Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,240)

Search Parameters:
Keywords = coal structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4568 KB  
Article
From Coal to Carbon Quantum Dots by Chemical Oxidation: Effects of Synthesis Conditions and Coal Chemical Structure
by Jiaqi Ma, Jiawei Liu, Jun Xu, Limo He, Hengda Han, Kai Xu, Long Jiang, Yi Wang, Sheng Su, Song Hu and Jun Xiang
Processes 2026, 14(2), 332; https://doi.org/10.3390/pr14020332 (registering DOI) - 17 Jan 2026
Abstract
The synthesis of carbon dots (CDs) from coal represents a promising strategy for advancing both the efficient, low-carbon utilization of coal resources and the cost-effective production of CDs. To enable the controlled, high-quality conversion of CDs from coal, a comprehensive understanding of the [...] Read more.
The synthesis of carbon dots (CDs) from coal represents a promising strategy for advancing both the efficient, low-carbon utilization of coal resources and the cost-effective production of CDs. To enable the controlled, high-quality conversion of CDs from coal, a comprehensive understanding of the relationship between the coal chemical structure and the properties of CDs is crucial. This study prepared CDs from nine kinds of coal using a chemical oxidation method, and the correlations between properties of coal-based carbon dots and the original materials were revealed. The results show that the luminescence sites of coal-derived CDs are mostly distributed around 435 nm or 500 nm, where the former one relates to the confined sp2 domains and the latter one is associated with the defect structure. Coal with a volatile content of about 20–30% in the nine samples was found to produce higher CD yields, with a maximum mass yield of 19.96%, accompanied by stronger fluorescence intensity. During chemical oxidation processes, the unsaturated double bonds (C=C, C=O) and aliphatic chains firstly break, and then aromatic clusters are formed by dehydrocyclization between carbon crystallites, followed by the introduction of a C–O group. The growth of the C–O group in the CDs contributes to a stronger fluorescence property. Furthermore, strong correlations were found between the carbon skeleton structure of raw coal and photoluminescence characteristics of corresponding CDs, as reflected by Raman parameters AD1/AG, ID1/IG, and FWHMD. The findings offer significant insights into the precise modulation and control of coal-based carbon dot structures. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

12 pages, 3584 KB  
Article
“In Situ” Studies on Coke Drilled from Tuyere in a Working COREX Melter Gasifier
by Hao Liu, Wen Hu, Xinyue Liu, Zipeng Dou and Weiqiang Liu
Processes 2026, 14(2), 323; https://doi.org/10.3390/pr14020323 - 16 Jan 2026
Abstract
The COREX smelting-reduction route is a representative non-blast furnace technology, but its scale-up is hindered by insufficient gas and liquid permeability in the melter gasifier. To improve the gas and liquid permeability of the melter gasifier, coke is charged together with an iron-bearing [...] Read more.
The COREX smelting-reduction route is a representative non-blast furnace technology, but its scale-up is hindered by insufficient gas and liquid permeability in the melter gasifier. To improve the gas and liquid permeability of the melter gasifier, coke is charged together with an iron-bearing material to partly replace lump coal to increase the burden voidage. The charged coke undergoes successive physical and chemical attacks that progressively weaken its strength, finally reducing the coke particle size and impairing overall burden permeability. Drilling “in situ” coke samples from the tuyere zone is an effective method to study coke behaviors inside a working melter gasifier. This work obtained tuyere coke samples by direct coke sample drilling during a melter gasifier blow-out and then systematically investigated the coke deterioration behaviors in the melter gasifier. The results show that the mean particle size decreased from an initial 50.3 mm to 31.6 mm at the tuyere, evidencing the severe fragmentation of coke. Basic oxides and alkali metals in the coke ash increased, indicating alkali recycling and enrichment occurred in the melter gasifier. Microcrystalline structure analysis of coke revealed a high degree of graphitization. Furthermore, coke degradation was further accelerated by both alkalis trapped in the coke pores and slag infiltration into the pores. This study clarifies the properties of the coke in the tuyere of the COREX melter gasifier and provides a theoretical basis for its operational optimization. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 2002 KB  
Article
Risk Assessment of Coal Mine Ventilation System Based on Fuzzy Polymorphic Bayes: A Case Study of H Coal Mine
by Jin Zhao, Juan Shi and Jinhui Yang
Systems 2026, 14(1), 99; https://doi.org/10.3390/systems14010099 - 16 Jan 2026
Abstract
Coal mine ventilation systems face coupled and systemic risks characterized by structural interconnection and disaster chain propagation. In order to accurately quantify and evaluate this overall system risk, this study presents a new method of risk assessment of the coal mine ventilation system [...] Read more.
Coal mine ventilation systems face coupled and systemic risks characterized by structural interconnection and disaster chain propagation. In order to accurately quantify and evaluate this overall system risk, this study presents a new method of risk assessment of the coal mine ventilation system based on fuzzy polymorphic Bayesian networks. This method effectively addresses the shortcomings of traditional assessment approaches in the probabilistic quantification of risk. A Bayesian network with 44 nodes was established from five dimensions: ventilation power, ventilation network, ventilation facilities, human and management factors, and work environment. The risk states were divided into multiple states based on the As Low As Reasonably Practicable (ALARP) metric. The probabilities of evaluation-type root nodes were calculated using fuzzy evaluation, and the subjective bias was corrected by introducing a reliability coefficient. The concept of distance compensation is proposed to flexibly calculate the probabilities of quantitative-type root nodes. Through the verification of the ventilation system of H Coal Mine in Shanxi, China, it is concluded that the high risk of the ventilation system is 18%, and the high-risk probability of the ventilation system caused by the external air leakage of the mine is the largest. The evaluation results are consistent with real-world conditions. The results can provide a reference for improving the safety of the ventilation systems. Full article
(This article belongs to the Special Issue Advances in Reliability Engineering for Complex Systems)
Show Figures

Figure 1

26 pages, 2427 KB  
Article
Co-Disposal of Coal Gangue and Aluminum Dross for Fiber-Reinforced Cemented Foamed Backfill
by Chong Liu, Shouxin Wu, Shaoqi Kong, Shiyu Zhang, Guoan Ren and Ruixue Feng
Minerals 2026, 16(1), 81; https://doi.org/10.3390/min16010081 - 15 Jan 2026
Viewed by 25
Abstract
To evaluate the stability of fiber-reinforced cemented foamed backfill (FCFB) in complex underground mining environments, this study investigates the synergistic effects of fiber content and modified coal gangue (MCG) under acidic and high-temperature conditions. Through a systematic analysis of hydration processes, compressive strength, [...] Read more.
To evaluate the stability of fiber-reinforced cemented foamed backfill (FCFB) in complex underground mining environments, this study investigates the synergistic effects of fiber content and modified coal gangue (MCG) under acidic and high-temperature conditions. Through a systematic analysis of hydration processes, compressive strength, and deformation characteristics, the research identifies critical mechanisms for optimizing backfill performance. Calcination of MCG at 700 °C enhances gelling activity via amorphous phase formation, while modified aluminum dross (MAD) treated at 950 °C develops dense α-Al2O3 and spinel phases, significantly improving chemical stability. In acidic environments, the suppression of calcium silicate hydrate (C-S-H) is offset by the development of Al3+-driven C-A-S-H gels. These gels adopt a tobermorite-like structure, substantially increasing acid resistance. Mechanical testing reveals that while 1% fiber reinforcement promotes nucleation and densification, a 2% concentration hinders hydration. Compressive strength at 28 days shows constrained growth due to pore inhibition, and failure modes transition from multi-crack parallel failure (3-day) to single-crack tensile-shear failure. Under acidic conditions, strain concentration in the upper sample highlights a competitive mechanism between Al3+ migration and fiber anchorage. Ultimately, the coordinated regulation of MCG/MAD and fiber content provides a robust solution for roof support in challenging thermo-chemical mining environments. Full article
19 pages, 4153 KB  
Article
Pore Structure and Heterogeneity in Deep Coal Reservoirs: Macrolithotype Controls and Implications for CBM Development
by Bo Hu, Xiongxiong Yang, Kui Chen, Shuheng Tang, Xiaohui Li, Songhang Zhang, Jingchen Ding and Ming Zhao
Fractal Fract. 2026, 10(1), 60; https://doi.org/10.3390/fractalfract10010060 - 15 Jan 2026
Viewed by 109
Abstract
The heterogeneity of pore structure in deep coal reservoirs is a critical factor controlling the storage and transport capacity of coalbed methane (CBM). However, the fundamental control exerted by macrolithotypes remains inadequately quantified. This study systematically investigates the No. 8 coal seam of [...] Read more.
The heterogeneity of pore structure in deep coal reservoirs is a critical factor controlling the storage and transport capacity of coalbed methane (CBM). However, the fundamental control exerted by macrolithotypes remains inadequately quantified. This study systematically investigates the No. 8 coal seam of the Taiyuan Formation in the Daniudi gas field, Ordos Basin, using an integrated multi-technique approach including high-pressure mercury intrusion (HPMI), low-temperature N2 adsorption (LTGA-N2), and low-pressure CO2 adsorption (LPGA-CO2). Results reveal a consistent bimodal pore structure across all samples, dominated by well-developed micropores and macropores, whereas mesopores are relatively underdeveloped. More importantly, a clear macrolithotype control is established: as coal brightness decreases from bright to dull coal, the proportions of micropores and macropores decline significantly, leading to a substantial reduction in total pore volume and specific surface area. Fractal analysis further indicates that dull and semi-dull coals exhibit larger fractal dimensions, reflecting more complex pore structures and stronger heterogeneity compared to bright and semi-bright coals. This heterogeneity shows a positive correlation with ash and mineral contents, but a negative correlation with vitrinite and fixed carbon contents, suggesting that coal composition plays a primary governing role. These findings underscore that bright and semi-bright coals, with their superior micropore storage capacity and well-connected macropore networks, represent the most favorable targets for deep CBM exploration. This work establishes macrolithotype as a practical key indicator for reservoir quality assessment and production strategy optimization in deep CBM plays. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

27 pages, 5686 KB  
Article
A Framework for Sustainable Safety Culture Development Driven by Accident Causation Models: Evidence from the 24Model
by Jinkun Zhao, Gui Fu, Zhirong Wu, Chenhui Yuan, Yuxuan Lu and Xuecai Xie
Sustainability 2026, 18(2), 861; https://doi.org/10.3390/su18020861 - 14 Jan 2026
Viewed by 82
Abstract
A strong safety culture is essential for managing human factors in complex systems and constitutes a strategic resource for supporting the sustainable operation of organizations. However, conventional approaches remain limited by unclear conceptual boundaries and a lack of mechanisms linking safety culture with [...] Read more.
A strong safety culture is essential for managing human factors in complex systems and constitutes a strategic resource for supporting the sustainable operation of organizations. However, conventional approaches remain limited by unclear conceptual boundaries and a lack of mechanisms linking safety culture with other organizational safety elements. To address these gaps, this study develops a sustainable safety culture construction method grounded in accident causation theory. Using the 24Model, we establish a concise “culture–system–ability–acts” framework that operationalizes the pathways through which safety culture shapes organizational safety performance. The method integrates four components: conceptual clarification of safety culture, quantitative assessment, factor identification based on the 24Model, and Bayesian network analysis to quantify interdependencies among culture, systems, ability, and acts. Empirical evidence from coal mining enterprises shows that safety culture influences safety performance indirectly by shaping system implementation quality, workers’ safety ability, and safety-related actions. Enhancing “demand of safety training” substantially mitigated system deficiencies related to ineffective implementation of procedures, failure in enforcing procedures, lack of qualifications, and insufficient supervision. Improved training also strengthened workers’ knowledge of accident cases, consequences of violations, and technical standards, thereby reducing competence-related gaps and promoting more consistent safety supervision behaviors. Sensitivity analysis highlights the importance of reinforcing “safety responsibilities of line departments” and improving the dissemination of safety knowledge, particularly accident case knowledge. Overall, the findings empirically validate the dynamic “culture–system–ability–acts” transmission mechanism of the 24Model and provide a structured, quantitative pathway for advancing sustainable safety culture development. Full article
Show Figures

Figure 1

24 pages, 8328 KB  
Article
Synergistic Utilization of Recycled Asphalt Pavement and Fly Ash for High-Ductility Coal Mine Backfill: Performance Optimization and Mechanism Analysis
by Xiaoping Shao, Xing Du, Renlong Tang, Wei Wang, Zhengchun Wang, Yibo Zhang, Xing Gao and Shaofeng Hu
Materials 2026, 19(2), 320; https://doi.org/10.3390/ma19020320 - 13 Jan 2026
Viewed by 79
Abstract
To enhance the ductility of coal mine filling materials using recycled asphalt pavement (RAP) and address the limitations in RAP recycling and utilization, this study processed RAP into crushed materials (CMs) and ball-milled materials (BMs). Supplementary with fly ash (FA) and cement, RAP-fly [...] Read more.
To enhance the ductility of coal mine filling materials using recycled asphalt pavement (RAP) and address the limitations in RAP recycling and utilization, this study processed RAP into crushed materials (CMs) and ball-milled materials (BMs). Supplementary with fly ash (FA) and cement, RAP-fly ash cement paste backfill (RFCPB) was prepared. For 1000 g of RFCPB slurry, the composition was 365 g CM, 73 g cement, 270 g water, and a total of 292 g of FA and BM, with an F/B ratio ranging from 1:7 to 7:1. A systematic test program was carried out, including rheological property tests, unconfined compressive strength (UCS) tests combined with deformation monitoring, microstructure analysis, and leaching toxicity tests. Based on these tests, the influence of F/B ratio on the action mechanism, workability, mechanical properties, ductility and environmental compatibility of RFCPB was comprehensively explored. The results show that the rheological behavior of RFCPB slurry conforms to the Herschel–Bulkley (H-B) model; with the decrease in F/B ratio, the yield stress and apparent viscosity of the slurry increase significantly, while the slump and slump flow decrease correspondingly, which is closely related to the particle gradation optimization by BM. For mechanical properties and ductility, the 28-day UCS of RFCPB first increases and then decreases with the decrease in F/B ratio, all meeting the mine backfilling strength requirements; notably, the increase in BM proportion regulates the failure mode from brittle to ductile, which is the key to improving ductility. Microstructural analysis indicates that Dolomite and Albite in BM participate in hydration reactions to generate N-A-S-H and C-A-S-H gels, which fill internal pores, optimize pore structure, and thus synergistically improve UCS and ductility. Additionally, the leaching concentration of toxic ions in RFCPB complies with the environmental protection standards for solid waste. This study provides a theoretical basis for enhancing backfill ductility and advancing the coordinated disposal of RAP and fly ash solid wastes. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 14271 KB  
Article
Fracture Instability Law of Thick Hard Direct Covering Roof and Fracturing and Releasing Promotion Technology
by Xingping Lai, Chuan Ai, Helong Gu, Hao Wang and Chong Jia
Appl. Sci. 2026, 16(2), 806; https://doi.org/10.3390/app16020806 - 13 Jan 2026
Viewed by 93
Abstract
Because of its strong bearing capacity and large size, a thick and hard roof is the main source of strong ground pressure in a stope, and its breaking and migration mechanism and effective control are very important for realizing safe and efficient mining [...] Read more.
Because of its strong bearing capacity and large size, a thick and hard roof is the main source of strong ground pressure in a stope, and its breaking and migration mechanism and effective control are very important for realizing safe and efficient mining in coal mines. In this paper, by constructing a numerical model that fully considers the actual occurrence conditions of such a roof, the control law of the occurrence conditions of a thick and hard roof on its fracture law and strata behavior is systematically studied, and the control mechanism of the movement and hydraulic fracturing of this kind of roof is revealed. The results show that (1) the fracture process of a thick hard roof is characterized by three stages—crack initiation, extension, and overall instability—and the “pressure arch” structure formed by the overlying huge hard rock stratum is the fundamental force source leading to strong ground pressure; (2) the roof thickness and horizon significantly control the stress distribution and fracture behavior of coal and rock mass, and the peak stress of coal and rock mass is positively correlated with the roof thickness, but negatively correlated with its horizon; (3) with the increase in roof thickness, the dominant fracture mechanism changes from tension type to tension–shear composite type, which leads to a significant increase in fracture step. Hydraulic fracturing technology can effectively cut off the “pressure arch” structure and optimize the stress field of surrounding rock. After fracturing, the first weighting step and weighting strength are reduced by 36% and 38.1%, respectively. An industrial test shows that a fracturing treatment realizes timely and orderly roof caving and achieves the controllable weakening and safe promotion of the thick and hard roof. This study provides a solid theoretical basis and a successful engineering practice model for roof disaster prevention and control under similar geological conditions. Full article
(This article belongs to the Special Issue Advanced Technologies in Intelligent and Sustainable Coal Mining)
Show Figures

Figure 1

21 pages, 7900 KB  
Article
Mechanisms and Multi-Field-Coupled Responses of CO2-Enhanced Coalbed Methane Recovery in the Yanchuannan and Jinzhong Blocks Toward Improved Sustainability and Low-Carbon Reservoir Management
by Hequn Gao, Yuchen Tian, Helong Zhang, Yanzhi Liu, Yinan Cui, Xin Li, Yue Gong, Chao Li and Chuncan He
Sustainability 2026, 18(2), 765; https://doi.org/10.3390/su18020765 - 12 Jan 2026
Viewed by 153
Abstract
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite [...] Read more.
Supercritical CO2 modifies deep coal reservoirs through the coupled effects of adsorption-induced deformation and geochemical dissolution. CO2 adsorption causes coal matrix swelling and facilitates micro-fracture propagation, while CO2–water reactions generate weakly acidic fluids that dissolve minerals such as calcite and kaolinite. These synergistic processes remove pore fillings, enlarge flow channels, and generate new dissolution pores, thereby increasing the total pore volume while making the pore–fracture network more heterogeneous and structurally complex. Such reservoir restructuring provides the intrinsic basis for CO2 injectivity and subsequent CH4 displacement. Both adsorption capacity and volumetric strain exhibit Langmuir-type growth characteristics, and permeability evolution follows a three-stage pattern—rapid decline, slow attenuation, and gradual rebound. A negative exponential relationship between permeability and volumetric strain reveals the competing roles of adsorption swelling, mineral dissolution, and stress redistribution. Swelling dominates early permeability reduction at low pressures, whereas fracture reactivation and dissolution progressively alleviate flow blockage at higher pressures, enabling partial permeability recovery. Injection pressure is identified as the key parameter governing CO2 migration, permeability evolution, sweep efficiency, and the CO2-ECBM enhancement effect. Higher pressures accelerate CO2 adsorption, diffusion, and sweep expansion, strengthening competitive adsorption and improving methane recovery and CO2 storage. However, excessively high pressures enlarge the permeability-reduction zone and may induce formation instability, while insufficient pressures restrict the effective sweep volume. An optimal injection-pressure window is therefore essential to balance injectivity, sweep performance, and long-term storage integrity. Importantly, the enhanced methane production and permanent CO2 storage achieved in this study contribute directly to greenhouse gas reduction and improved sustainability of subsurface energy systems. The multi-field coupling insights also support the development of low-carbon, environmentally responsible CO2-ECBM strategies aligned with global sustainable energy and climate-mitigation goals. The integrated experimental–numerical framework provides quantitative insight into the coupled adsorption–deformation–flow–geochemistry processes in deep coal seams. These findings form a scientific basis for designing safe and efficient CO2-ECBM injection strategies and support future demonstration projects in heterogeneous deep coal reservoirs. Full article
Show Figures

Figure 1

15 pages, 2147 KB  
Article
Machine Learning Prediction and Interpretability Analysis of Coal and Gas Outbursts
by Long Xu, Xiaofeng Ren and Hao Sun
Sustainability 2026, 18(2), 740; https://doi.org/10.3390/su18020740 - 11 Jan 2026
Viewed by 131
Abstract
Coal and gas outbursts constitute a major hazard for mining safety, which is critical for the sustainable development of China’s energy industry. Rapid, accurate, and reliable pre-diction is pivotal for preventing and controlling outburst incidents. Nevertheless, the mechanisms driving coal and gas outbursts [...] Read more.
Coal and gas outbursts constitute a major hazard for mining safety, which is critical for the sustainable development of China’s energy industry. Rapid, accurate, and reliable pre-diction is pivotal for preventing and controlling outburst incidents. Nevertheless, the mechanisms driving coal and gas outbursts involve highly complex influencing factors. Four main geological indicators were identified by examining the attributes of these factors and their association to outburst intensity. This study developed a machine learning-based prediction model for outburst risk. Five algorithms were evaluated: K Nearest Neighbors (KNN), Back Propagation (BP), Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost). Model optimization was performed via Bayesian hyperparameter (BO) tuning. Model performance was assessed by the Receiver Operating Characteristic (ROC) curve; the optimized XGBoost model demonstrated strong predictive performance. To enhance model transparency and interpretability, the SHapley Additive exPlanations (SHAP) method was implemented. The SHAP analysis identified geological structure was the most important predictive feature, providing a practical decision support tool for mine executives to prevent and control outburst incidents. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

46 pages, 6520 KB  
Review
A Comprehensive Review on Dual-Pathway Utilization of Coal Gangue Concrete: Aggregate Substitution, Cementitious Activity Activation, and Performance Optimization
by Yuqi Wang, Lin Zhu and Yi Xue
Buildings 2026, 16(2), 302; https://doi.org/10.3390/buildings16020302 - 11 Jan 2026
Viewed by 113
Abstract
Coal gangue, as a predominant solid byproduct of the global coal industry, poses severe environmental challenges because of its massive accumulation and low utilization rate. This review systematically synthesizes and analyzes published experimental and analytical studies on the dual-pathway utilization of coal gangue [...] Read more.
Coal gangue, as a predominant solid byproduct of the global coal industry, poses severe environmental challenges because of its massive accumulation and low utilization rate. This review systematically synthesizes and analyzes published experimental and analytical studies on the dual-pathway utilization of coal gangue in concrete, including Pathway 1 (aggregate substitution) and Pathway 2 (cementitious activity activation). While the application of coal gangue aggregates is traditionally limited by their inherent high porosity and lower mechanical strength than those of natural aggregates, this review demonstrates that performance barriers can be effectively overcome. Through multiscale modification strategies—including surface densification, biological mineralization (MICP), and matrix synergy—the interfacial defects are significantly mitigated, allowing for feasible substitution in structural concrete. Conversely, for the mineral admixture pathway, controlled thermal activation is identified as a key process to optimize the phase transformation of kaolinite, thereby significantly enhancing pozzolanic reactivity and long-term durability. According to reported studies, the partial replacement of natural aggregates or cement with coal gangue can reduce CO2 emissions by approximately tens to several hundreds of kilograms per ton of coal gangue utilized, depending on the substitution level and activation strategy, highlighting its considerable potential for carbon reduction in the construction sector. Nevertheless, challenges related to energy-intensive activation processes and variability in raw gangue composition remain. These limitations indicate the need for future research focusing on low-carbon activation technologies, standardized classification of coal gangue resources, and long-term performance validation under realistic service environments. Based on the synthesized literature, this review discusses hierarchical utilization concepts and low-carbon activation approaches as promising directions for promoting the sustainable transformation of coal gangue from an environmental liability into a carbon-reduction asset in the construction industry. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 5685 KB  
Article
Vertical Distribution Heterogeneity of Pore Structure Collected from Deep, Thick Coal Seams
by Jitong Su, Junjian Zhang, Meng Wang, Zhengyuan Qin and Stephen Grebby
Processes 2026, 14(2), 240; https://doi.org/10.3390/pr14020240 - 9 Jan 2026
Viewed by 200
Abstract
Deep coalbed methane (CBM) development in the Eastern Ordos Basin indicates that strong vertical heterogeneity within the Benxi Formation No. 8 thick coal seam can severely constrain well productivity. Here, twelve coal samples from two typical wells (W1: upper coal seams; W2: lower [...] Read more.
Deep coalbed methane (CBM) development in the Eastern Ordos Basin indicates that strong vertical heterogeneity within the Benxi Formation No. 8 thick coal seam can severely constrain well productivity. Here, twelve coal samples from two typical wells (W1: upper coal seams; W2: lower coal seams) were analyzed to quantify vertical variability in pore structure and its controls. Proximate and maceral analyses were combined with low-temperature N2 adsorption (2–100 nm) and CO2 adsorption (<2 nm) to characterize mesopores and micropores, respectively; mono-fractal and multifractal approaches were further applied to quantify pore-system heterogeneity. The results indicate that upper coal seams (W1) exhibit more developed micropores and stronger adsorption capacity, while the lower coal seams (W2) display more significant heterogeneity in pore structure, particularly at the micropore scale. Ash content is identified as the dominant control factor for vertical variations in pore characteristics, showing a negative correlation with both micropore and mesopore volumes, while coal rank and maceral composition exert secondary influences. A vertical zoning model has been established based on multiple parameters: the upper section is classified as a high-quality sweet-spot interval, whereas only localized layers in the lower section retain development potential. These findings can serve as a geological basis for optimizing target layer selection and fracturing design in deep coalbed methane wells. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

17 pages, 3258 KB  
Article
Sustainable Carbon–Carbon Composites from Biomass-Derived Pitch: Optimizing Structural, Electrical, and Mechanical Properties via Catalyst Engineering
by Zeban Shah, Muhammad Nisar, Inam Ullah, Muhammad Yaseen, Abiodun Oluwatosin Adeoye, Shaowei Zhang, Sayyar Ali Shah and Habib Ullah
Catalysts 2026, 16(1), 74; https://doi.org/10.3390/catal16010074 - 8 Jan 2026
Viewed by 516
Abstract
This work is based on our previous research on sulfur-assisted graphitization of biopitch by focusing on catalyst-driven optimization of biomass-derived pitch (BDP) composites as sustainable alternatives to coal tar pitch (CTP). Biomass from eucalyptus sawdust was pyrolyzed to produce BDP, which was used [...] Read more.
This work is based on our previous research on sulfur-assisted graphitization of biopitch by focusing on catalyst-driven optimization of biomass-derived pitch (BDP) composites as sustainable alternatives to coal tar pitch (CTP). Biomass from eucalyptus sawdust was pyrolyzed to produce BDP, which was used as a binder for carbon–carbon composites. The properties of BDP/graphite and CTP/graphite composites, including bending strength, electrical conductivity, hardness, density, porosity, mass loss, and shrinkage, were compared. Furthermore, the influence of catalysts (NiSO4, K2SO4, CuSO4, FeSO4, and KOH) on composite performance was systematically investigated. Results show that catalyst selection significantly enhances structural, electrical, and mechanical properties, demonstrating the potential of combining eco-friendly materials with strategic catalyst engineering to develop high-performance, sustainable composites. Full article
Show Figures

Graphical abstract

20 pages, 8678 KB  
Article
Effect of Structural and Wettability Differences Between Low-Rank Vitrain and Durain on Methane Adsorption and Desorption
by Jinbo Shi, Dongmin Ma, Yue Chen, Huaichang Wang, Changjiang Ji, Chao Zheng, Pengpeng Guan, Yuan Cao and Yaqi Ji
Processes 2026, 14(2), 207; https://doi.org/10.3390/pr14020207 - 7 Jan 2026
Viewed by 133
Abstract
The wettability differences among macroscopic coal lithotypes constitute a critical issue requiring in-depth investigation in the development of low-rank coalbed methane. To elucidate the impact of wettability variation on methane adsorption/desorption, this study employed vitrain and durain samples from Jurassic low-rank coals in [...] Read more.
The wettability differences among macroscopic coal lithotypes constitute a critical issue requiring in-depth investigation in the development of low-rank coalbed methane. To elucidate the impact of wettability variation on methane adsorption/desorption, this study employed vitrain and durain samples from Jurassic low-rank coals in the Huanglong Coalfield. We analyzed changes in adsorption/desorption characteristics before and after wettability modification and conducted coal seam desorption experiments under simulated extraction conditions to explore the influence of wettability on methane adsorption/desorption behavior. The results indicate that vitrain exhibits greater full-scale pore volume (0.04073–0.07975 cm3/g) and specific surface area (132.302–170.919 m2/g) compared to durain (0.03646–0.05187 cm3/g and 114.572–122.827 m2/g, respectively). The coal–water interface contact angles of the low-rank coals are below 90°, indicating a weakly hydrophilic nature. Both cationic (CTAC) and zwitterionic (BS-12) surfactants effectively improved coal wettability. Following wettability modification, the maximum reduction in saturated adsorption capacity reached 48.24%, while the maximum increases in desorption ratio and recovery efficiency were 35.56% and 24.39%, respectively. Durain, due to its stronger inherent hydrophilicity, exhibited greater changes than vitrain. Under simulated extraction conditions, the combined effects of pore structure and wettability differences between the lithotypes led to preferential methane production along the vitrain–durain interfaces. Full article
Show Figures

Figure 1

23 pages, 9458 KB  
Article
Experimental Study on the Co-Combustion Characteristics of Brown Gas (HHO) and Bituminous Coal/Anthracite with Different Injection Modes in a One-Dimensional Furnace
by Kaihong Huo, Yunlong Cai, Yong He, Shiyan Liu, Chaoqun Xu, Siyu Liu, Wubin Weng, Yanqun Zhu and Zhihua Wang
Reactions 2026, 7(1), 2; https://doi.org/10.3390/reactions7010002 - 2 Jan 2026
Viewed by 327
Abstract
As the energy structure evolves, low-load operation of coal-fired boilers is becoming common, posing challenges to combustion stability. This study explored the co-combustion of brown gas (HHO) with bituminous coal and anthracite in a one-dimensional furnace. Results indicate that introducing HHO significantly elevated [...] Read more.
As the energy structure evolves, low-load operation of coal-fired boilers is becoming common, posing challenges to combustion stability. This study explored the co-combustion of brown gas (HHO) with bituminous coal and anthracite in a one-dimensional furnace. Results indicate that introducing HHO significantly elevated combustion temperatures, with maximum increases of 158 °C and 207 °C, respectively. In the premixed mode, the flame front shifted upstream, indicating advanced ignition timing. Moreover, HHO co-combustion notably enhanced the combustion stability of anthracite, as reflected in stabilized furnace temperatures. With increasing HHO flow rate, CO concentrations from both bituminous coal and anthracite were reduced by over 80%. The combustion efficiency of bituminous coal reached 98%, while the combustion efficiency of anthracite increased by 19% (premixed) and 13% (staged), confirming the premixed mode’s superiority in promoting complete combustion. HHO co-combustion increased SO2 emissions but had a complex effect on NOX emissions due to the competition between NOX reduction caused by HHO and NOX formation caused by the increased combustion temperature. HHO co-combustion changed the melting point of fly ash, increased the content of Al2O3, and reduced the content of Na2O, K2O, and MgO, influencing the slagging behavior of the boiler and the subsequent management of fly ash. Full article
Show Figures

Figure 1

Back to TopTop