From Coal to Carbon Quantum Dots by Chemical Oxidation: Effects of Synthesis Conditions and Coal Chemical Structure
Abstract
1. Introduction
2. Experiment and Method
2.1. Materials
2.2. Synthesis of Coal-Based CDs
2.3. Characterization
2.4. Quantum Yield (QY) and Mass Yield of CDs
2.5. Spectrum Analysis of Raw Coals and CDs
3. Results and Discussion
3.1. The Properties of Coal-Based CDs
3.2. Effects of Synthesis Conditions on the Properties of Coal-Based CDs
3.3. Effects of Coal Structure on the Properties of Coal-Based CDs
3.4. Discussion on the Synthesis and Photoluminescence Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A






| Name | Peak Position (cm−1) | Structure Information |
|---|---|---|
| D4 | 1200 | sp2–sp3 mixed bond at the edge of the aromatic ring |
| D1 | 1350 | In-plane defects of graphite; large aromatic ring structure with no less than six rings and C–C bonds between aromatic rings |
| D3 | 1500–1550 | Amorphous carbon structures such as the (methylene) structure, the small aromatic ring structure of 3–5 rings, etc. |
| G | 1580 | E2g in-plane vibration of graphite; breathing vibration of the aromatic ring |
References
- Dhenadhayalan, N.; Lin, K.; Saleh, T.A. Recent Advances in Functionalized Carbon Dots toward the Design of Efficient Materials for Sensing and Catalysis Applications. Small 2020, 16, 1905767. [Google Scholar] [CrossRef]
- Krasley, A.T.; Li, E.; Galeana, J.M.; Bulumulla, C.; Beyene, A.G.; Demirer, G.S. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem. Rev. 2024, 124, 3085–3185. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, Y.; Ren, P.; Zhang, B.; Zhao, Z.; Hou, X.; Ren, F.; Chen, Z.; Guo, Z.; Yang, H.; et al. Recent advances of carbon dots based emerging materials for supercapacitors applications. J. Energy Storage 2024, 85, 111118. [Google Scholar] [CrossRef]
- Nandi, S.; Dalapati, R. Fluorometric Sensing of Arsenic in Water: Recent Developments in Metal-Organic Framework-Based Sensors. Processes 2025, 13, 923. [Google Scholar] [CrossRef]
- El-Shabasy, R.M.; Elsadek, M.F.; Ahmed, B.M.; Farahat, M.F.; Mosleh, K.N.; Taher, M.M. Recent Developments in Carbon Quantum Dots: Properties, Fabrication Techniques, and Bio-Applications. Processes 2021, 9, 388. [Google Scholar] [CrossRef]
- Etefa, H.F.; Tessema, A.A.; Dejene, F.B. Carbon Dots for Future Prospects: Synthesis, Characterizations and Recent Applications: A Review (2019–2023). C-J. Carbon Res. 2024, 10, 60. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Y.; Sun, K.; Li, X.; Liu, X.; Zhu, J.; Khan, M.Z.H. Mechanism of Fluorescence Characteristics and Application of Zinc-Doped Carbon Dots Synthesized by Using Zinc Citrate Complexes as Precursors. C-J. Carbon Res. 2025, 11, 48. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, X.; Pan, Q.; Zhang, Y.; Deng, W.; Zou, G.; Hou, H.; Ji, X. A review of carbon dots in synthesis strategy. Coord. Chem. Rev. 2024, 498, 215468. [Google Scholar] [CrossRef]
- Murugan, R.V.; Sridharan, G.; Atchudan, R.; Arya, S.; Ganapathy, D.; Sundramoorthy, A.K. Fluorometric Determination of Fe3+ Ions Using Green Synthesized Carbon Quantum Dots from Damask Rose flowers. Curr. Nanosci. 2025, 21, 521–531. [Google Scholar] [CrossRef]
- Yang, C.; Xu, G.; Hou, C.; Zhang, H. Ratiometric fluorescence nanoprobe based on nitrogen-doped carbon dots for Cu2+ and Fe3+ detection. Sci. Rep. 2025, 15, 6261. [Google Scholar] [CrossRef]
- Li, Y.; Dai, C.; Meng, S.; Wu, J. Molecular structure characterization of coal with different coalification degrees: A combined study from FT-IR, Raman, 13C NMR spectroscopy and modelling. J. Mol. Struct. 2024, 1310, 138354. [Google Scholar] [CrossRef]
- Chong, J.; Hu, G.; Xiao, L.; Guo, M.; Huo, X.; Gao, J.; Cheng, F.; Zhang, M. Mild Alkaline-Enhanced depolymerization of Long-Flame coal for the synthesis of Coal-Derived fluorescent carbon dots with application as probes. Fuel 2024, 369, 131795. [Google Scholar] [CrossRef]
- Tian, Z.; Li, J.; Miao, Y.; Lv, J. Preparation and Biotoxicity of Coal-Based Carbon Dot Nanomaterials. Nanomaterials 2023, 13, 3122. [Google Scholar] [CrossRef]
- Das, T.; Saikia, B.K. Nanodiamonds Produced from Low-Grade Indian Coals. ACS Sustain. Chem. Eng. 2017, 5, 9619–9624. [Google Scholar] [CrossRef]
- Thiyagarajan, S.K.; Raghupathy, S.; Palanivel, D.; Raji, K.; Ramamurthy, P. Fluorescent carbon nano dots from lignite: Unveiling the impeccable evidence for quantum confinement. Phys. Chem. Chem. Phys. 2016, 18, 12065–12073. [Google Scholar] [CrossRef] [PubMed]
- Bo, Z.; Maimaiti, H.; De-Dong, Z.; Bo, X.; Ming, W. Preparation of coal-based C-Dots/TiO2 and its visible-light photocatalytic characteristics for degradation of pulping black liquor. J. Photochem. Photobiol. A-Chem. 2017, 345, 54–62. [Google Scholar] [CrossRef]
- Yew, Y.T.; Loo, A.H.; Sofer, Z.; Klimova, K.; Pumera, M. Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection. Appl. Mater. Today 2017, 7, 138–143. [Google Scholar] [CrossRef]
- Hu, S.; Wei, Z.; Chang, Q.; Trinchi, A.; Yang, J. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl. Surf. Sci. 2016, 378, 402–407. [Google Scholar] [CrossRef]
- Du, M.; Advincula, P.A.; Ding, X.; Tour, J.M.; Xiang, C. Coal-Based Carbon Nanomaterials: En Route to Clean Coal Conversion toward Net Zero CO2. Adv. Mater. 2023, 35, 2300129. [Google Scholar] [CrossRef]
- Ye, R.; Xiang, C.; Lin, J.; Peng, Z.; Huang, K.; Yan, Z.; Cook, N.P.; Samuel, E.L.G.; Hwang, C.; Ruan, G.; et al. Coal as an abundant source of graphene quantum dots. Nat. Commun. 2013, 4, 2943. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Yang, D.; Zheng, F.; Zhang, C.; Zhan, J.; Li, Z.; Pan, D.; Wang, L. Facile conversion of coal tar to orange fluorescent carbon quantum dots and their composite encapsulated by liposomes for bioimaging. New J. Chem. 2017, 41, 14444–14451. [Google Scholar] [CrossRef]
- Tao, H.; Yang, K.; Ma, Z.; Wan, J.; Zhang, Y.; Kang, Z.; Liu, Z. In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small 2012, 8, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Han, Q.; Wu, J.; Ji, C.; Zhou, Y.; Li, S.; Gao, L.; Leblanc, R.M.; Peng, Z. Synthesis Mechanisms, Structural Models, and Photothermal Therapy Applications of Top-Down Carbon Dots from Carbon Powder, Graphite, Graphene, and Carbon Nanotubes. Int. J. Mol. Sci. 2022, 23, 1456. [Google Scholar] [CrossRef]
- Matyjasik, W.; Matus, K.; Dlugosz, O.; Pulit-Prociak, J.; Banach, M. Preparation of Biomass Waste-Derived Carbon Dots by the Thermal Degradation Process. ACS Omega 2025, 10, 22529–22548. [Google Scholar] [CrossRef]
- El-Harbawi, M.; Alhawtali, S.; Al-Awadi, A.S.; Blidi, L.E.; Alrashed, M.M.; Alzobidi, A.; Yin, C. Synthesis of Carbon Microspheres from Inedible Crystallized Date Palm Molasses: Influence of Temperature and Reaction Time. Materials 2023, 16, 1672. [Google Scholar] [CrossRef]
- Liang, J.; Hu, Y.; Yang, L.; Zhang, Q.; Ye, Y.; Zhang, R.; Xiao, P.; Chen, M.; Cheng, Z. Low Temperature Synthesis of Carbon Quantum Dots as Surfactants for Pickering Emulsions. Ind. Eng. Chem. Res. 2025, 64, 14297–14305. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, J.; Chen, Y.; Fu, F.; Chi, Y.; Chen, G. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale 2014, 6, 7410–7415. [Google Scholar] [CrossRef]
- Tang, Y.G.; Huan, X.; Lan, C.Y.; Xu, M.X. Effects of Coal Rank and High Organic Sulfur on the Structure and Optical Properties of Coal-based Graphene Quantum Dots. Acta Geol. Sin.-Engl. Ed. 2018, 92, 1218–1230. [Google Scholar] [CrossRef]
- Hu, C.; Yu, C.; Li, M.; Wang, X.; Yang, J.; Zhao, Z.; Eychmueller, A.; Sun, Y.; Qiu, J. Chemically Tailoring Coal to Fluorescent Carbon Dots with Tuned Size and Their Capacity for Cu (II) Detection. Small 2014, 10, 4926–4933. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Liu, J.; Xu, J.; Su, S.; Tang, H.; Hu, Y.; Mostafa, M.E.; Xu, K.; Wang, Y.; Hu, S. The fluorescence interference in Raman spectrum of raw coals and its application for evaluating coal property and combustion characteristics. Proc. Combust. Inst. 2019, 37, 3053–3060. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Zhang, X.; Ling, P.; Xu, K.; He, L.; Su, S.; Wang, Y.; Hu, S.; Xiang, J. Chemical imaging of coal in micro-scale with Raman mapping technology. Fuel 2020, 264, 116826. [Google Scholar] [CrossRef]
- Xu, J.; He, Q.; Xiong, Z.; Yu, Y.; Zhang, S.; Hu, X.; Jiang, L.; Su, S.; Hu, S.; Wang, Y.; et al. Raman Spectroscopy as a Versatile Tool for Investigating Thermochemical Processing of Coal, Biomass, and Wastes: Recent Advances and Future Perspectives. Energy Fuels 2021, 35, 2870–2913. [Google Scholar] [CrossRef]
- GB/T 212-2008; Proximate Analysis of Coal. Standards Press of China: Beijing, China, 2008.
- GB/T 31391-2015; Ultimate Analysis of Coal. Standards Press of China: Beijing, China, 2015.
- ISO 7404-3:2025; Coal—Methods for Petrographic Analysis—Part 3: Method of Determining Maceral Group Composition. International Organization for Standardization: Geneva, Switzerland, 2025.
- Jiang, X.; Xu, J.; He, Q.; Wang, C.; Jiang, L.; Xu, K.; Wang, Y.; Su, S.; Hu, S.; Du, Z.; et al. A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model. Energy 2023, 282, 128715. [Google Scholar] [CrossRef]
- He, Q.; Jiang, X.; Xu, J.; Wang, C.; Jiang, M.; Wang, G.; Jiang, L.; Xu, K.; Wang, Y.; Su, S.; et al. Heterogeneous chemical structures of single pulverized coal particles and their evolution during pyrolysis: Insight from micro-Raman mapping technique. Powder Technol. 2023, 420, 118385. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Chen, S. Amphiphilic Egg-Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns. Angew. Chem.-Int. Edit. 2012, 51, 9297–9301. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Clemente, C.; Gómez-Limón, D. The influence of nitric acid oxidation of low rank coal and its impact on coal structure. Fuel 2003, 82, 2007–2015. [Google Scholar] [CrossRef]
- Lin, Z.; Xue, W.; Chen, H.; Lin, J. Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem. Commun. 2012, 48, 1051–1053. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, M.; Wang, Z.; Guo, H.; Wang, L.; Wu, M. Phosphorescence Tuning of Fluorine, Oxygen-Codoped Carbon Dots by Substrate Engineering. Acs Sustain. Chem. Eng. 2021, 9, 16262–16269. [Google Scholar] [CrossRef]
- Cao, H.; Li, K.; Zhang, H.; Liu, Q. Investigation on the Mineral Catalytic Graphitization of Anthracite during Series High Temperature Treatment. Minerals 2023, 13, 749. [Google Scholar] [CrossRef]
- Yoshida, A.; Kaburagi, Y.; Hishiyama, Y. Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization. Carbon 2006, 44, 2333–2335. [Google Scholar] [CrossRef]
- Marques, M.; Suarez-Ruiz, I.; Flores, D.; Guedes, A.; Rodrigues, S. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. Int. J. Coal Geol. 2009, 77, 377–382. [Google Scholar] [CrossRef]
- Lu, L.; Sahajwalla, V.; Kong, C.; Harris, D. Quantitative X-ray diffraction analysis and its application to various coals. Carbon 2001, 39, 1821–1833. [Google Scholar] [CrossRef]













| Number | Name | Moisture (ad 1, %) | Fixed Carbon (ad 1, %) | Ash (ad 1, %) | Volatile (daf 2, %) | C (ad 1, %) | H (ad 1, %) | *Rr (%) | *V (%) | *I (%) | *L (%) | Coal Rank |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | WCW | 12.47 | 57.11 | 4.64 | 31.10 | 63.00 | 4.09 | 0.68 | 64.0 | 27.9 | 8.1 | Bituminous coal |
| 2 | CZ | 7.02 | 46.87 | 15.74 | 39.32 | 62.34 | 4.26 | 0.65 | 77.5 | 21.5 | 1.0 | Lignite |
| 3 | XGS | 13.50 | 41.52 | 20.74 | 36.86 | 53.40 | 3.69 | 0.88 | 81.1 | 18.9 | 0 | Bituminous coal |
| 4 | LY | 1.28 | 62.02 | 31.85 | 7.25 | 56.97 | 1.95 | 2.73 | 39.0 | 61.0 | 0 | Anthracite |
| 5 | ZC | 1.61 | 57.94 | 30.38 | 14.80 | 57.32 | 3.45 | 2.03 | 63.0 | 29.6 | 7.4 | Bituminous coal |
| 6 | XM | 1.62 | 48.88 | 30.45 | 28.05 | 60.59 | 3.05 | 0.94 | 57.5 | 33.0 | 9.5 | Bituminous coal |
| 7 | XLT | 22.10 | 35.47 | 7.50 | 49.62 | 47.97 | 4.73 | 0.25 | 86.8 | 7.5 | 5.7 | Lignite |
| 8 | XWJ | 2.84 | 32.18 | 54.08 | 25.31 | 34.11 | 2.01 | 1.97 | 37.8 | 55.6 | 6.6 | Bituminous coal |
| 9 | MAS | 2.59 | 66.59 | 18.12 | 16.02 | 70.18 | 3.39 | 1.56 | 44.2 | 55.8 | 0 | Bituminous coal |
| Conditions | Variable | Coal Number | H2SO4/HNO3 (mL/mL) | Mass of Raw Coal (g) | Reaction Temperature (℃) | Reaction Time (h) |
|---|---|---|---|---|---|---|
| 1 | Ratio of mixed acid | 1 | 60/20 | 0.3 | 100 | 10 |
| 2 | Ratio of mixed acid | 1 | 0/80 | 0.3 | 100 | 10 |
| 3 | Ratio of mixed acid | 1 | 80/0 | 0.3 | 100 | 10 |
| 4 | Mass of raw coal | 1 | 60/20 | 1.0 | 100 | 10 |
| 5 | Mass of raw coal | 1 | 60/20 | 2.0 | 100 | 10 |
| 6 | Reaction temperature | 1 | 60/20 | 0.3 | 80 | 10 |
| 7 | Reaction temperature | 1 | 60/20 | 0.3 | 120 | 10 |
| 8 | Reaction temperature | 1 | 60/20 | 0.3 | 140 | 10 |
| 9 | Reaction time | 1 | 60/20 | 0.3 | 100 | 6, |
| 10 | Reaction time | 1 | 60/20 | 0.3 | 100 | 12 |
| 11 | Reaction time | 1 | 60/20 | 0.3 | 100 | 18 |
| 12 | Reaction time | 1 | 60/20 | 0.3 | 100 | 24 |
| 13 | Coal ranks | 1 | 60/20 | 0.3 | 100 | 18 |
| 14 | Coal ranks | 2 | 60/20 | 0.3 | 100 | 18 |
| 15 | Coal ranks | 3 | 60/20 | 0.3 | 100 | 18 |
| 16 | Coal ranks | 4 | 60/20 | 0.3 | 100 | 18 |
| 17 | Coal ranks | 5 | 60/20 | 0.3 | 100 | 18 |
| 18 | Coal ranks | 6 | 60/20 | 0.3 | 100 | 18 |
| 19 | Coal ranks | 7 | 60/20 | 0.3 | 100 | 18 |
| 20 | Coal ranks | 8 | 60/20 | 0.3 | 100 | 18 |
| 21 | Coal ranks | 9 | 60/20 | 0.3 | 100 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ma, J.; Liu, J.; Xu, J.; He, L.; Han, H.; Xu, K.; Jiang, L.; Wang, Y.; Su, S.; Hu, S.; et al. From Coal to Carbon Quantum Dots by Chemical Oxidation: Effects of Synthesis Conditions and Coal Chemical Structure. Processes 2026, 14, 332. https://doi.org/10.3390/pr14020332
Ma J, Liu J, Xu J, He L, Han H, Xu K, Jiang L, Wang Y, Su S, Hu S, et al. From Coal to Carbon Quantum Dots by Chemical Oxidation: Effects of Synthesis Conditions and Coal Chemical Structure. Processes. 2026; 14(2):332. https://doi.org/10.3390/pr14020332
Chicago/Turabian StyleMa, Jiaqi, Jiawei Liu, Jun Xu, Limo He, Hengda Han, Kai Xu, Long Jiang, Yi Wang, Sheng Su, Song Hu, and et al. 2026. "From Coal to Carbon Quantum Dots by Chemical Oxidation: Effects of Synthesis Conditions and Coal Chemical Structure" Processes 14, no. 2: 332. https://doi.org/10.3390/pr14020332
APA StyleMa, J., Liu, J., Xu, J., He, L., Han, H., Xu, K., Jiang, L., Wang, Y., Su, S., Hu, S., & Xiang, J. (2026). From Coal to Carbon Quantum Dots by Chemical Oxidation: Effects of Synthesis Conditions and Coal Chemical Structure. Processes, 14(2), 332. https://doi.org/10.3390/pr14020332

