Isolation of Bioactive Metabolites from Fusarium fujikuroi: GC-MS Profiling and Bioactivity Assessment
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals and Apparatus
2.2. Plant Collection and Fungal Isolation
2.3. Identification of Fungus
2.4. Cultivation of Fusarium fujikuroi
2.5. Extraction of Secondary Metabolites
2.6. Fractionation of Metabolites by Column Chromatography
2.7. Antibacterial Activity of Fractions
2.8. Thin Layer Chromatography of Bioactive Fractions
2.9. GC-MS Analysis
2.10. Toxicity Prediction
2.11. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Identification of F. fujikuroi
3.2. Solvent Extraction of F. fujikuroi Filtrate
3.3. Fractionation of Crude Extract
3.4. Antibacterial Activities of Various Fractions
3.5. GC-MS Analysis of Different Fractions
3.5.1. GC-MS Analysis of n-Hexane Fraction
3.5.2. GC- MS Analysis of HCF
3.5.3. GC-MS Analysis of Chloroform Fraction
3.6. In Silico Toxicity Prediction of Bioactive Compounds in F. fujikuroi
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaul, S.; Gupta, S.; Ahmed, M.; Dhar, M.K. Endophytic fungi from medicinal plants: A treasure hunt for bioactive metabolites. Phytochem. Rev. 2012, 11, 487–505. [Google Scholar] [CrossRef]
- Abbas, M.; Gururani, M.A.; Ali, A.; Bajwa, S.; Hassan, R.; Batool, S.W.; Imam, M.; Wei, D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024, 29, 4914. [Google Scholar] [CrossRef] [PubMed]
- Qadri, M.; Johri, S.; Shah, B.A.; Khajuria, A.; Sidiq, T.; Lattoo, S.K.; Abdin, M.Z.; Riyaz-Ul-Hassan, S. Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2013, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Nisa, S.; Bibi, Y.; Masood, S.; Ali, A.; Alam, S.; Sabir, M.; Qayyum, A.; Ahmed, W.; Alharthi, S.; Santali, E.Y.; et al. Isolation, Characterization and Anticancer Activity of Two Bioactive Compounds from Arisaema flavum (Forssk.) Schott. Molecules 2022, 27, 7932. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Wang, L.W.; Xu, B.G.; Wang, J.Y.; Su, Z.Z.; Lin, F.C.; Zhang, C.L.; Kubicek, C.P. Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl. Microbiol. Biotechnol. 2012, 93, 1231–1239. [Google Scholar] [CrossRef]
- Song, X. Antibacterial, Antifungal, and Antiviral Bioactive Compounds from Natural Products. Molecules 2024, 29, 825. [Google Scholar] [CrossRef]
- Riga, R.; Wardatillah, R.; Suryani, O.; Ryplida, B.; Suryelita, S.; Azhar, M.; Handayani, D.; Artasasta, M.A.; Benu, S.M.; Putra, A. Endophytic fungus from Gynura japonica: Phytochemical screening, biological activities, and characterisation of its bioactive compound. Nat. Prod. Res. 2025, 39, 4117–4125. [Google Scholar] [CrossRef]
- Ogofure, A.G.; Pelo, S.P.; Green, E. Identification and Assessment of Secondary Metabolites from Three Fungal Endophytes of Solanum mauritianum Against Public Health Pathogens. Molecules 2024, 29, 4924. [Google Scholar] [CrossRef]
- Pun, B.; Joshi, S.R. Bioprospection unveils the bioactive potential of Colletotrichum taiwanense BPSRJ3, an endophytic fungus of an ethnomedicinal orchid, Vanda cristata Wall. Ex Lindl. Syst. Microbiol. Biomanufacturing 2025, 5, 754–771. [Google Scholar] [CrossRef]
- Hashem, A.H.; Attia, M.S.; Kandil, E.K.; Fawzi, M.M.; Abdelrahman, A.S.; Khader, M.S.; Khodaira, M.A.; Emam, A.E.; Goma, M.A.; Abdelaziz, A.M. Bioactive compounds and biomedical applications of endophytic fungi: A recent review. Microb. Cell Fact. 2023, 22, 107. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Meshram, V.; Gupta, M.; Goyal, S.; Qureshi, K.A.; Jaremko, M.; Shukla, K.K. Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules 2023, 13, 1038. [Google Scholar] [CrossRef] [PubMed]
- Hawar, S.N.; Taha, Z.K.; Hamied, A.S.; Al-Shmgani, H.S.; Sulaiman, G.M.; Elsilk, S.E. Antifungal Activity of Bioactive Compounds Produced by the Endophytic Fungus Paecilomyces sp. (JN227071.1) against Rhizoctonia solani. Int. J. Biomater. 2023, 2023, 2411555. [Google Scholar] [CrossRef] [PubMed]
- Omomowo, I.O.; Amao, J.A.; Abubakar, A.; Ogundola, A.F.; Ezediuno, L.O.; Bamigboye, C.O. A review on the trends of endophytic fungi bioactivities. Sci. Afr. 2023, 20, e01594. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, J.; Zhu, Y.; Shen, X.; Zhu, B.; Qin, L. Roles of endophytic fungi in medicinal plant abiotic stress response and TCM quality development. Chin. Herb. Med. 2024, 16, 204–213. [Google Scholar] [CrossRef]
- Nisa, S.; Khan, N.; Shah, W.; Sabir, M.; Khan, W.; Bibi, Y.; Jahangir, M.; Haq, I.U.; Alam, S.; Qayyum, A. Identification and Bioactivities of Two Endophytic Fungi Fusarium fujikuroi and Aspergillus tubingensis from Foliar Parts of Debregeasia salicifolia. Arab. J. Sci. Eng. 2020, 45, 4477–4487. [Google Scholar] [CrossRef]
- Bibi, A.; Mubeen, F.; Rizwan, A.; Ullah, I.; Hammad, M.; Waqas, M.A.B.; Ikram, A.; Abbas, Z.; Halterman, D.; Saeed, N.A. Morpho-Molecular Identification of Fusarium equiseti and Fusarium oxysporum Associated with Symptomatic Wilting of Potato from Pakistan. J. Fungi 2024, 10, 701. [Google Scholar] [CrossRef]
- Toghueo, R.M.K. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 2020, 11, 1–21. [Google Scholar] [CrossRef]
- Daniel, J.J.; Zabot, G.L.; Tres, M.V.; Harakava, R.; Kuhn, R.C.; Mazutti, M.A. Fusarium fujikuroi: A novel source of metabolites with herbicidal activity. Biocatal. Agric. Biotechnol. 2018, 14, 314–320. [Google Scholar] [CrossRef]
- Janevska, S.; Baumann, L.; Sieber, C.M.K.; Münsterkötter, M.; Ulrich, J.; Kämper, J.; Güldener, U.; Tudzynski, B. Elucidation of the Two H3K36me3 Histone Methyltransferases Set2 and Ash1 in Fusarium fujikuroi Unravels Their Different Chromosomal Targets and a Major Impact of Ash1 on Genome Stability. Genetics 2018, 208, 153–171. [Google Scholar] [CrossRef]
- Amuzu, P.; Pan, X.; Hou, X.; Sun, J.; Jakada, M.A.; Odigie, E.; Xu, D.; Lai, D.; Zhou, L. Recent Updates on the Secondary Metabolites from Fusarium Fungi and Their Biological Activities (Covering 2019 to 2024). J. Fungi 2024, 10, 778. [Google Scholar] [CrossRef]
- Atanasoff-Kardjalieff, A.K.; Studt, L. Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins 2022, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Yeo, S.H.; Baek, S.Y.; Choi, H.S. Molecular and morphological identification of fungal species isolated from bealmijang meju. J. Microbiol. Biotechnol. 2011, 21, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Chu, R.; Li, S.; Zhu, L.; Yin, Z.; Hu, D.; Liu, C.; Mo, F. A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment and biofuel production. Renew. Sustain. Energy Rev. 2021, 139, 110689. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Fang, Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci. Technol. 2020, 105, 468–482. [Google Scholar] [CrossRef]
- Wang, W.; Tan, J.; Nima, L.; Sang, Y.; Cai, X.; Xue, H. Polysaccharides from fungi: A review on their extraction, purification, structural features, and biological activities. Food Chem. X 2022, 15, 100414. [Google Scholar] [CrossRef]
- Ahmed, T.; Juhász, A.; Bose, U.; Shiferaw Terefe, N.; Colgrave, M.L. Research trends in production, separation, and identification of bioactive peptides from fungi—A critical review. J. Funct. Foods 2024, 119, 106343. [Google Scholar] [CrossRef]
- Mao, Z.; Zhang, W.; Wu, C.; Feng, H.; Peng, Y.; Shahid, H.; Cui, Z.; Ding, P.; Shan, T. Diversity and antibacterial activity of fungal endophytes from Eucalyptus exserta. BMC Microbiol. 2021, 21, 155. [Google Scholar] [CrossRef]
- Lim, S.M.; Agatonovic-Kustrin, S.; Lim, F.T.; Ramasamy, K. High-performance thin layer chromatography-based phytochemical and bioactivity characterisation of anticancer endophytic fungal extracts derived from marine plants. J. Pharm. Biomed. Anal. 2021, 193, 113702. [Google Scholar] [CrossRef]
- Kaur, N.; Arora, D.S.; Kalia, N.; Kaur, M. Bioactive potential of endophytic fungus Chaetomium globosum and GC-MS analysis of its responsible components. Sci. Rep. 2020, 10, 18792. [Google Scholar] [CrossRef]
- Muharrami, L.K.; Santoso, M.; Fatmawati, S. Chemical profiles, in silico pharmacokinetic and toxicity prediction of bioactive compounds from Boesenbergia rotunda. Case Stud. Chem. Environ. Eng. 2024, 10, 100992. [Google Scholar] [CrossRef]
- Kumar, V.; Prasher, I.B. Antimicrobial potential of endophytic fungi isolated from Dillenia indica L. and identification of bioactive molecules produced by Fomitopsis meliae (Undrew.) Murril. Nat. Prod. Res. 2022, 36, 6064–6068. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Ma, S.; Shi, X.; Xue, W.; Liu, C.; Ding, H. Diversity and Antimicrobial Activity of Endophytic Fungi Isolated from Chloranthus japonicus Sieb in Qinling Mountains, China. Int. J. Mol. Sci. 2020, 21, 5958. [Google Scholar] [CrossRef]
- Bodoira, R.; Maestri, D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. J. Agric. Food Chem. 2020, 68, 927–942. [Google Scholar] [CrossRef]
- Faridha Begum, I.; Mohankumar, R.; Jeevan, M.; Ramani, K. GC-MS Analysis of Bio-active Molecules Derived from Paracoccus pantotrophus FMR19 and the Antimicrobial Activity Against Bacterial Pathogens and MDROs. Indian J. Microbiol. 2016, 56, 426–432. [Google Scholar] [CrossRef]
- Goutam, J.; Sharma, G.; Tiwari, V.K.; Mishra, A.; Kharwar, R.N.; Ramaraj, V.; Koch, B. Isolation and Characterization of “Terrein” an Antimicrobial and Antitumor Compound from Endophytic Fungus Aspergillus terreus (JAS-2) Associated from Achyranthus aspera Varanasi, India. Front. Microbiol. 2017, 8, 1334. [Google Scholar] [CrossRef]
- Mishra, R.; Kushveer, J.S.; Khan, M.I.K.; Pagal, S.; Meena, C.K.; Murali, A.; Dhayalan, A.; Venkateswara Sarma, V. 2,4-Di-Tert-Butylphenol Isolated from an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front. Microbiol. 2020, 11, 1668. [Google Scholar] [CrossRef]
- Javed, M.R.; Salman, M.; Tariq, A.; Tawab, A.; Zahoor, M.K.; Naheed, S.; Shahid, M.; Ijaz, A.; Ali, H. The Antibacterial and Larvicidal Potential of Bis-(2-Ethylhexyl) Phthalate from Lactiplantibacillus plantarum. Molecules 2022, 27, 7220. [Google Scholar] [CrossRef]
- Song, R.-Y.; Liu, Y.; Liu, R.-H.; Wang, X.-B.; Li, T.-X.; Kong, L.-Y.; Yang, M.-H. Benzophenone derivatives from the plant endophytic fungus, Pestalotiopsis sp. Phytochem. Lett. 2017, 22, 189–193. [Google Scholar] [CrossRef]
- Ajilogba, C.F.; Babalola, O.O. GC–MS analysis of volatile organic compounds from Bambara groundnut rhizobacteria and their antibacterial properties. World J. Microbiol. Biotechnol. 2019, 35, 83. [Google Scholar] [CrossRef]
- Radić, N.; Strukelj, B. Endophytic fungi: The treasure chest of antibacterial substances. Phytomedicine 2012, 19, 1270–1284. [Google Scholar] [CrossRef]
- Varsha, K.K.; Devendra, L.; Shilpa, G.; Priya, S.; Pandey, A.; Nampoothiri, K.M. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 2015, 211, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Alufasi, R.; Chingwaru, W.; Zvidzai, C.J.; Musili, N.; Chakauya, E.; Lebea, P.; Goredema, M.; Zhou, R.; Stefanakis, A.I.; Parawira, W. Bioremediation of Bacteria in Constructed Wetlands: Role of Endophytic and Rhizosphere Fungi. Water 2025, 17, 2468. [Google Scholar] [CrossRef]
- Sundar, R.D.V.; Arunachalam, S. 2,4-Di-tert-butylphenol from Endophytic Fungi Fusarium oxysporum attenuates the growth of multidrug-resistant pathogens. Front. Microbiol. 2025, 16, 1575021. [Google Scholar] [CrossRef]
- Shehabeldine, A.M.; Abdelaziz, A.M.; Abdel-Maksoud, M.A.; El-Tayeb, M.A.; Kiani, B.H.; Hussein, A.S. Antimicrobial characteristics of endophytic Aspergillus terreus and acute oral toxicity analysis. Electron. J. Biotechnol. 2024, 72, 1–11. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Tchatchouang, C.K.; Regnier, T.; Bezuidenhout, C.C.; Ateba, C.N. Bioactive Compound Produced by Endophytic Fungi Isolated from Pelargonium sidoides Against Selected Bacteria of Clinical Importance. Mycobiology 2019, 47, 335–339. [Google Scholar] [CrossRef]






| Fractions/Extracts | E. coli | S. aureus | P. aeruginosa | B. subtilis |
|---|---|---|---|---|
| Hexane | 13.7 ± 2.0 d | 13.8 ± 1.5 b | 9.5 ± 0.5 d | 13.5 ± 1.3 b |
| HCF | 16.9 ± 1.0 b | 15.2 ± 0.7 a | 14.0 ± 1.0 b | 15.0 ± 1.0 b |
| Chloroform | 16.06 ± 1.8 b | 12.13 ± 0.1 c | 16.7 ± 0.5 a | 17.24 ± 0.6 a |
| Chloroform/Ethyl acetate (1:1 v/v) | 16.3 ± 0.7 b | 11.7 ± 1.5 c | 14.4 ± 0.5 b | 13.5 ± 0.5 b |
| Ethyl acetate/Methanol (1:1 v/v) | 14.5 ± 0.3 c | 11.5 ± 0.5 c | 15.67 ± 0.5 ab | 13.7 ± 0.5 b |
| Ethyl acetate | 10.3 ± 0.5 e | 10.5 ± 0.5 c | 13.5 ± 0.5 c | 13.17 ± 0.3 b |
| Methanol | 10.5 ± 0.5 e | 12.3 ± 0.3 c | 16.4 ± 0.3 a | 12.4 ± 0.5 c |
| Negative control (solvents) | 0.0 ± 0.0 f | 0.0 ± 0.0 d | 0.0 ± 0.0 e | 0.0 ± 0.0 d |
| Ciprofloxacin (10 µg/mL) (positive control) | 19.3 ± 1.2 a | 17.7 ± 2.5 a | 20.7 ± 2.3 a | 19.9 ± 2.1 a |
| Extract | Rt | Compound | Class | Mol. Wt | Formula | Status | Reference |
|---|---|---|---|---|---|---|---|
| n-hexane | 4.41 | p-Xylene | Aromatic hydrocarbon | 106 | C8H10 | Synergistic antimicrobial effects | [40] |
| 4.24 | Ethylbenzene | Aromatic hydrocarbon | 106 | C8H10 | Antimicrobial against Gram+ bacteria | [35] | |
| 4.86 | 1,3-Dimethyl benzene | Aromatic hydrocarbon | 106 | C8H10 | Membrane disruption in pathogens | [35] | |
| 20.57 | Hentriacontane | Linear alkane | 436 | C31H64 | Antibiofilm activity against MRSA | [35] | |
| 21.21 | 2,4-Di-tert-butylphenol | Phenolic compound | 206 | C14H22O | Broad-spectrum antimicrobial and antioxidant | [35] | |
| 25.76 | Hentrtacontanoic acid | Branched alkane | 450 | C31H64 | - | Not reported in F. fujikuroi | |
| 31.27 | Hentriacontane | Branched alkane | 464 | C31H64 | - | Not reported in F. fujikuroi | |
| HCF | 8.85 | Hentriacontane | Linear alkane | 436 | C31H64 | Antibiofilm activity against Gram+ bacteria | [35] |
| 9.75 | Nitrobenzene | Aromatic nitro compound | 123 | C6H5NO2 | Broad-spectrum antimicrobial | [35] | |
| 10.11 | 6-Ethyloct-3-yl isobutyl ester | Fatty acid ester | 228 | C14H28O2 | - | Not reported in F. fujikuroi | |
| 14.34 | 1,3-Bis(1,1-dimethylethyl)benzene | Aromatic hydrocarbon | 190 | C14H22 | - | [43] | |
| 15.13 | Hentriacontane | Linear alkane | 436 | C31H64 | Synergistic antimicrobial effects | [35] | |
| 16.05 | m-Aminophenyl acetylene | Aromatic alkyne | 117 | C8H7N | - | Not reported in F. fujikuroi | |
| 21.58 | Hentriacontane | Branched alkane | 450 | C31H64 | - | Not reported in F. fujikuroi | |
| 23.53 | 2,4-Di-tert-butylphenol | Phenolic compound | 206 | C14H22O | Potent antimicrobial and antioxidant | [44] | |
| Chloroform | 4.42 | p-Xylene | Aromatic hydrocarbon | 106 | C8H10 | Antimicrobial | [45] |
| 4.88 | 1,3-Dimethylbenzene | Aromatic hydrocarbon | 106 | C8H10 | - | [35] | |
| 8.64 | 3-Ureidopropionic acid | Carboxylic acid | 132 | C4H8N2O3 | Antimicrobial | [46] | |
| 9.75 | Nitrobenzene | Aromatic nitro | 123 | C6H5NO2 | Antimicrobial | [35] | |
| 14.26 | 1,3-Bis(1,1-dimethylethyl)-benzene | Aromatic hydrocarbon | 190 | C14H22 | - | Not reported in F. fujikuroi | |
| 15.01 | Hentriacontane | Alkane | 436 | C31H64 | Ant biofilm | [35] | |
| 19.97 | 2,5-Cyclohexadiene | Diene | 80 | C6H8 | - | Not reported in F. fujikuroi | |
| 20.66 | Hentriacontane | Branched alkane | 450 | C31H64 | - | Not reported in F. fujikuroi | |
| 21.37 | 2,4-Di-tert-butylphenol | Phenol | 206 | C14H22O | Antimicrobial | [35] | |
| 24.41 | 1,4,4,6-Tetramethyl-octahydrocyclopentan | Cyclic alcohol | 204 | C15H24 | - | Not reported in F. fujikuroi | |
| 26.22 | Hentriacontane | Branched alkane | 464 | C31H64 | - | Not reported in F. fujikuroi | |
| 26.47 | 2-Ethylhexyl nonyl ester | Fatty acid ester | 300 | C17H32O2 | Antimicrobial | [13] |
| Fraction | Compound | Predicted LD50 (mg/Kg) | Predicted Toxicity Level | Neurotoxicity | Carcinogenicity | Cytotoxicity |
|---|---|---|---|---|---|---|
| CF | 2,5-Cyclohexadiene | 2700 | 5 | Active | Active | Inactive |
| CF | 1,4,4,6-Tetramethyl-octahydrocyclopentan | 4100 | 5 | Inactive | Inactive | Active |
| CF, HCF, HF | Hentriacontane | 750 | 3 | Inactive | Inactive | Active |
| CF | 1,3-Bis(1,1 dimethylethyl)-benzene | 3100 | 5 | Active | Active | Active |
| HCF | m-Aminophenyl acetylene | 450 | 4 | Active | Inactive | Active |
| HCF | 6-Ethyloct-3-yl isobutyl ester | 900 | 4 | Inactive | Inactive | Active |
| Hex | Hentrtaconta-noic acid | 1900 | 4 | Active | Inactive | Active |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, Z.; Nisa, S.; Santali, E.Y.; Omar, R.M.K.; Ali, A. Isolation of Bioactive Metabolites from Fusarium fujikuroi: GC-MS Profiling and Bioactivity Assessment. Processes 2025, 13, 3729. https://doi.org/10.3390/pr13113729
Farooq Z, Nisa S, Santali EY, Omar RMK, Ali A. Isolation of Bioactive Metabolites from Fusarium fujikuroi: GC-MS Profiling and Bioactivity Assessment. Processes. 2025; 13(11):3729. https://doi.org/10.3390/pr13113729
Chicago/Turabian StyleFarooq, Zainab, Sobia Nisa, Eman Y. Santali, Ruwida M. K. Omar, and Ashraf Ali. 2025. "Isolation of Bioactive Metabolites from Fusarium fujikuroi: GC-MS Profiling and Bioactivity Assessment" Processes 13, no. 11: 3729. https://doi.org/10.3390/pr13113729
APA StyleFarooq, Z., Nisa, S., Santali, E. Y., Omar, R. M. K., & Ali, A. (2025). Isolation of Bioactive Metabolites from Fusarium fujikuroi: GC-MS Profiling and Bioactivity Assessment. Processes, 13(11), 3729. https://doi.org/10.3390/pr13113729

