Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Samples
2.3. Sample Preparation
2.4. LC–MS/MS Analysis
2.5. Method Validation
2.6. Matrix Effects Study
3. Results
3.1. Method Validation
3.2. Occurrence of Multiple Mycotoxins in Edible Vegetable Oils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Logrieco, A.F.; Miller, J.D.; Eskola, M.; Krska, R.; Ayalew, A.; Bandyopadhyay, R.; Battilani, P.; Bhatnagar, D.; Chulze, S.; De Saeger, S.; et al. The mycotoxin charter: Increasing awareness of, and concerted action for, minimizing mycotoxin exposure worldwide. Toxins 2018, 10, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waśkiewicz, A. Mycotoxins: Natural occurrence of mycotoxins in foods. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 880–886. [Google Scholar]
- Gelderblom, W.C.A.; Shephard, G.S.; Rheeder, J.P.; Sathe, S.K.; Ghiasi, A.; Motarjemi, Y.; Rheeder, J.P. Edible nuts, oilseeds and legumes. In Food Safety Management; Motarjemi, Y., Lelieveld, H., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 301–324. [Google Scholar]
- Bhat, R.; Reddy, K.R.N. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: Updates from last decade. Food Chem. 2017, 215, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Haschek, W.M.; Voss, K.A. Mycotoxins. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology, 3rd ed.; Hascheck, W.M., Rousseaux, C.G., Walling, M.A., Eds.; Academic Press: Boston, MA, USA, 2013; pp. 1187–1258. [Google Scholar]
- Aupanun, S.; Poapolathep, S.; Giorgi, M.; Imsilk, K.; Poapolathep, A. An overview of the toxicology and toxicokinetics of fusarenon-X, a type B trichothecene mycotoxin. J. Vet. Med. Sci. 2017, 79, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostrom. Mycotoxins: Toxicology. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldra, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 43–48. [Google Scholar]
- Sharmili, K.; Jinap, S.; Sukor, R. Development, optimization and validation of QuEChERS based liquid chromatography tandem mass spectrometry method for determination of multimycotoxin in vegetable oil. Food Cont. 2016, 70, 152–160. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, X.; Shen, C.; Qu, B. Determination of 16 mycotoxins in vegetable oils using a QuEChERs method combined with high-performance liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2017, 34, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruiz, J.L.; Romero-Gonzalez, R.; Martinez Vidal, J.L.; Garrido Frenich, A. A rapid method for the determination of mycotoxins in edible vegetable oils by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2019, 288, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Zhang, H.; Wu, L.; Jin, N.; Wang, J.; Jiang, K. Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography-triple quadrupole mass spectrometry. Food Chem. 2015, 166, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Escobar, J.; Loran, S.; Gimenez, I.; Ferruz, E.; Herrera, M.; Herrera, A.; Arino, A. Occurrence and exposure assessment of Fusarium mycotoxins in maize germ, refined corn oils and margarine. Food Chem. Toxicol. 2013, 62, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No. 1126/2007 of 28 September 2007 amending regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards fusarium toxins in maize and maize products. Off. J. Eur. Commun. 2007, L255, 14.
- Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Uni. 2006, L364, 5–24.
- Sinphithakkul, P.; Poapolathep, A.; Klangkaew, N.; Imsilk, K.; Logrieco, A.F.; Zhang, Z.; Poapolathep, S. Occurrence of multiple mycotoxins in various types of rice and barley samples in Thailand. J. Food Prot. 2019, 82, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- SANTE. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. In European Commission Document No. SANTE/11945/; European Commission: Luxembourg, 2015. [Google Scholar]
- Finoli, C.; Vecchio, A.; Planeta, D. Presenza di micotossine in oli extra vergini d’ olive ed olive da mensa (Mycotoxin occurrence in extra virgin olive oils and in olives). Ind. Aliment. 2005, 44, 506–514. [Google Scholar]
- Cavaliere, C.; Foglia, P.; Guarino, C.; Nazzari, M.; Samperi, R.; Lagana, A. Determination of aflatoxins in olive oil by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta. 2007, 596, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, R.; Tafuri, A.; Logrieco, A.; Galvano, F.; Balzano, D.; Ritieni, A. Simultaneous determination of aflatoxin B1 and ochratoxin A and their natural occurrence in Mediterranean virgin olive oil. Food Addit. Contam. 2007, 24, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papachristou, A.; Markaki, P. Determination of ochratoxin A in virgin olive oils of Greek origin by immunoaffinity column clean-up and high-performance liquid chromatography. Food Addit. Contam. 2004, 21, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Nabizadeh, S.; Shariatifar, N.; Shokoohi, E.; Shoeibi, S.; Gavahian, M.; Fakhri, Y.; Azari, A.; Khaneghah, A.M. Prevalence and probabilistic health risk assessment of aflatoxins B1, B2, G1, and G2 in Iranian edible oils. Environ. Sci. Pollut. Res. 2018, 25, 35562–35570. [Google Scholar] [CrossRef] [PubMed]
- Majerus, P.; Craft, N.; Kramer, M. Rapid determination of zearalenone in edible oil by HPLC with fluorescence detection. Mycotox. Res. 2009, 25, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Drzymala, S.S.; Weiz, S.; Heinze, J.; Marten, S.; Prinz, C.; Zimathies, A.; Garbe, L.-A.; Koch, M. Automated solid-phase extraction coupled online with HPLC-FLD for the quantification of zearalenone in edible oil. Anal. Bioanal. Chem. 2015, 407, 3489–3497. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Munissi, J.J.E.; Nyandoro, S.S. Aflatoxins in sunflower seeds and unrefined sunflower oils from Singida, Tanzania. Food Addit. Contam. Part B 2018, 11, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Iqbal, S.Z.; Abdull Razis, A.F.; Pervaiz, W.; Ahmad, T.; Usman, S.; Ali, N.B.; Asi, M.R. Occurrence of aflatoxins in edible vegetable seeds and oil samples available in Pakistani retail markets and estimation of dietary intake in consumers. Int. J. Environ. Res. Public Health 2021, 18, 8015. [Google Scholar] [CrossRef] [PubMed]
Analyte | Precursor Ion (m/z) | Product Ion (m/z) | Collision Energy (eV) | Fragmentor (V) | Polarity |
---|---|---|---|---|---|
AFB1 | 313.07 QPI a | 285.1 241.0 | 21 35 | 150 150 | Positive |
AFB2 | 315.09 QPI a | 287.1 259.0 | 25 29 | 160 160 | Positive |
AFG1 | 329.1 QPI a | 311 243.0 | 25 43 | 160 160 | Positive |
AFG2 | 331.08 QPI a | 313 245.0 | 25 29 | 180 180 | Positive |
OTA | 404 QPI a | 192.9 102.1 | 48 80 | 130 130 | Positive |
ZEA | 319.16 QPI a | 283 187.0 | 5 17 | 80 80 | Positive |
BEA | 801.4 QPI a | 784.3 244.1 | 13 35 | 160 160 | Positive |
FB1 | 722.4 QPI a | 352.5 334.4 | 40 45 | 160 160 | Positive |
FB2 | 706.3 QPI a | 336.2 318.3 | 35 40 | 200 200 | Positive |
Analyte | Palm Oils | Corn Oils | Olive Oils | ||||||
---|---|---|---|---|---|---|---|---|---|
LOD (µg/kg) | LOQ (µg/kg) | R2 | LOD (µg/kg) | LOQ (µg/kg) | R2 | LOD (µg/kg) | LOQ (µg/kg) | R2 | |
AFB1 | 0.03 | 0.12 | 0.999 | 0.07 | 0.24 | 0.996 | 0.14 | 0.47 | 0.995 |
AFB2 | 0.1 | 0.35 | 0.998 | 0.15 | 0.52 | 0.998 | 0.32 | 1.06 | 0.998 |
AFG1 | 0.07 | 0.26 | 0.999 | 0.07 | 0.26 | 0.997 | 0.25 | 0.83 | 0.993 |
AFG2 | 0.12 | 0.42 | 0.999 | 0.23 | 0.78 | 0.997 | 0.28 | 0.96 | 0.999 |
OTA | 0.11 | 0.38 | 0.999 | 0.1 | 0.35 | 0.999 | 0.28 | 0.93 | 0.998 |
ZEA | 10.8 | 36.02 | 0.990 | 14.66 | 48.87 | 0.991 | 7.95 | 26.51 | 0.991 |
BEA | 0.34 | 1.14 | 0.999 | 0.27 | 0.92 | 0.996 | 0.07 | 0.23 | 0.997 |
FB1 | 2.11 | 7.03 | 0.990 | 1.66 | 5.56 | 0.996 | 4.24 | 14.14 | 0.990 |
FB2 | 4.53 | 15.1 | 0.990 | 4.99 | 16.63 | 0.995 | 3.94 | 13.14 | 0.997 |
Analyte | Sunflower Oils | Soybean Oils | Rice Bran Oils | ||||||
LOD (µg/kg) | LOQ (µg/kg) | R2 | LOD (µg/kg) | LOQ (µg/kg) | R2 | LOD (µg/kg) | LOQ (µg/kg) | R2 | |
AFB1 | 0.03 | 0.11 | 0.999 | 0.06 | 0.2 | 0.999 | 0.03 | 0.11 | 0.999 |
AFB2 | 0.04 | 0.14 | 0.999 | 0.1 | 0.34 | 0.999 | 0.05 | 0.18 | 0.998 |
AFG1 | 0.02 | 0.07 | 0.999 | 0.12 | 0.41 | 0.999 | 0.03 | 0.1 | 0.999 |
AFG2 | 0.64 | 2.14 | 0.999 | 0.15 | 0.52 | 0.999 | 0.33 | 1.11 | 0.999 |
OTA | 0.22 | 0.75 | 0.999 | 0.3 | 1.01 | 0.999 | 0.12 | 0.42 | 0.998 |
ZEA | 10.5 | 35.02 | 0.997 | 16.36 | 54.56 | 0.990 | 14.45 | 48.50 | 0.990 |
BEA | 0.2 | 0.67 | 0.998 | 0.13 | 0.44 | 0.996 | 0.11 | 0.38 | 0.998 |
FB1 | 2.38 | 7.96 | 0.990 | 4.79 | 15.99 | 0.990 | 1.85 | 6.17 | 0.990 |
FB2 | 2.03 | 6.78 | 0.990 | 2.37 | 7.91 | 0.990 | 2.7 | 9.02 | 0.990 |
Mycotoxin (µg/kg) | Palm Oils | Corn Oils | ||||
---|---|---|---|---|---|---|
Recovery (%) (n = 5) | Intraday Precision (%RSD) (n = 5) | Interday Precision (%RSD) (n = 5) | Recovery (%) (n = 5) | Intraday Precision (%RSD) (n = 5) | Interday Precision (%RSD) (n = 5) | |
AFB1 | ||||||
0.5 | 114.2 | 3.5 | 5.3 | 80.4 | 5.1 | 4.9 |
2.5 | 94.2 | 2.6 | 7.4 | 93.5 | 2.1 | 6.2 |
10 | 92.4 | 3.5 | 5.2 | 98.2 | 1.1 | 2.3 |
AFB2 | ||||||
0.5 | 96 | 2 | 12.1 | 95.7 | 6.3 | 5.8 |
2.5 | 115 | 9.5 | 9.1 | 79.5 | 7.6 | 6.4 |
10 | 110.7 | 14.3 | 8.4 | 72.4 | 2.6 | 2.9 |
AFG1 | ||||||
0.5 | 93 | 5 | 5.9 | 93.7 | 6.4 | 7.7 |
2.5 | 105.5 | 2.3 | 2.4 | 92.5 | 4.5 | 4.6 |
10 | 112.9 | 3 | 4.3 | 89.3 | 2.8 | 3.8 |
AFG2 | ||||||
0.5 | 104.1 | 13.1 | 13.2 | 85.8 | 12 | 12 |
2.5 | 114.7 | 7.8 | 3.8 | 97 | 12.2 | 8.2 |
10 | 105.3 | 4 | 3.9 | 93.8 | 3 | 2.6 |
OTA | ||||||
1 | 92.5 | 4.5 | 5.9 | 102 | 3.7 | 7.9 |
5 | 105.4 | 4.9 | 3.4 | 105 | 6.8 | 3.7 |
25 | 102.7 | 1.8 | 2.4 | 98.5 | 3 | 5.8 |
ZEA | ||||||
75 | 99.3 | 6 | 4.4 | 92.6 | 7.8 | 9 |
150 | 91 | 2 | 3.6 | 99.8 | 5.4 | 6.4 |
350 | 93 | 1.4 | 4 | 104.5 | 2.6 | 5.5 |
BEA | ||||||
0.5 | 84.3 | 2.9 | 3.2 | 81.6 | 10.6 | 7.6 |
2.5 | 88.2 | 2.3 | 3.8 | 88.3 | 6.4 | 5.3 |
10 | 93.3 | 1.5 | 2.9 | 90.7 | 8.4 | 7.1 |
FB1 | ||||||
10 | 85 | 2.3 | 6.3 | 84.6 | 7.7 | 5.3 |
50 | 93.7 | 2.6 | 5.5 | 86.7 | 7.5 | 6.8 |
150 | 107.4 | 3.8 | 4.8 | 96.6 | 5.9 | 4.4 |
FB2 | ||||||
10 | 84.8 | 4.6 | 3.7 | 95.6 | 5 | 4.5 |
50 | 101.7 | 6.5 | 5.9 | 96.2 | 3.5 | 4.3 |
150 | 103.3 | 4.4 | 4.8 | 101.4 | 2.8 | 2 |
Mycotoxin (µg/kg) | Olive Oils | Sunflower Oils | ||||
Recovery (%) (n = 5) | Intraday Precision (%RSD) (n = 5) | Interday Precision (%RSD) (n = 5) | Recovery (%) (n = 5) | Intraday Precision (%RSD) (n = 5) | Interday Precision (%RSD) (n = 5) | |
AFB1 | ||||||
0.5 | 82.7 | 4.4 | 5.4 | 84.7 | 12.5 | 10.2 |
2.5 | 91.2 | 4.8 | 4.9 | 91.1 | 1.6 | 11.6 |
10 | 94.1 | 7.3 | 5.5 | 96.1 | 3.9 | 10.4 |
AFB2 | ||||||
0.5 | 86.3 | 5.8 | 6.2 | 90.1 | 4.8 | 5.2 |
2.5 | 91.5 | 2.4 | 3.4 | 93.3 | 3.9 | 3.7 |
10 | 96.2 | 3.8 | 4.8 | 94.3 | 2.3 | 10.2 |
AFG1 | ||||||
0.5 | 85 | 8.2 | 7.1 | 95.7 | 5.7 | 5 |
2.5 | 87.6 | 7.4 | 5.7 | 93.7 | 2.3 | 2.2 |
10 | 90.7 | 6.9 | 8.3 | 103.4 | 4.5 | 8.6 |
AFG2 | ||||||
0.5 | 108.7 | 3.9 | 2.9 | 98.6 | 7.1 | 5.3 |
2.5 | 101.6 | 4.1 | 4 | 95.4 | 6.5 | 4.1 |
10 | 105.1 | 3.6 | 3.9 | 92.6 | 3.2 | 10.6 |
OTA | ||||||
1 | 82.2 | 2.6 | 3.8 | 79.1 | 7.8 | 10.5 |
5 | 88.4 | 3.8 | 6.9 | 85 | 5.3 | 4.5 |
25 | 92.9 | 4 | 4.1 | 89.3 | 1.4 | 2.8 |
ZEA | ||||||
75 | 95.4 | 3.4 | 8.4 | 104.4 | 4.6 | 7.1 |
150 | 100.1 | 2.1 | 2.5 | 92.4 | 2.7 | 3.6 |
350 | 104.3 | 2.2 | 2.7 | 92.6 | 5 | 4.7 |
BEA | ||||||
0.5 | 84.6 | 8 | 7.5 | 115.7 | 3.1 | 3.8 |
2.5 | 106.1 | 9.3 | 11.8 | 117.2 | 10.6 | 8.1 |
10 | 91.1 | 11 | 9.7 | 114.1 | 13.5 | 8.2 |
FB1 | ||||||
10 | 106.6 | 6.1 | 4.7 | 84.2 | 1.8 | 2.3 |
50 | 93.2 | 4.3 | 4.5 | 92.6 | 2.1 | 4.1 |
150 | 90.6 | 3.3 | 3.6 | 95.1 | 4.6 | 2.6 |
FB2 | ||||||
10 | 93.4 | 5.3 | 6.1 | 84 | 8.4 | 5.4 |
50 | 106.6 | 7.7 | 5.3 | 90.6 | 8.3 | 4.7 |
150 | 100.1 | 7.8 | 4.3 | 87.4 | 8.9 | 8.3 |
Mycotoxin (µg/kg) | Soybean Oils | Rice Bran Oils | ||||
Recovery (%) (n = 5) | Intraday Precision (%RSD) (n = 5) | Interday Precision (%RSD) (n = 5) | Recovery (%) (n = 5) | Intraday Precision (%RSD) (n = 5) | Interday Precision (%RSD) (n = 5) | |
AFB1 | ||||||
0.5 | 101.1 | 7.05 | 8.9 | 103.3 | 1.9 | 4.1 |
2.5 | 98.6 | 1.6 | 3.2 | 91.6 | 3.6 | 2.3 |
10 | 105.4 | 5.1 | 6.8 | 89.7 | 4.5 | 5.2 |
AFB2 | ||||||
0.5 | 84.2 | 19.7 | 8.2 | 84.3 | 6.1 | 4.1 |
2.5 | 92.8 | 3.8 | 5.3 | 90.6 | 1.9 | 3.5 |
10 | 93.4 | 2.9 | 5.2 | 88.4 | 4.6 | 4.7 |
AFG1 | ||||||
0.5 | 84.8 | 6.9 | 7.5 | 89.4 | 4.7 | 5.5 |
2.5 | 101.7 | 3.9 | 3.8 | 86.4 | 4 | 2.9 |
10 | 105.3 | 4.1 | 5.2 | 83.1 | 4.6 | 5.1 |
AFG2 | ||||||
0.5 | 88.7 | 3.1 | 6.2 | 85.6 | 6.6 | 6.9 |
2.5 | 91.6 | 4.6 | 5.9 | 83.6 | 3.2 | 4.8 |
10 | 103.3 | 2.9 | 6.5 | 75.7 | 5.9 | 5.6 |
OTA | ||||||
1 | 81.4 | 10.7 | 10.4 | 93.7 | 6.2 | 7.9 |
5 | 74.9 | 5.7 | 7.7 | 77.9 | 4.6 | 3.6 |
25 | 75.6 | 0.5 | 2.4 | 78 | 5.5 | 6.2 |
ZEA | ||||||
75 | 85.6 | 8.6 | 7.5 | 79.7 | 3.6 | 4.4 |
150 | 88.6 | 1.5 | 3.8 | 92.9 | 2.9 | 3.2 |
350 | 101.2 | 7.4 | 7.8 | 93.1 | 6.2 | 4.4 |
BEA | ||||||
0.5 | 85.6 | 6.6 | 7.4 | 87.1 | 10.3 | 8.5 |
2.5 | 89.1 | 6.3 | 7 | 85.6 | 8.2 | 7.3 |
10 | 86.6 | 8.7 | 10.3 | 88.2 | 5.8 | 6.4 |
FB1 | ||||||
10 | 83.3 | 3.3 | 6.3 | 84.5 | 3.1 | 3.5 |
50 | 92.7 | 3.6 | 4.5 | 86 | 5.2 | 4.8 |
150 | 104.6 | 4.8 | 5.5 | 90.6 | 4.6 | 5.8 |
FB2 | ||||||
10 | 82.3 | 3.6 | 4.1 | 86.8 | 4.6 | 5.1 |
50 | 99.7 | 5.6 | 6.9 | 103.7 | 6.2 | 6.9 |
150 | 103.3 | 4.4 | 4.9 | 106.3 | 6.3 | 7.4 |
Mycotoxin | Palm Oils (n = 50) | Corn Oils (n = 50) | Olive Oils (n = 50) | ||||||
---|---|---|---|---|---|---|---|---|---|
No. of Positive Samples | Level (µg/kg) | No. of Positive Samples | Level (µg/kg) | No. of Positive Samples | Level (µg/kg) | ||||
Range | Mean a | Range | Mean a | Range | Mean a | ||||
AFB1 | 27 | 0.20–0.37 | 0.25 | 0 | <LOD | <LOD | 0 | <LOD | <LOD |
AFB2 | 6 | 0.44–1.05 | 0.70 | 0 | <LOD | <LOD | 18 | 1.11–2.32 | 1.76 |
AFG1 | 0 | <LOD b | <LOD | 0 | <LOD | <LOD | 0 | <LOD | <LOD |
AFG2 | 6 | 0.44–2.59 | 0.87 | 0 | <LOD | <LOD | 0 | <LOD | <LOD |
OTA | 11 | 0.42–0.48 | 0.44 | 0 | <LOD | <LOD | 0 | <LOD | <LOD |
ZEA | 0 | <LOD | <LOD | 5 | 49.16–69.13 | 60.33 | 12 | 29.17–208.54 | 116.33 |
BEA | 0 | <LOD | <LOD | 0 | <LOD | <LOD | 20 | 0.23–0.92 | 0.30 |
FB1 | 0 | <LOD | <LOD | 8 | 5.69–9.68 | 7.27 | 2 | 17.25–57.79 | 37.52 |
FB2 | 0 | <LOD | <LOD | 42 | 32.64–101.41 | 62.55 | 11 | 13.25–71.42 | 24.27 |
Mycotoxin | Sunflower Oils (n = 50) | Soybean Oils (n = 50) | Rice Bran Oils (n = 50) | ||||||
No. of Positive Samples | Level (µg/kg) | No. of Positive Samples | Level (µg/kg) | No. of Positive Samples | Level (µg/kg) | ||||
Range | Mean a | Range | Mean a | Range | Mean a | ||||
AFB1 | 4 | 0.13–0.15 | 0.14 | 20 | 0.21–0.27 | 0.22 | 26 | 0.27–0.49 | 0.31 |
AFB2 | 0 | <LOD b | <LOD | 10 | 0.35–0.48 | 0.41 | 1 | 0.58 | 0.58 |
AFG1 | 22 | 0.10–0.12 | 0.10 | 0 | <LOD | <LOD | 5 | 0.31–0.32 | 0.31 |
AFG2 | 0 | <LOD | <LOD | 0 | <LOD | <LOD | 0 | <LOD | <LOD |
OTA | 0 | <LOD | <LOD | 0 | <LOD | <LOD | 6 | 0.54–0.55 | 0.54 |
ZEA | 0 | <LOD | <LOD | 1 | 59.31 | 59.31 | 0 | <LOD | <LOD |
BEA | 0 | <LOD | <LOD | 0 | <LOD | <LOD | 0 | <LOD | <LOD |
FB1 | 0 | <LOD | <LOD | 0 | <LOD | <LOD | 0 | <LOD | <LOD |
FB2 | 0 | <LOD | <LOD | 0 | <LOD | <LOD | 0 | <LOD | <LOD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junsai, T.; Poapolathep, S.; Sutjarit, S.; Giorgi, M.; Zhang, Z.; Logrieco, A.F.; Li, P.; Poapolathep, A. Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography–Tandem Mass Spectrometry. Foods 2021, 10, 2795. https://doi.org/10.3390/foods10112795
Junsai T, Poapolathep S, Sutjarit S, Giorgi M, Zhang Z, Logrieco AF, Li P, Poapolathep A. Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography–Tandem Mass Spectrometry. Foods. 2021; 10(11):2795. https://doi.org/10.3390/foods10112795
Chicago/Turabian StyleJunsai, Thammaporn, Saranya Poapolathep, Samak Sutjarit, Mario Giorgi, Zhaowei Zhang, Antonio Francesco Logrieco, Peiwu Li, and Amnart Poapolathep. 2021. "Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography–Tandem Mass Spectrometry" Foods 10, no. 11: 2795. https://doi.org/10.3390/foods10112795
APA StyleJunsai, T., Poapolathep, S., Sutjarit, S., Giorgi, M., Zhang, Z., Logrieco, A. F., Li, P., & Poapolathep, A. (2021). Determination of Multiple Mycotoxins and Their Natural Occurrence in Edible Vegetable Oils Using Liquid Chromatography–Tandem Mass Spectrometry. Foods, 10(11), 2795. https://doi.org/10.3390/foods10112795