 704–728. [Google Scholar] [CrossRef]
- Min, B.; McClung, A.; Chen, M.H. Effects of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.). Food Chem. 2014, 159, 106–115. [Google Scholar] [CrossRef]
T | Teti | Luna | Ariete | ||||
---|---|---|---|---|---|---|---|
NSRB | SRB | NSRB | SBR | NSRB | SRB | ||
WAC | 0 | 132.47 ± 0.81 | 129.30 ± 0.70 | 123.03 ± 0.56 | 145.28 ± 5.66 | 130.01 ± 1.02 | 127.89 ± 4.13 |
7 | 126.73 ± 2.53 | 182.74 ± 1.36 | 122.64 ± 0.60 | 145.87 ± 2.30 | 122.68 ± 1.20 | 148.18 ± 4.91 | |
MC | 0 | 11.03 ± 0.12 | 14.48 ± 0.32 | 10.80 ± 0.07 | 13.58 ± 0.10 | 10.28 ± 0.04 | 14.48 ± 0.32 |
7 | 10.60 ± 0.00 | 15.00 ± 0.10 | 10.10 ± 0.10 | 12.50 ± 0.00 | 9.80 ± 0.10 | 16.00 ± 0.00 | |
AV | 0 | 695.61 ± 13.54 | 697.44 ± 1.39 | 606.5 ± 10.07 | 330.68 ± 0.09 | 614.06 ± 0.89 | 563.19 ± 2.33 |
7 | 2520.8 ± 0.06 | 952.75 ± 6.42 | 1896.17 ± 21.07 | 513.29 ± 12.94 | 1823.83 ± 2.38 | 618.88 ± 14.26 |
Rice Variety | Solvent | Solvent to Sample Ratio | Temperature (°C) | ||
---|---|---|---|---|---|
80 | 100 | 120 | |||
Teti | Ethanol | 3:1 | 6.78 ± 0.41b | 6.85 ± 0.58b | 11.39 ± 0.95 *,a |
9:1 | 8.36 ± 0.91 *,b | 12.91 ± 0.81 *,b | 18.20 ± 1.50 *,a | ||
Isopropanol | 3:1 | 6.42 ± 0.55b | 7.20 ± 0.60b | 10.12 ± 0.64 *,a | |
9:1 | 7.54 ± 0.38 *,a | 10.95 ± 0.90 *,a | 16.02 ± 1.10 *,a | ||
Luna | Ethanol | 3:1 | 6.71 ± 0.58 b | 6.54 ± 0.51b | 10.77 ± 1.24 a |
9:1 | 7.54 ± 0.94 a | 12.03 ± 1.75 a | 17.88 ± 1.78a | ||
Isopropanol | 3:1 | 6.81 ± 0.67 a | 7.97 ± 0.12a,b | 10.30 ± 0.37b | |
9:1 | 6.98 ± 0.71 b | 10.29 ± 0.92b | 17.27 ± 0.23a | ||
Ariete | Ethanol | 3:1 | 7.06 ± 0.64 b | 7.31 ± 0.47b | 12.02 ± 0.82a |
9:1 | 7.49 ± 1.21 b | 11.72 ± 0.96 *,b | 17.90 ± 1.19a | ||
Isopropanol | 3:1 | 6.87 ± 0.71 b | 7.34 ± 0.59b | 10.27 ± 0.52a | |
9:1 | 6.94 ± 0.24 a | 9.99 ± 0.95 *,a | 16.11 ± 0.88a |
Fatty Acid | Rice Bran Variety | ||
---|---|---|---|
Luna (n = 3) | Ariete (n = 3) | Teti (n = 3) | |
C16:0 | 16.37 ± 0.12 a | 15.70 ± 0.10 b | 13.67 ± 0.06 c |
C18:0 | 1.20 ± 0.00 a | 1.20 ± 0.00 a | 1.20 ± 0.00 a |
C18:1n9c | 38.33 ± 0.00 a | 38.43 ± 0.06 a | 37.00 ± 0.00 b |
C18:2n6c | 39.10 ± 0.17 c | 39.57 ± 0.06 b | 42.73 ± 0.06 a |
C18:3n3c | 1.57 ± 0.06 b | 1.53 ± 0.06 b | 2.00 ± 0.00 a |
SFA | 18.97 ± 0.06 a | 18.27± 0.12 b | 16.40 ± 0.00 c |
MUFA | 39.90 ± 0.10 a | 39.97 ± 0.06 a | 38.50 ± 0.10 b |
PUFA | 41.10 ± 0.10 c | 41.70 ± 0.00 b | 45.10 ± 0.00 a |
PUFA:SFA | 2.17 | 2.28 | 2.75 |
ω3:ω6 | 0.041 | 0.038 | 0.046 |
GO (mg/100g RB) | GABA (mg/100g RB) | GO (mg/100g RBO) | ||||
---|---|---|---|---|---|---|
Variety | NSRB | SRB | NSRB | SRB | NSRBO | SRBO |
Ariete | 272.7 ± 16.9 b | 178.8 ± 40.9 b | 475.0 ± 45.6 | 600.7 ± 18.0 b | 4684.6 ± 66.4 a | 4163.6 ± 467.1 b |
Luna | 276.0 ± 7.4 b | 299.3 ± 2.0 a | 500.0 ± 34.9 | 549.6 ± 38.1 b | 4624.8 ± 217.2 a | 4976.2 ± 103.8 a |
Teti | 403.6 ± 40.2 a | 305.9 ± 63.9 a | 508.1 ± 7.3 | 747.1 ± 29.8 a | 4273.4 ± 35.3 b | 4469.3 ± 376.5 a,b |
Ariete | Luna | Teti | |||||
---|---|---|---|---|---|---|---|
NSRB | SRB | NSRB | SRB | NSRB | SRB | ||
CAF (%) | RB | 31.5 ± 3.9 | 31.7 ± 6.6 | 26.4 * ± 1.5 | 36.3 * ± 1.5 | 30.2 ± 7.4 | 31.0 ± 6.3 |
RBO | 31.1 ± 0.6 | 31.3 ± 1.9 | 30.2 ± 0.9 | 31.3 ± 0.8 | 29.6 ± 0.7 | 30.0 ± 0.5 | |
MCAF (%) | RB | 41.4 ± 2.8 | 42.1 ± 3.3 | 40.7 ± 1.2 | 38.6 ± 0.9 | 41.5 ± 1.3 | 43.1 ± 1.4 |
RBO | 33.4 ± 0.1 | 34.1 ± 1.1 | 35.5 ± 0.8 | 34.9 ± 0.9 | 36.6 ± 0.7 | 36.9 ± 0.7 | |
CampF (%) | RB | 14.5 * ± 0.6 | 12.6 * ± 0.4 | 20.7 * ± 1.2 | 16.2 * ± 0.6 | 13.4 ± 1.3 | 14.9 ± 2.8 |
RBO | 13.0 ± 0.1 | 12.7 ± 0.5 | 15.9 * ± 0.1 | 14.9 * ± 0.1 | 12.0 ± 0.2 | 11.9 ± 0.6 | |
SF (%) | RB | 12.7 ± 1.4 | 13.6 ± 3.8 | 12.2 * ± 0.6 | 8.9 * ± 0.1 | 14.9 ± 8.8 | 11.1 ± 2.3 |
RBO | 22.4 ± 0.4 | 22.0 ± 0.4 | 18.4 ± 0.3 | 18.9 ± 0.3 | 21.7 ± 0.2 | 21.3 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, N.; Castanho, A.; Lageiro, M.; Pereira, C.; Brites, C.M.; Vaz-Velho, M. Rice Bran Stabilisation and Oil Extraction Using the Microwave-Assisted Method and Its Effects on GABA and Gamma-Oryzanol Compounds. Foods 2022, 11, 912. https://doi.org/10.3390/foods11070912
Reis N, Castanho A, Lageiro M, Pereira C, Brites CM, Vaz-Velho M. Rice Bran Stabilisation and Oil Extraction Using the Microwave-Assisted Method and Its Effects on GABA and Gamma-Oryzanol Compounds. Foods. 2022; 11(7):912. https://doi.org/10.3390/foods11070912
Chicago/Turabian StyleReis, Núria, Ana Castanho, Manuela Lageiro, Cristiana Pereira, Carla Moita Brites, and Manuela Vaz-Velho. 2022. "Rice Bran Stabilisation and Oil Extraction Using the Microwave-Assisted Method and Its Effects on GABA and Gamma-Oryzanol Compounds" Foods 11, no. 7: 912. https://doi.org/10.3390/foods11070912
APA StyleReis, N., Castanho, A., Lageiro, M., Pereira, C., Brites, C. M., & Vaz-Velho, M. (2022). Rice Bran Stabilisation and Oil Extraction Using the Microwave-Assisted Method and Its Effects on GABA and Gamma-Oryzanol Compounds. Foods, 11(7), 912. https://doi.org/10.3390/foods11070912