Fabrication of Antioxidant Pickering Emulsion Based on Resveratrol-Grafted Zein Conjugates: Enhancing the Physical and Oxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Zein–Resveratrol/Pectin Z-R/P Particles
2.2.1. Preparation of Zein–Resveratrol (Z-R) Conjugates
2.2.2. Preparation of Z-R/P Particles
2.3. Characterization of Z-R/P Particles
2.3.1. Wettability
2.3.2. Size and ζ-Potential
2.3.3. Scanning Electron Microscopy (SEM)
2.4. Preparation of Z-R/P-Stabilized Pickering Emulsions
2.5. Characterization of Z-R/P-Stabilized Pickering Emulsions
2.5.1. Size, ζ-Potential and PDI
2.5.2. Optical Microscopy
2.5.3. Visual Appearance
2.5.4. Pickering Emulsion Type
2.5.5. Rheological Measurements
2.5.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.7. Confocal Laser Scanning Microscopy (CLSM)
2.6. Stability of Pickering Emulsions
2.6.1. pH Value Stability
2.6.2. Ionic Strength Stability
2.6.3. Storage Stability
2.6.4. Oxidation Stability
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Z-R/P Particles
3.1.1. Wettability
3.1.2. Size and ζ-Potential
3.1.3. Morphological Observation
3.2. Emulsion Formation
3.2.1. Effect of Z-R/P2:1 Concentration on Pickering Emulsions
3.2.2. Effect of Oil Phase Fraction on Pickering Emulsions
3.2.3. Emulsion Type Judgment
3.2.4. Rheology Measurement
3.3. Observation of Interfacial Properties
3.4. Determination of Emulsion Stability
3.4.1. Effect of pH on Emulsion Stability
3.4.2. Effect of Salt Concentration on Emulsion Stability
3.4.3. Effect of Storage Time on Emulsion Stability
3.5. Oxidation Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, A.R. Functional and Engineered Colloids from Edible Materials for Emerging Applications in Designing the Food of the Future. Adv. Funct. Mater. 2020, 30, 1806809. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Ren, S.M.; Han, T.W.; Hua, M.Q.; He, S.F. New organic–inorganic hybrid polymers as Pickering emulsion stabilizers. Colloid. Surface. A Physicochem. Eng. Asp. 2018, 542, 42–51. [Google Scholar] [CrossRef]
- Weiss, J.; Ahmad, T.; Zhang, C.; Zhang, H. A review of recent progress on high internal-phase Pickering emulsions in food science. Trends Food Sci. Technol. 2020, 106, 91–103. [Google Scholar]
- Lam, S.; Velikov, K.P.; Velev, O.D. Pickering stabilization of foams and emulsions with particles of biological origin. Curr. Opin. Colloid Interface Sci. 2014, 19, 490–500. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, X.A.; Perez Gonzalez, A.J.; Huang, Q.R. Kafirin nanoparticles-stabilized Pickering emulsions: Microstructure and rheological behavior. Food Hydrocoll. 2016, 54, 30–39. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.H. Soy glycinin as food-grade Pickering stabilizers: Part. II. Improvement of emulsification and interfacial adsorption by electrostatic screening. Food Hydrocoll. 2016, 60, 620–630. [Google Scholar] [CrossRef]
- Tan, H.; Zhang, R.Y.; Han, L.Y.; Zhang, T.; Ngai, T. Pickering emulsions stabilized by aminated gelatin nanoparticles: Are gelatin nanoparticles acting as genuine Pickering stabilizers or structuring agents? Food Hydrocoll. 2022, 123, 107151. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, X.Z.; Zhang, Z.Y.; Ding, B.M.; Li, Z.S.; Luo, Y.C. High internal phase Pickering emulsions stabilized by tannic acid-ovalbumin complexes: Interfacial property and stability. Food Hydrocoll. 2022, 125, 107332. [Google Scholar] [CrossRef]
- Lin, J.W.; Meng, H.C.; Yu, S.J.; Wang, Z.M.; Ai, C.; Zhang, T.; Guo, X.M. Genipin-crosslinked sugar beet pectin-bovine serum albumin nanoparticles as novel pickering stabilizer. Food Hydrocoll. 2021, 112, 106306. [Google Scholar] [CrossRef]
- Ye, F.; Miao, M.; Jiang, B.; Campanella, O.H.; Jin, Z.Y.; Zhang, T. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles. Food Chem. 2017, 229, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Huan, S.Q.; Bai, L.; Ketola, A.; Shi, X.T.; Zhang, X.; Ketoja, J.A.; Rojas, O.J. High internal phase oil-in-water pickering emulsions stabilized by chitin nanofibrils: 3D structuring and solid foam. ACS Appl. Mater. Inter. 2020, 12, 11240–11251. [Google Scholar] [CrossRef]
- Angkuratipakorn, T.; Sriprai, A.; Tantrawong, S.; Chaiyasit, W.; Singkhonrat, J. Fabrication and characterization of rice bran oil-in-water Pickering emulsion stabilized by cellulose nanocrystals. Colloid. Surface. A Physicochem. Eng. Asp. 2017, 522, 310–319. [Google Scholar] [CrossRef]
- Xia, T.H.; Xue, C.H.; Wei, Z.H. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends Food Sci. Technol. 2021, 107, 1–15. [Google Scholar] [CrossRef]
- Liu, C.Z.; Lv, N.; Ren, G.R.; Wu, R.B.; Wang, B.J.; Cao, Z.X.; Xie, H.J. Explore the interaction mechanism between zein and EGCG using multi-spectroscopy and molecular dynamics simulation methods. Food Hydrocoll. 2021, 120, 106906. [Google Scholar] [CrossRef]
- Liu, C.Z.; Lv, N.; Song, Y.L.; Dong, L.J.; Huang, M.; Shen, Q.; Ren, G.R.; Wu, R.B.; Wang, B.J.; Cao, Z.X.; et al. Interaction mechanism between zein and β-lactoglobulin: Insights from multi-spectroscopy and molecular dynamics simulation methods. Food Hydrocoll. 2023, 135, 108226. [Google Scholar] [CrossRef]
- Nunes, R.; Baião, A.; Monteiro, D.; das Neves, J.; Sarmento, B. Zein nanoparticles as low-cost, safe, and effective carriers to improve the oral bioavailability of resveratrol. Drug Deliv. Transl. Res. 2020, 10, 826–837. [Google Scholar] [CrossRef]
- de Folter, J.W.J.; van Ruijven, M.W.M.; Velikov, K.P. Oil-in-water Pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter 2012, 8, 6807. [Google Scholar] [CrossRef] [Green Version]
- Tavasoli, S.; Liu, Q.; Jafari, S.M. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocoll. 2022, 124, 107280. [Google Scholar] [CrossRef]
- Souza, E.M.C.; Ferreira, M.R.A.; Soares, L.A.L. Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocoll. 2022, 131, 107781. [Google Scholar] [CrossRef]
- Xiang, C.Y.; Gao, J.; Ye, H.X.; Ren, G.R.; Ma, X.J.; Xie, H.J.; Fang, S.; Lei, Q.F.; Fang, W.J. Development of ovalbumin-pectin nanocomplexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. Food Hydrocoll. 2020, 106, 105926. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.Z.; Liu, X.H.; Wang, Z.W. Fabrication of Pickering emulsion based on particles combining pectin and zein: Effects of pectin methylation. Carbohyd. Polym. 2021, 256, 117515. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Huang, D.J.; Song, W.X.; Ouyang, F.X.; Li, W.X.; Song, Y.; Li, F.; Jiang, Y.; Huang, Q.R.; Li, D. Pickering emulsions stabilized by zein-proanthocyanidins-pectin ternary composites (ZPAAPs): Construction and delivery studies. Food Chem. 2022, 404, 134642. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Decker, E. Interfacial antioxidants: A review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation. J. Agric. Food Chem. 2018, 66, 20–35. [Google Scholar] [CrossRef]
- Li, M.F.; He, Z.Y.; Li, G.Y.; Zeng, Q.Z.; Su, D.X.; Zhang, J.L.; Wang, Q.; Yuan, Y.; He, S. The formation and characterization of antioxidant pickering emulsions: Effect of the interactions between gliadin and chitosan. Food Hydrocoll. 2019, 90, 482–489. [Google Scholar] [CrossRef]
- Feng, T.T.; Wang, X.W.; Wang, X.J.; Xia, S.Q.; Huang, Q.R. Plant protein-based antioxidant Pickering emulsions and high internal phase Pickering emulsions against broad pH range and high ionic strength: Effects of interfacial rheology and microstructure. LWT-Food Sci. Technol. 2021, 150, 111953. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Lu, M.W.; Mao, Z.; Xiao, J.; Huang, Q.R.; Lin, X.C.; Cao, Y. Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. Int. J. Biol. Macromol. 2020, 152, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Gao, S.H.; Li, X.T.; Liang, H.S.; Li, S.G. Antioxidant Pickering emulsions stabilised by zein/tannic acid colloidal particles with low concentration. Int. J. Food. Sci. Technol. 2020, 55, 1924–1934. [Google Scholar] [CrossRef]
- Wang, Z.M.; Ma, Y.X.; Chen, H.L.; Deng, Y.Y.; Wei, Z.C.; Zhang, Y.; Tang, X.J.; Li, P.; Zhao, Z.H.; Zhou, P.F.; et al. Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion: An interfacial antioxidant inhibiting lipid oxidation. Food Chem. 2022, 387, 132874. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, Y.Z.; Li, F.; Du, J.H.; Huang, Q.R.; Sun-Waterhouse, D.X.; Li, D.P. Antioxidative pectin from hawthorn wine pomace stabilizes and protects Pickering emulsions via forming zein-pectin gel-like shell structure. Int. J. Biol. Macromol. 2020, 151, 193–203. [Google Scholar] [CrossRef]
- Makori, S.I.; Mu, T.H.; Sun, H.N. Functionalization of sweet potato leaf polyphenols by nanostructured composite β-lactoglobulin particles from molecular level complexations: A review. Food Chem. 2022, 372, 131304. [Google Scholar] [CrossRef]
- Ren, G.R.; Shi, J.Y.; Huang, S.J.; Liu, C.Z.; Ni, F.F.; He, Y.; Luo, X.; Li, T.; Song, Y.L.; Huang, M.; et al. The fabrication of novel zein and resveratrol covalent conjugates: Enhanced thermal stability, emulsifying and antioxidant properties. Food Chem. 2022, 374, 131612. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Mao, Y.Z.; Xiang, C.Y.; Cao, M.N.; Ren, G.R.; Wang, K.W.; Ma, X.J.; Wu, D.; Xie, H.J. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Food Chem. 2021, 354, 129516. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhan, X.Y.; Wei, Y.; Sun, C.X.; Mao, L.; McClements, D.J.; Gao, Y.X. Composite zein-propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers. Food Hydrocoll. 2018, 85, 281–290. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M.; Tabarestani, H.S. Production of d-limonene-loaded Pickering emulsions stabilized by chitosan nanoparticles. Food Chem. 2021, 354, 129591. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.G.; Liu, X.K.; McClements, D.J.; Liu, S.L.; Li, B.; Li, Y. Chitin nanofibers improve the stability and functional performance of Pickering emulsions formed from colloidal zein. J. Colloid Interf. Sci. 2021, 589, 388–400. [Google Scholar] [CrossRef]
- Zhang, S.L.; Jiang, W.P.; Zhang, Z.W.; Zhu, Y.L.; Wang, L.X.; Fu, J.J. A nanoparticle/oil double epigallocatechin gallate-loaded Pickering emulsion: Stable and delivery characteristics. LWT-Food Sci. Technol. 2020, 130, 109369. [Google Scholar] [CrossRef]
- Zhu, Q.M.; Lu, H.Q.; Zhu, J.Y.; Zhang, M.; Yin, L.J. Development and characterization of pickering emulsion stabilized by zein/corn fiber gum (CFG) complex colloidal particles. Food Hydrocoll. 2019, 91, 204–213. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, F.; Li, D.; Sun-Waterhouse, D.X.; Huang, Q.R. Zein/pectin nanoparticle-stabilized sesame oil pickering emulsions: Sustainable bioactive carriers and healthy alternatives to sesame paste. Food Bioprocess Technol. 2019, 12, 1982–1992. [Google Scholar] [CrossRef]
- Zhou, F.Z.; Huang, X.N.; Wu, Z.L.; Yin, S.W.; Zhu, J.H.; Tang, C.H.; Yang, X.Q. Fabrication of zein/pectin hybrid particle-stabilized pickering high internal phase emulsions with robust and ordered interface architecture. J. Agric. Food Chem. 2018, 66, 11113–11123. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.G.; Zhang, S.P.; Jiang, X.F.; Hou, P.F.; Xin, Y.L.; Zhang, L.; Zhang, L.; Zhou, D.Y. Impact of weakly charged insoluble karaya gum on zein nanoparticle and mechanism for stabilizing Pickering emulsions. Int. J. Biol. Macromol. 2022, 222, 121–131. [Google Scholar] [CrossRef]
- Meng, R.; Wu, Z.Z.; Xie, Q.T.; Zhang, B.; Li, X.L.; Liu, W.J.; Tao, H.; Li, P.J. Zein/carboxymethyl dextrin nanoparticles stabilized pickering emulsions as delivery vehicles: Effect of interfacial composition on lipid oxidation and in vitro digestion. Food Hydrocoll. 2020, 108, 106020. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, S.Q.; Sun, H.M.; Ning, Y.L.; Jia, Y.; Luo, D.L.; Li, Y.Y.; Shah, B.R. Rheological behavior and microstructure of Pickering emulsions based on different concentrations of gliadin/sodium caseinate nanoparticles. Eur. Food Res. Technol. 2021, 247, 2621–2633. [Google Scholar] [CrossRef]
- Dai, L.; Sun, C.X.; Wei, Y.; Mao, L.; Gao, Y.X. Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocoll. 2018, 74, 239–248. [Google Scholar] [CrossRef]
- Pang, S.X.; Shao, P.; Sun, Q.J.; Pu, C.F.; Tang, W.T. Relationship between the emulsifying properties and formation time of rice bran protein fibrils. LWT-Food Sci. Technol. 2020, 122, 108985. [Google Scholar] [CrossRef]
- Li, X.M.; Zhu, J.; Pan, Y.; Meng, R.; Zhang, B.; Chen, H.Q. Fabrication and characterization of pickering emulsions stabilized by octenyl succinic anhydride -modified gliadin nanoparticle. Food Hydrocoll. 2019, 90, 19–27. [Google Scholar] [CrossRef]
- Chang, C.; Wang, T.R.; Hu, Q.B.; Zhou, M.Y.; Xue, J.Y.; Luo, Y.C. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll. 2017, 70, 143–151. [Google Scholar] [CrossRef]
- Herrero, A.M.; Carmona, P.; Pintado, T.; Jiménez-Colmenero, F.; Ruíz-Capillas, C. Infrared spectroscopic analysis of structural features and interactions in olive oil-in-water emulsions stabilized with soy protein. Food Res. Int. 2011, 44, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Qi, B.K.; Xie, F.Y.; Hu, M.; Sun, Y.F.; Han, L.; Li, L.; Zhang, S.; Li, Y. Emulsion stability and dilatational rheological properties of soy/whey protein isolate complexes at the oil-water interface: Influence of pH. Food Hydrocoll. 2021, 113, 106391. [Google Scholar] [CrossRef]
- Mwangi, W.W.; Ho, K.W.; Tey, B.T.; Chan, E.S. Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food Hydrocoll. 2016, 60, 543–550. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Li, L.; Ma, C.X.; Ettoumi, F.E.; Javed, M.; Lin, X.Y.; Shao, X.F.; Xiao, G.S.; Luo, Z.S. Shape-controlled fabrication of zein and peach gum polysaccharide based complex nanoparticles by anti-solvent precipitation for curcumin-loaded Pickering emulsion stabilization. Sustain. Chem. Pharm. 2022, 25, 100565. [Google Scholar] [CrossRef]
- Hu, J.; Xu, R.; Deng, W. Dual stabilization of Pickering emulsion with epigallocatechin gallate loaded mesoporous silica nanoparticles. Food Chem. 2022, 396, 133675. [Google Scholar] [CrossRef]
- Cheng, C.; Yu, X.; McClements, D.J.; Huang, Q.; Tang, H.; Yu, K.; Xiang, X.; Chen, P.; Wang, X.T.; Deng, Q.C. Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions. Food Chem. 2019, 301, 125207. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Q.; Huang, Q.R.; Wang, Y.; Lu, X.X. Development of wet media milled purple sweet potato particle-stabilized pickering emulsions: The synergistic role of bioactives, starch and cellulose. LWT-Food Sci. Technol. 2022, 155, 112964. [Google Scholar] [CrossRef]
- Liu, F.G.; Ma, C.C.; Zhang, R.J.; Gao, Y.X.; Julian McClements, D. Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chem. 2017, 221, 395–403. [Google Scholar] [CrossRef] [PubMed]
Samples | Size (nm) | ζ-Potential (mV) |
---|---|---|
Z | 59.3 ± 6.01 d | 47.5 ± 3.26 c |
Z-R | 92.6 ± 11.6 c | −62.1 ± 2.77 a |
Z-R/P2:1 | 356.4 ± 8.32 b | −55.4 ± 2.54 b |
P | 649.8 ± 5.78 a | −43.2 ± 3.45 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, G.; Zhu, Y.; Shi, J.; Liu, J.; He, Y.; Sun, Y.; Zhan, Y.; Lv, J.; Huang, M.; Xie, H. Fabrication of Antioxidant Pickering Emulsion Based on Resveratrol-Grafted Zein Conjugates: Enhancing the Physical and Oxidative Stability. Foods 2022, 11, 3851. https://doi.org/10.3390/foods11233851
Ren G, Zhu Y, Shi J, Liu J, He Y, Sun Y, Zhan Y, Lv J, Huang M, Xie H. Fabrication of Antioxidant Pickering Emulsion Based on Resveratrol-Grafted Zein Conjugates: Enhancing the Physical and Oxidative Stability. Foods. 2022; 11(23):3851. https://doi.org/10.3390/foods11233851
Chicago/Turabian StyleRen, Gerui, Ying Zhu, Jieyu Shi, Jiacheng Liu, Ying He, Yufan Sun, Yujing Zhan, Junfei Lv, Min Huang, and Hujun Xie. 2022. "Fabrication of Antioxidant Pickering Emulsion Based on Resveratrol-Grafted Zein Conjugates: Enhancing the Physical and Oxidative Stability" Foods 11, no. 23: 3851. https://doi.org/10.3390/foods11233851
APA StyleRen, G., Zhu, Y., Shi, J., Liu, J., He, Y., Sun, Y., Zhan, Y., Lv, J., Huang, M., & Xie, H. (2022). Fabrication of Antioxidant Pickering Emulsion Based on Resveratrol-Grafted Zein Conjugates: Enhancing the Physical and Oxidative Stability. Foods, 11(23), 3851. https://doi.org/10.3390/foods11233851