Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = Pickering emulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8841 KB  
Article
Ginger Powder-Based Pickering Emulsions: An Innovative Platform for Anticancer Drug Delivery
by Patrizia Formoso, Domenico Mammolenti, Adele Chimento, Maria Carmela Pellegrino, Ida Daniela Perrotta, Francesca Romana Lupi, Domenico Gabriele and Vincenzo Pezzi
Molecules 2025, 30(22), 4349; https://doi.org/10.3390/molecules30224349 - 10 Nov 2025
Abstract
Biodegradable Pickering emulsions are attracting increased appeal owing to their promising and diversifying therapeutic applications. In this study, for the first time, a novel therapeutic Pickering emulsion stabilized with ginger powder (GA4) was formulated, characterized, and tested for doxorubicin (DOX) delivery. GA4_Pes physicochemical [...] Read more.
Biodegradable Pickering emulsions are attracting increased appeal owing to their promising and diversifying therapeutic applications. In this study, for the first time, a novel therapeutic Pickering emulsion stabilized with ginger powder (GA4) was formulated, characterized, and tested for doxorubicin (DOX) delivery. GA4_Pes physicochemical characterization by DLS (Dynamic Light Scattering), POM (Polarized Optical Microscopy), Cryo-SEM (Cryo-Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), and rheology testing confirmed stability for at least one month, solid-like gel properties, and multiple morphology even at a low concentration of stabilizer. In addition, the morphological, dimensional, and rheological properties of some GA4_Pe loaded with DOX (GA4_Pe@DOX) were examined. These formulations were of the w/o/w type, stable for at least 28 days, and showed efficient doxorubicin internalization. A 24 h in vitro release assay displayed a sustained and pH-dependent release, with 30% and 50% chemotherapeutic released at pH 7.4 and 5.6, respectively. Furthermore, in vitro cell viability assessment performed using GA4_Pe showed no toxicity on immortalized 3T3 mouse embryonic fibroblasts but a small significant inhibitory effect on human breast cancer cell line MCF7. Interestingly, the GA4_Pe@DOX emulsion exerted a cytotoxic effect on MCF7 cells very similar to that of the free DOX solution with the same doses of DOX loaded in the same emulsion. Therefore, the total biocompatibility/biodegradability, good drug entrapment, and high stability, as well as the prolonged release and anti-tumor efficacy maintenance of the loaded drug, suggest a feasible application of ginger powder-based Pickering emulsions for topical delivery as a selective therapeutic platform in targeted formulations of antineoplastic drugs. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

20 pages, 1357 KB  
Review
Materials Prepared via Pickering Emulsions Stabilized by Graphene Oxide: Overview and Prospects
by Manman Liu, Wenle Zhu and Huili Wang
Materials 2025, 18(20), 4790; https://doi.org/10.3390/ma18204790 - 20 Oct 2025
Viewed by 546
Abstract
Pickering emulsions, employing solid or colloidal particles rather than surfactants to stabilize the oil-water interface, have attracted considerable attention owing to their enhanced stability and the potential for designing functional materials. In particular, Graphene Oxide (GO) has emerged as an effective stabilizer for [...] Read more.
Pickering emulsions, employing solid or colloidal particles rather than surfactants to stabilize the oil-water interface, have attracted considerable attention owing to their enhanced stability and the potential for designing functional materials. In particular, Graphene Oxide (GO) has emerged as an effective stabilizer for such emulsions, owing to its unique physicochemical properties. This review systematically outlines the stabilization mechanisms of GO-based Pickering emulsions, providing fundamental insights that support further development in the field. We comprehensively examine recent advances in the preparation and characterization of GO-stabilized emulsions and highlight their broad applications, including the synthesis of advanced materials and uses across various industrial sectors. Finally, we discuss current challenges and suggest promising directions for future research on GO-stabilized Pickering emulsions. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

17 pages, 1982 KB  
Article
Natural Deep Eutectic Solvents Enhance the Bioavailability and Antioxidant Activity of Oleanolic Acid in Self-Constructed Pickering High Internal Phase Emulsions
by Jie Yu, Chenjia Li, Qin Zhang, Benyang Li and Chaoxi Zeng
Foods 2025, 14(20), 3568; https://doi.org/10.3390/foods14203568 - 20 Oct 2025
Viewed by 385
Abstract
Oleanolic acid (OA)-stabilized water-in-oil Pickering high internal phase emulsions (HIPEs), using natural deep eutectic solvents (NADESs) as the internal phase (HIPE-NADES), were developed to enhance OA bioavailability. Three kinds of NADESs (proline: sorbitol (1:1), proline: glucose (1:1), and proline: glucose (5:3)) were selected, [...] Read more.
Oleanolic acid (OA)-stabilized water-in-oil Pickering high internal phase emulsions (HIPEs), using natural deep eutectic solvents (NADESs) as the internal phase (HIPE-NADES), were developed to enhance OA bioavailability. Three kinds of NADESs (proline: sorbitol (1:1), proline: glucose (1:1), and proline: glucose (5:3)) were selected, and HIPEs with pure water as the internal phase were used as the control group. In vitro digestion and Caco-2 models showed that HIPE-NADES significantly improved OA bioaccessibility via enhanced stability and solubility. Crucially, OA bioavailability reached 16.20–19.10%, markedly surpassing controls (p ≤ 0.05), indicating that NADESs’ hydrogen-bonding network facilitates intestinal uptake. In a t-BHP-induced Caco-2 oxidative stress model, OA-loaded HIPE-NADES significantly attenuated damage, reducing MDA and ROS while elevating GSH-Px, CAT, and SOD activities and GSH levels (p ≤ 0.05). NADESs themselves contributed substantially to antioxidant efficacy. HIPE-NADESs represent an effective platform for enhancing the bioavailability and bioactivity of hydrophobic phytochemicals like OA, enabling simpler and more stable delivery systems. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

19 pages, 4295 KB  
Article
Tailoring Interfacial Activity of pH-Driven Shellac–Chitosan Nanocomposites via Solution Addition Sequence for Pickering Emulsion Stabilization
by Yi Yuan, Luping Qu, Tingyong Zheng, Tangyu Yang, Huan Liu, Yajun Li and Shutao Liu
Foods 2025, 14(20), 3556; https://doi.org/10.3390/foods14203556 - 18 Oct 2025
Cited by 1 | Viewed by 443
Abstract
The pH shift generated by mixing alkaline shellac (SH) and acidic chitosan (CS) solutions may drive the formation of nanocomposites with interfacial activity. However, how the solution addition sequence affects their formation and properties remains unclear. In this study, we systematically investigated the [...] Read more.
The pH shift generated by mixing alkaline shellac (SH) and acidic chitosan (CS) solutions may drive the formation of nanocomposites with interfacial activity. However, how the solution addition sequence affects their formation and properties remains unclear. In this study, we systematically investigated the influence of addition order on the formation, physicochemical properties, and interfacial activity of SH-CS nanocomposites. The results showed that pH variation during mixing promoted nanocomposite formation, with optimal electrostatic interactions occurring at a final pH near 5.0. The most efficient assembly was achieved at an SH: CS mass ratio of 2:3. FTIR and dissociation experiments confirmed that hydrogen bonding, hydrophobic effects, and electrostatic interactions jointly governed the assembly process. Importantly, the addition sequence determined the nanocomposite structure: adding SH to CS produced core–shell structures, whereas the reverse order yielded co-assembled hybrid nanocomposites. These distinct structures directly impacted interfacial behavior. The co-assembled nanocomposites effectively balanced the inherent hydrophobicity of SH and hydrophilicity of CS, achieving moderate wettability. This balance significantly reduced interfacial tension, thereby enhancing emulsifying performance. Overall, this study underscores the critical role of addition sequence in tailoring the properties of pH-driven SH-CS nanocomposites and highlights their strong potential as high-performance Pickering emulsifiers. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 2955 KB  
Article
Dual-Responsive Hybrid Microgels Enabling Phase Inversion in Pickering Emulsions
by Minyue Shen, Lin Qi, Li Zhang, Panfei Ma, Wei Liu, To Ngai and Hang Jiang
Polymers 2025, 17(20), 2762; https://doi.org/10.3390/polym17202762 - 15 Oct 2025
Viewed by 459
Abstract
Pickering emulsions have emerged as promising multiphase systems owing to their high stability and diverse applications in materials and chemical engineering. However, achieving precise and stimuli-responsive regulation of emulsion type, particularly reversible phase inversion between oil-in-water and water-in-oil states under fixed formulation without [...] Read more.
Pickering emulsions have emerged as promising multiphase systems owing to their high stability and diverse applications in materials and chemical engineering. However, achieving precise and stimuli-responsive regulation of emulsion type, particularly reversible phase inversion between oil-in-water and water-in-oil states under fixed formulation without additional stabilizers, remains a considerable challenge. In this work, we developed a sol–gel strategy, i.e., in situ hydrolysis and condensation of silane precursors to form a silica shell directly on responsive microgels, to produce H-SiO2@P(NIPAM-co-MAA) hybrid microgels. The resulting hybrid particles simultaneously retained pH and temperature responsiveness, enabling the transfer of these properties from the polymeric network to the emulsion interface. When employed as stabilizers, the hybrid microgels allowed the controlled formation of Pickering emulsions that remained stable for one week under testing conditions. More importantly, they facilitated in situ reversible phase inversion under external stimuli. Overall, this work establishes a sol–gel approach to fabricate organic–inorganic hybrid microgels with well-defined dispersion and uniform silica deposition, while preserving dual responsiveness and enabling controlled phase inversion of Pickering emulsions. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 5326 KB  
Article
Preparation of Temperature-Responsive Janus Nanosheets and Their Application in Emulsions
by Yue Gao, Xuan Qi, Hao Yan, Dan Xue, Xuefeng Xu, Suixin He, Wei Xia and Junfeng Zhang
Crystals 2025, 15(10), 891; https://doi.org/10.3390/cryst15100891 - 15 Oct 2025
Viewed by 297
Abstract
In this study, patch-structured C8/CHO template microspheres were successfully synthesized through in situ reduction and sol–gel reactions, providing a reusable platform for subsequent modifications. Based on these templates, temperature-responsive PW12O403−-PILs/PNIPAM Janus nanosheets were prepared via sequential [...] Read more.
In this study, patch-structured C8/CHO template microspheres were successfully synthesized through in situ reduction and sol–gel reactions, providing a reusable platform for subsequent modifications. Based on these templates, temperature-responsive PW12O403−-PILs/PNIPAM Janus nanosheets were prepared via sequential Schiff-base coupling and ATRP. Structural characterizations (XRD, SEM, TEM, FTIR, and TGA) confirmed successful functionalization and nanosheet formation. The PNIPAM moiety endowed the nanosheets with temperature responsiveness, while the incorporation of polymerized ionic liquids and phosphotungstate anions further enhanced amphiphilicity and dispersion stability. When applied as particulate emulsifiers in water/toluene systems, the Janus nanosheets formed stable Pickering emulsions at elevated temperatures and underwent reversible emulsification–demulsification upon temperature cycling. These findings demonstrate the potential of PW12O403−-PILs/PNIPAM Janus nanosheets as smart emulsifiers for responsive separation and formulation technologies. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

24 pages, 1358 KB  
Review
Valorization of Date Seed Waste for Sustainable Dermocosmetic Sunscreens: Phytochemical Insights and Formulation Advances
by Nassima Siroukane, Abdelhakim Kheniche and Lynda Souiki
Cosmetics 2025, 12(5), 225; https://doi.org/10.3390/cosmetics12050225 - 15 Oct 2025
Cited by 1 | Viewed by 802
Abstract
Valorization of Phoenix dactylifera L. (date) seeds, an abundant agro-industrial byproduct, offer a sustainable approach to developing multifunctional ingredients for dermocosmetic photoprotection. Rich in polyphenols, flavonoids, and lipophilic antioxidants, date seed extracts and oils demonstrate promising UV-absorbing, anti-inflammatory, and free-radical-scavenging properties. Recent in [...] Read more.
Valorization of Phoenix dactylifera L. (date) seeds, an abundant agro-industrial byproduct, offer a sustainable approach to developing multifunctional ingredients for dermocosmetic photoprotection. Rich in polyphenols, flavonoids, and lipophilic antioxidants, date seed extracts and oils demonstrate promising UV-absorbing, anti-inflammatory, and free-radical-scavenging properties. Recent in vitro, ex vivo, and preclinical studies underscore their potential as bioactive agents in sunscreen formulations, supporting both skin barrier integrity and oxidative stress mitigation, although clinical validation is still required. This review consolidates current knowledge on the phytochemical profile and biological efficacy of date seed derivatives, with emphasis on their integration into advanced delivery systems such as nanocarriers, Pickering emulsions, and cyclodextrin complexes to enhance photostability, skin permeability, and esthetic acceptability. Safety aspects, including allergenicity, phototoxicity, and regulatory gaps, are critically examined alongside environmental and ethical advantages, including biodegradability and vegan suitability. The findings advocate for the inclusion of Phoenix dactylifera L. seed actives in next-generation dermocosmetic sunscreens that align with circular bioeconomy principles, consumer demand for “reef-safe” products, and evolving international regulations. Further clinical validation is encouraged to fully translate these botanically derived agents into effective and ethically sound sun care innovations. Full article
(This article belongs to the Special Issue Advanced Cosmetic Sciences: Sustainability in Materials and Processes)
Show Figures

Figure 1

19 pages, 11841 KB  
Article
Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles
by Yu Song, Xueli Shen, Gangyue Zhou, Xia Xu, Yanan Cao, Wei Li, Yichen Hu, Jianglin Zhao, Dingtao Wu, Zunxi Huang and Liang Zou
Foods 2025, 14(19), 3429; https://doi.org/10.3390/foods14193429 - 5 Oct 2025
Viewed by 779
Abstract
In this study, the insufficient ability of tartary buckwheat protein (TBP) to stabilize Pickering emulsions was addressed by preparing TBP–sodium alginate (SA) composite particles via cross-linking and systematic optimization of the preparation parameters. The results showed that at a pH of 9.0 with [...] Read more.
In this study, the insufficient ability of tartary buckwheat protein (TBP) to stabilize Pickering emulsions was addressed by preparing TBP–sodium alginate (SA) composite particles via cross-linking and systematic optimization of the preparation parameters. The results showed that at a pH of 9.0 with 1.0% (w/v) TBP and 0.2% (w/v) SA, the zeta potential of the prepared TBP–SA composite particles was significantly more negative, and the particle size was significantly larger, than those of TBP, while emulsifying activity index and emulsifying stability index increased to 53.76 m2/g and 78.78%, respectively. Scanning electron microscopy confirmed the formation of a dense network structure; differential scanning calorimetry revealed a thermal denaturation temperature of 83 °C. Fourier transform infrared spectroscopy and surface hydrophobicity results indicated that the complex was formed primarily through hydrogen bonding and hydrophobic interactions between TBP and SA, which induced conformational changes in the protein. The Pickering emulsion prepared with 5% (w/v) TBP–SA composite particles and 60% (φ) oil phase was stable during 4-month storage, at a high temperature of 75 °C, high salt conditions of 600 mM, and pH of 3.0–9.0. The stabilization mechanisms may involve: (1) strong electrostatic repulsion provided by the highly negative zeta potential; (2) steric hindrance and mechanical strength imparted by the dense interfacial network; and (3) restriction of droplet mobility due to SA-induced gelation. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Graphical abstract

20 pages, 3112 KB  
Article
Porous Imprinted Microspheres with Covalent Organic Framework-Based, Precisely Designed Sites for the Specific Adsorption of Flavonoids
by Jinyu Li, Xuan Zhang, Jincheng Xu, Xi Feng and Shucheng Liu
Separations 2025, 12(10), 267; https://doi.org/10.3390/separations12100267 - 1 Oct 2025
Viewed by 348
Abstract
The application of microsphere molecularly imprinted materials for the targeted extraction and purification of flavonoids derived from agricultural waste has emerged as a prominent area of investigation. An innovative boronate affinity imprinted microsphere (MC-CD@BA-MIP) was successfully synthesized using the Pickering emulsion interfacial assembly [...] Read more.
The application of microsphere molecularly imprinted materials for the targeted extraction and purification of flavonoids derived from agricultural waste has emerged as a prominent area of investigation. An innovative boronate affinity imprinted microsphere (MC-CD@BA-MIP) was successfully synthesized using the Pickering emulsion interfacial assembly strategy for the selective separation of naringin (NRG). The double-bond functionalized covalent organic framework (COF)-based microspheres were synthesized through Schiff–base reaction and secondary interfacial emulsion polymerization. Then, the synthetic mono-(6-mercapto-6-deoxy)-β-cyclodextrin (SH-β-CD) was grafted onto the surface of the microspheres (MC) using click chemistry. The 1-allylpyridine-3-boronic acid (APBA) as a functional monomer was grafted onto the initiator (ABIB) through atom transfer radical polymerization (ATRP). Ultimately, the synthesized boronic acid-imprinted ABIB-BA-MIPs were immobilized onto the COFs microsphere surface through host–guest interactions. As expected, under neutral conditions, the MC-CD@BA-MIPs still exhibited a significant adsorption capacity (38.78 μmol g−1 at 308 K) for NRG. The regenerated MC-CD@BA-MIPs maintained 92.56% of their initial adsorption capacity through six consecutive cycles. Full article
(This article belongs to the Special Issue Recognition Materials and Separation Applications)
Show Figures

Figure 1

19 pages, 3379 KB  
Article
Anti-Obesity Potential of Modified Pomelo-Peel Dietary Fiber-Based Pickering Emulsion
by Kaitao Peng, Shiyi Tian, Shuang Bi, Xian Cui, Kaili Gao and Yuhuan Liu
Nutrients 2025, 17(19), 3036; https://doi.org/10.3390/nu17193036 - 23 Sep 2025
Cited by 1 | Viewed by 629
Abstract
Objectives: In response to the high prevalence of global obesity and associated metabolic diseases, this study aimed to investigate the effects of Pickering emulsions stabilized by cellulase-hydrolyzed pomelo peel insoluble dietary fiber (IDF), namely EPI and its octenyl succinic anhydride (OSA)-modified form (OSA-EPI), [...] Read more.
Objectives: In response to the high prevalence of global obesity and associated metabolic diseases, this study aimed to investigate the effects of Pickering emulsions stabilized by cellulase-hydrolyzed pomelo peel insoluble dietary fiber (IDF), namely EPI and its octenyl succinic anhydride (OSA)-modified form (OSA-EPI), on alleviating high-fat diet (HFD)-induced metabolic disorders in mice. Methods: Male C57BL/6J mice were subjected to an HFD-induced obesity model. Biochemical index determination, histopathological examination, gut microbiota analysis, and short-chain fatty acids (SCFAs) analysis were used to study the potential efficacy of pomelo peel IDF-based emulsion (EPI and OSA-EPI) in alleviating obesity and related metabolic diseases. Results: The findings demonstrated that both emulsions effectively mitigated HFD-induced health impairments: reduced weight gain, improved blood glucose and lipid profiles, attenuated tissue steatosis and inflammation, and lowered oxidative stress. Furthermore, both EPI and OSA-EPI restored gut microbiota diversity, promoted the proliferation of beneficial bacterial taxa (e.g., Akkermansia), and inhibited the growth of harmful genera (e.g., Muribaculum, Faecalibaculum). These changes were accompanied by increased production of SCFAs. Conclusions: This study confirms that modified pomelo peel IDF can effectively exert the health intervention effect of IDF on obesity when used as an emulsion stabilizer, providing a robust scientific foundation for the application of emulsified dietary fibers in combating obesity and related metabolic disorders. Full article
Show Figures

Graphical abstract

25 pages, 4236 KB  
Article
Green Synthesis of Iron Oxide Nanoparticles for Use in Pickering Emulsions: In Vitro UV-Absorbing and Antimicrobial Properties
by Ahmet Doğan Ergin, Zeynep Betül Erbay, Müberra Karaca, Suzan Ökten, Gülcan Kuyucuklu, Camillo Benetti and Ayça Altay Benetti
Cosmetics 2025, 12(5), 208; https://doi.org/10.3390/cosmetics12050208 - 17 Sep 2025
Viewed by 917
Abstract
The integration of nanotechnology with green chemistry presents sustainable strategies for developing multifunctional cosmeceutical formulations. In this study, iron oxide nanoparticles (IONPs) were successfully synthesized using antioxidant-rich green tea extract via an eco-friendly method. The nanoparticles were incorporated into a novel Pickering emulsion [...] Read more.
The integration of nanotechnology with green chemistry presents sustainable strategies for developing multifunctional cosmeceutical formulations. In this study, iron oxide nanoparticles (IONPs) were successfully synthesized using antioxidant-rich green tea extract via an eco-friendly method. The nanoparticles were incorporated into a novel Pickering emulsion comprising coconut oil and green tea extract, targeting UV protection and antimicrobial performance. The green-synthesized IONPs displayed strong UV absorption properties, achieving an SPF of 6.20 at 1.0 M concentration, outperforming standard TiO2 nanoparticles (SPF 3.98). The optimized Pickering emulsion formulation showed stability and skin-friendly pH. Antimicrobial studies revealed significant inhibition of Cutibacterium acnes and Staphylococcus aureus, with over 97% microbial reduction observed within 2 h of exposure. This dual-functional system, combining UV protection and antimicrobial effects, demonstrates the potential of green nanomaterials for developing safe, effective, and sustainable skincare formulations. The study provides new insight into the application of iron-based green nanotechnology in surfactant-free emulsions, supporting further innovation in the field of natural photoprotective cosmeceuticals. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

23 pages, 13794 KB  
Article
Tannic Acid-Modified Sodium Caseinate Pickering Emulsion Coatings: Characterization, Enhanced Mechanical/Antibacterial Properties, and Application in Cherry Tomato Preservation
by Qiyuan Feng, Hesheng Wang, Xinyu Yang, Linna Wang, Tian Li, Limin Guo, Silong Jia, Yaqian Yang, Youwei Yu and Shaoying Zhang
Foods 2025, 14(18), 3190; https://doi.org/10.3390/foods14183190 - 12 Sep 2025
Viewed by 575
Abstract
This study developed a tannic acid-modified sodium caseinate (SC-TA) stabilized Pickering emulsion containing bergamot essential oil (BEO) and carboxymethyl tara gum for cherry tomato preservation. Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) analysis confirmed successful SC-TA conjugation and improved emulsion stability. [...] Read more.
This study developed a tannic acid-modified sodium caseinate (SC-TA) stabilized Pickering emulsion containing bergamot essential oil (BEO) and carboxymethyl tara gum for cherry tomato preservation. Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) analysis confirmed successful SC-TA conjugation and improved emulsion stability. The emulsion significantly lowered the water vapor permeability (WVP) of the film, enhanced its tensile strength and elongation, and exhibited antimicrobial activity against Escherichia coli and Staphylococcus aureus (the inhibition zones of the coating with Pickering emulsion were 10.67 mm larger and 6.67 mm larger than those without Pickering emulsion, respectively, against Escherichia coli and Staphylococcus aureus), as well as antioxidant capabilities (the coating with Pickering emulsion showed a 128.6% increase in DPPH scavenging rate and a 341.8% increase in ABTS scavenging rate compared to the coating without Pickering emulsion). Applied to cherry tomatoes, it effectively reduced quality deterioration by minimizing weight/firmness loss, preserving nutrients (vitamin C, lycopene), and decreasing oxidative damage. These comprehensive effects confirm that the BEO-stabilized Pickering emulsion coating represents a promising technology for postharvest management, capable of extending fruit shelf life while preserving nutritional quality. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

27 pages, 4764 KB  
Article
Development and Characterization of PVA/KGM-Based Bioactive Films Incorporating Natural Extracts and Thyme Oil
by Ayşenur Yeşilyurt
Polymers 2025, 17(17), 2425; https://doi.org/10.3390/polym17172425 - 8 Sep 2025
Viewed by 1111
Abstract
This study focused on the development and characterization of polyvinyl alcohol (PVA)- and konjac glucomannan (KGM)-based composite films enriched with natural bioactive additives. A PK (PVA/KGM) matrix with the optimum tensile strength was selected, and five film formulations were prepared by incorporating Aronia [...] Read more.
This study focused on the development and characterization of polyvinyl alcohol (PVA)- and konjac glucomannan (KGM)-based composite films enriched with natural bioactive additives. A PK (PVA/KGM) matrix with the optimum tensile strength was selected, and five film formulations were prepared by incorporating Aronia melanocarpa extract (AME), red dragon fruit extract (DFE), and thyme essential oil (TEO). TEO was also introduced via a Pickering emulsion (PE) technique. The total phenolic content (TPC) and free radical scavenging activity (FRSA) of extracts and films were determined, where AME exhibited the highest antioxidant activity (TPC: 243 mg GAE/g; FRSA: 81.7%). The additive-free PK film displayed limited antioxidant activity (18%), while antioxidant capacity significantly improved with extract and EO incorporation. The PK-A film (AME-added) demonstrated the highest tensile strength and lowest water vapor permeability, supported by increased local crystallinity detected in XRD. Color analysis indicated dominant red-violet tones in AME films and greenish-yellow tones in DFE films. FTIR confirmed that no new chemical bonds were formed between active compounds and the polymer matrix. DSC thermograms revealed consistent melting peaks (~150 °C) for all films, while Tg varied from 37 to 73 °C depending on additive type, reflecting plasticization effects of extracts and the counterbalancing effect of essential oil. The most hydrophobic (76.8°) and opaque sample was PK-ADO, prepared via the PE technique. Overall, natural extracts improved the structural, thermal, barrier, and antioxidant properties of PK films. Full article
(This article belongs to the Special Issue Functionalized Bio-Based Polymers for Environmental Applications)
Show Figures

Figure 1

16 pages, 2178 KB  
Article
The Stability of Four Kinds of Cellulose Pickering Emulsions and Optimization of the Properties of Mayonnaise by a Soybean Byproduct Pickering Emulsion
by Zhanxin Zheng, Ziwei Feng, Liu Liu, Yuhuan Zhang, Jianke Li and Xiaoxia Wu
Polysaccharides 2025, 6(3), 77; https://doi.org/10.3390/polysaccharides6030077 - 1 Sep 2025
Viewed by 844
Abstract
Soybean residue, kudzu root residue, astragalus residue and pomegranate peel residue are byproducts of food processing with high yield. In the food processing industry in Northwest China, these waste residues contain a large amount of nutrients and have a large amount of emissions. [...] Read more.
Soybean residue, kudzu root residue, astragalus residue and pomegranate peel residue are byproducts of food processing with high yield. In the food processing industry in Northwest China, these waste residues contain a large amount of nutrients and have a large amount of emissions. In this study, cellulose was extracted from four kinds of waste residue and characterized to study its emulsification performance and application effect. The results are as follows: The extracted cellulose had typical cellulose crystal structure and good thermal stability. Among the four kinds of cellulose, the physical, chemical and functional properties of the soybean byproduct were significantly better than those of standard cellulose and other sources of cellulose. The Pickering emulsions fixed by four kinds of cellulose and soybean lecithin have similar properties. The emulsification performance of the immobilized soybean byproduct cellulose Pickering emulsion is the best. Soybean byproduct cellulose was used as an oil substitute for the development of new mayonnaise. The results showed that when 8% soybean byproduct cellulose Pickering emulsion was used to replace vegetable oil, the quality of reduced-fat mayonnaise was better. This soybean byproduct cellulose has potential development and application value in industrial food. Full article
Show Figures

Graphical abstract

33 pages, 7310 KB  
Review
Advances in Architectural Design, Propulsion Mechanisms, and Applications of Asymmetric Nanomotors
by Yanming Chen, Meijie Jia, Haihan Fan, Jiayi Duan and Jianye Fu
Nanomaterials 2025, 15(17), 1333; https://doi.org/10.3390/nano15171333 - 29 Aug 2025
Viewed by 973
Abstract
Asymmetric nanomotors are a class of self-propelled nanoparticles that exhibit asymmetries in shape, composition, or surface properties. Their unique asymmetry, combined with nanoscale dimensions, endows them with significant potential in environmental and biomedical fields. For instance, glutathione (GSH) induced chemotactic nanomotors can respond [...] Read more.
Asymmetric nanomotors are a class of self-propelled nanoparticles that exhibit asymmetries in shape, composition, or surface properties. Their unique asymmetry, combined with nanoscale dimensions, endows them with significant potential in environmental and biomedical fields. For instance, glutathione (GSH) induced chemotactic nanomotors can respond to the overexpressed glutathione gradient in the tumor microenvironment to achieve autonomous chemotactic movement, thereby enhancing deep tumor penetration and drug delivery for efficient induction of ferroptosis in cancer cells. Moreover, self-assembled spearhead-like silica nanomotors reduce fluidic resistance owing to their streamlined architecture, enabling ultra-efficient catalytic degradation of lipid substrates via high loading of lipase. This review focuses on three core areas of asymmetric nanomotors: scalable fabrication (covering synthetic methods such as template-assisted synthesis, physical vapor deposition, and Pickering emulsion self-assembly), propulsion mechanisms (chemical/photo/biocatalytic, ultrasound propelled, and multimodal driving), and functional applications (environmental remediation, targeted biomedicine, and microelectronic repair). Representative nanomotors were reviewed through the framework of structure–activity relationship. By systematically analyzing the intrinsic correlations between structural asymmetry, energy conversion efficiency, and ultimate functional efficacy, this framework provides critical guidance for understanding and designing high-performance asymmetric nanomotors. Despite notable progress, the prevailing challenges primarily reside in the biocompatibility limitations of metallic catalysts, insufficient navigation stability within dynamic physiological environments, and the inherent trade-off between propulsion efficiency and biocompatibility. Future efforts will address these issues through interdisciplinary synthesis strategies. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

Back to TopTop