Trichilia claussenii (Meliaceae): A Review of Its Biological and Phytochemical Activities and a Case Study of Composition
Abstract
1. Introduction
2. Brief Bibliometric Assessment
2.1. Data Collection
2.1.1. Meliaceae and Trichilia spp.
2.1.2. Research Data: Trichilia claussenii
3. Trichilia claussenii
3.1. Botanical Aspects
3.2. Chemical Composition: Case Study
Phytochemical Screening
4. Use of T. claussenii in Biological Control
5. Mechanisms of Action of T. claussenii
6. Use of T. claussenii in Integrated Pest Management
Synergy of T. claussenii and Microbial Agents
7. Limitations and Challenges in the Development of Botanical Insecticides
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of botanical pesticides in agriculture as an alternative to synthetic Pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Aremu, A.O.; Omogbene, T.O.; Fadiji, T.; Lawal, I.O.; Opara, U.L.; Fawole, O.A. Plants as an alternative to the use of chemicals for crop protection against biotic threats: Trends and future perspectives. Eur. J. Plant Pathol. 2024, 170, 711–766. [Google Scholar] [CrossRef]
- Divekar, P. Botanical pesticides: An eco-friendly approach for management of insect pests. Acta Sci. Agric. 2023, 7, 75–81. [Google Scholar] [CrossRef]
- Sarmah, K.; Anbalagan, T.; Marimuthu, M.; Mariappan, P.; Angappan, S.; Vaithiyanathan, S. Innovative formulation strategies for botanical- and essential oil-based insecticides. J. Pest Sci. 2024, 98, 1–30. [Google Scholar] [CrossRef]
- Abdala, V. Mais de 25 mil Espécies da Flora só Existem no Brasil, Mostra Estudo. Available online: https://agenciabrasil.ebc.com.br (accessed on 20 June 2021).
- Tzusuki, A.; Embrapa. Pesticidas Biológicos Cresceram 45% Nos Últimos Cinco Anos. 2024. Available online: https://www.embrapa.br/ (accessed on 25 June 2024).
- Pila, D.; Maqueda, R.H. Traditional knowledge and use of plants as agricultural insecticides from a gender perspective in three rural communities of the Ecuadorian Andes. Ethnobot. Res. Appl. 2023, 26, 1–12. [Google Scholar] [CrossRef]
- Bilal, T.; Mushtaq, T.; Ahmad, P.I.; Gangoo, S.A.; Behar, B.; Ayoob, B.; Farooq, S.; Mushtaq, I. Botanicals their use as antimicrobial, antifungal and anti insecticides. Pharma. Innov. J. 2022, 11, 1521–1528. [Google Scholar]
- Lin, M.; Liu, X.; Chen, J.; Huang, J.; Zhou, L. Insecticidal triterpenes in Meliaceae III: Plant species, molecules, and activities in Munronia–Xylocarpus. Int. J. Mol. Sci. 2024, 25, 7818. [Google Scholar] [CrossRef] [PubMed]
- Robaina, R.R.; Braz-Filho, R.; Vieira, I.J. An updated review of the structural chemistry and biological activity of compounds from Trichilia species. Phytochem. Rev. 2025, 8, 1–37. [Google Scholar] [CrossRef]
- Ogunlakin, A.D.; Sonibare, M.A. Phytochemistry and biological activities of Tetracera species. Trends Phytochem. Res. 2022, 6, 339–352. [Google Scholar] [CrossRef]
- Grau, L.; Díaz, R.; Guerrero, D.; Viera, J.; Acosta, A. Compuestos bioactivos y actividad antioxidante in vitro del extracto etanólico de hojas de Melia azedarach Linn (Meliaceae). Steviana 2024, 16, 33–41. [Google Scholar] [CrossRef]
- Kandeda, A.K.; Lewale, S.; Djeuzong, E.; Kouamouo, J.; Dimo, T. An aqueous extract of Khaya senegalensis (Desv.) A. Juss. (Meliaceae) prevents seizures and reduces anxiety in kainate-treated rats: Modulation of GABA neurotransmission, oxidative stress, and neuronal loss in the hippocampus. Heliyon 2022, 8, e09549. [Google Scholar] [CrossRef]
- Bernardo, J.; Santos, A.C.; Videira, R.A.; Valentão, P.; Veiga, F.; Andrade, P.B. Trichilia catigua and Turnera diffusa phyto-phospholipid nanostructures: Physicochemical characterization and bioactivity in cellular models of induced neuroinflammation and neurotoxicity. Int. J. Pharm. 2022, 620, 121774. [Google Scholar] [CrossRef]
- Fan, W.; Fan, L.; Wang, Z.; Yang, L. Limonoids from the genus Melia (Meliaceae): Phytochemistry, synthesis, bioactivities, pharmacokinetics, and toxicology. Front. Pharmacol. 2022, 12, 795565. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.D.; Lopes, A.V.; Marques, V.P.; Bellonzi, T.K.; Cerdan, I.P.; Magalhães, R.; Gasparino, E.C. Pollen morphology of Meliaceae from Brazilian forest fragments of Cerrado, Brazil. Palynology 2025, 49, 1925769. [Google Scholar] [CrossRef]
- Passos, M.S.; Nogueira, T.R.; Azevedo, O.A.; Vieira, M.C.; Terra, W.S.; Braz-Filho, R.; Vieira, I.J. Limonoids from the genus Trichilia and biological activities: Review. Phytoc. Rev. 2021, 20, 1055–1086. [Google Scholar] [CrossRef]
- Barros, M.E.; Sousa, L.M.; Santos, F.D.; Loiola, M.I. Flora of Ceará, Brazil: Meliaceae. Orig. Papers. 2024, 75, e01762023. [Google Scholar] [CrossRef]
- Bogorni, P.C.; Vendramim, J.D. Efeito subletal de extratos aquosos de Trichilia spp. sobre o desenvolvimento de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em Milho. Neotrop. Entomol. 2003, 34, 311–317. [Google Scholar] [CrossRef]
- Castro, T.M.; Moraes, G.J. Diversity of phytoseiid mites (Acari: Mesostigmata: Phytoseiidae) in the Atlantic Forest of São Paulo. Syst. Biodivers. 2010, 8, 301–307. [Google Scholar] [CrossRef]
- Abranches, S. Biological megadiversity as a tool of soft power and development for Brazil. Braz. Polit. Sci. Rev. 2020, 14, e0006. [Google Scholar] [CrossRef]
- Maffra, C.R. Características físicas e germinativas de sementes de Trichilia claussenii C.DC. para a região do Médio Alto Uruguai-RS. Braz. J. Biosyst. Eng. 2019, 13, 65–71. [Google Scholar] [CrossRef]
- Flora. Flora Digital—Trichilia claussenii. Available online: https://floradigital.ufsc.br/busca.php (accessed on 10 June 2021).
- Ribeiro, L.P.; Vendramim, J.D.; Baldin, E.L. Inseticidas Botânicos No Brasil: Aplicações, Potencialidades e Perspectivas; FEALQ: Piracicaba, Brazil, 2023; p. 652. Available online: https://www.google.com.br/books (accessed on 10 June 2024).
- Yu, N.; Chen, Z.; Yang, J.; Li, R.; Zou, W. Integrated transcriptomic and metabolomic analyses reveal regulation of terpene biosynthesis in the stems of Sindora glabra. Tree Physiol. 2021, 41, 1087–1102. [Google Scholar] [CrossRef]
- Ikawati, S.; Himawan, T.; Abadi, A.; Sarno, H.; Fajarudin, A. In silico study of eugenol and trans-caryophyllene also clove oil fumigant toxicity on Tribolium castaneum. J. Trop. Life Sci. 2022, 12, 339–349. [Google Scholar] [CrossRef]
- Magnani, R.F.; Volpe, H.X.; Luvizotto, R.A.; Mulinari, T.A.; Agostini, T.T.; Bastos, J.K.; Ribeiro, V.P.; Carmo-Sousa, M.; Wulff, N.A.; Pena, L.; et al. α-Copaene is a potent repellent against the Asian Citrus Psyllid Diaphorina citri. Sci. Rep. 2025, 15, 3564. [Google Scholar] [CrossRef]
- Rohimatun, M.D.N.; Puspasari, L.T.; Rusmin, D. Toxicity and chemical compounds of Piper aduncum fruit extract against storage pest Sitophilus oryzae and Callosobruchus maculatus. IOP Conf. Ser. Earth Environ. Sci. 2023, 1253, 012001. [Google Scholar] [CrossRef]
- Natchiappan, S.; Ramasamy, S.; Ganguly, S. Effect of Lantana camara L. Essential oil: A natural solution for managing stored grain insects. Int. J. Zool. Appl. Biosci. 2024, 9, 34–40. [Google Scholar] [CrossRef]
- Joshi, S.S.; Sumathi, E.; Murugan, M.; Haran, R.; Priya, S.S.; Shandeep, G.; Mohankumar, S.; Uma, D.; Nelson, A. Correction: Exploration of bioactive molecules from Sesbania grandiflora L.: Identification of squalene as an effective compound against the two-spotted spider mite, Tetranychus urticae Koch, through molecular docking. Exp. Appl. Acarol. 2025, 94, 27. [Google Scholar] [CrossRef] [PubMed]
- Ghoneim, K.; Hamadah, K.H.; Selim, S.H.; Waheeb, H. Biopesticidal potential of nerolidol, a sesquiterpene compound, and its drastic impact on growth and metamorphosis of the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). Sch. Acad. J. Biosci. 2021, 9, 36–57. [Google Scholar] [CrossRef]
- Devi, C.J.; Saikia, K.; Mazumdar, R.; Das, R.; Bharadwaj, P.; Thakur, D. Identification, biocontrol and plant growth promotion potential of endophytic Streptomyces sp. a13. Curr. Microbiol. 2025, 82, 64. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.X.; Song, B. Pesticidal activity and mode of action of monoterpenes. J. Agric. Food Chem. 2022, 70, 4556–4571. [Google Scholar] [CrossRef]
- Hernandez-Trejo, A.; Rodríguez-Herrera, R.; Sáemz-Galindo, A.; López-Badillo, C.M.; Flores-Gallegos, A.C.; Ascacio-Valdez, J.A.; Estrada-Drouaillet, B.; Osorio-Hernández, E.O. Insecticidal capacity of polyphenolic seed compounds from neem (Azadirachta indica) on Spodoptera frugiperda (J. E. Smith) larva. J. Environ. Sci. Health 2021, 56, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Mwamba, S.; Kihika-Opanda, R.; Murungi, L.; Losenge, T.; Beck, J.J.; Torto, B. Identification of repellents from four non-host Asteraceae plants for the root knot nematode, Meloidogyne incognita. J. Agric. Food Chem. 2021, 69, 15145–15456. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Guleria, N.; Deeksha, M.; Kumari, N.; Kumar, R.; Jha, A.K.; Parmar, N.; Ganguly, P.; Andrade, E.H.; Ferreira, O.O.; et al. From an invasive weed to an insecticidal agent: Exploring the potential of Lantana camara in insect management strategies—A review. Int. J. Mol. Sci. 2024, 25, 12788. [Google Scholar] [CrossRef]
- El-Ashmouny, R.S.; Rady, M.H.; Merdan, B.A.; El-Sheikh, T.A.; Hassan, R.E.; Gohary, E. Larvicidal and pathological effects of green synthesized silver nanoparticles from Artemisia herba-alba against Spodoptera littoralis through feeding and contact application. Egypt. J. Basic Appl. Sci. 2022, 9, 239–253. [Google Scholar] [CrossRef]
- Simões, C.M.; Schenkel, E.P.; Gosmann, G.; Mello, J.C. Farmacognosia: Da Planta ao Medicamento, 6th ed.; UFRGS: Porto Alegre, Brazi, 2017; p. 1104. Available online: https://bibliotecadebiomedicina.blogspot.com/2019/01/livro-farmacognosia-da-planta-ao.html (accessed on 20 April 2024).
- Clark, P.D.; Omo-Udoyo, E. A comparative assessment on antioxidant and phytochemical of Trichilia monadelpha (Thonn) J.J. De Wilde (Meliaceae) plant extracts. Chem. Sci. Int. J. 2021, 30, 24–33. [Google Scholar] [CrossRef]
- Sierra, J.D.; Contreras, O.I.; Angulo, A.A. Phytochemical screening and antifungal activity in vitro of Trichilia hirta L. fruit extracts against clinical isolates of Candida spp. Indian J. Nat. Prod. Resour. 2022, 13, 170–175. [Google Scholar] [CrossRef]
- Silveira, L.L.; Dias, M.M.; Pelinsari, S.M.; Paula, R.A.; Castro, A.S.; Almeida, V.L.; Gonçalves, R.V. Trichilia silvatica extracts modulate the oxinflammatory response: An in vitro analysis. J. Ethnopharmacol. 2025, 349, 119973. [Google Scholar] [CrossRef]
- Monjane, J.; Tambo, T.R. Evaluation of the insecticidal activity of the extracts of Trichilia emetica, Trichilia capitata, and Azadirachta indica against the Spodoptera frugiperda (Fall Armyworm) on maize crop. Alger. J. Nat. Prod. 2021, 9, 830–837. [Google Scholar] [CrossRef]
- Zandavar, H.; Babazad, M. Secondary metabolites: Alkaloids and flavonoids in medicinal plants. In Herbs Spices—New Advances; IntechOpen: London, UK, 2023; pp. 1–28. [Google Scholar] [CrossRef]
- Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules 2021, 26, 3374. [Google Scholar] [CrossRef]
- Pereira, V.; Figueira, O.; Castilho, P.C. Flavonoids as insecticides in crop protection—A review of current research and future prospects. Plants 2024, 13, 776. [Google Scholar] [CrossRef]
- Ruttanaphan, T.; Thitathan, W.; Piyasaengthong, N.; Nobsathian, S.; Bullangpoti, V. Chrysoeriol isolated from Melientha suavis Pierre with activity against the agricultural pest Spodoptera litura. Chem. Biol. Technol. Agric. 2022, 9, 21. [Google Scholar] [CrossRef]
- Xia, T.; Liu, Y.; Lu, Z.; Yu, H. Natural coumarin shows toxicity to Spodoptera litura by inhibiting detoxification enzymes and glycometabolism. Int. J. Mol. Sci. 2023, 24, 13177. [Google Scholar] [CrossRef]
- Zaynab, M.; Khan, J.; Al-Yahyai, R.; Sadder, M.; Li, S. Toxicity of coumarins in plant defense against pathogens. Toxicon 2024, 250, 108118. [Google Scholar] [CrossRef] [PubMed]
- Ivase, T.J.; Nyakuma, B.B.; Otitolaiye, V.O.; Utume, L.N.; Ayoosu, M.I.; Jagun, Z.T.; Oladokun, O.; Dodo, Y.A. Standardization, quality control, and bio- enhancement of botanical insecticides: A review. DRC Sustain. Futur. J. Environ. Agric. Energy 2021, 2, 104–111. [Google Scholar] [CrossRef]
- Iqbal, T.; Ahmed, N.; Shahjeer, K.; Ahmed, S.; Al-Mutairi, K.A.; Khater, H.F.; Ali, R.F. Botanical insecticides and their potential as anti-insect/pests: Are they successful against insects and pests? In Global Decline of Insects; IntechOpen: London, UK, 2021; Volume 1, pp. 1–14. [Google Scholar] [CrossRef]
- Haritha, D.; Ahmed, M.F.; Bala, S.; Choudhury, D. Eco-friendly plant based on botanical pesticides. Plant Arch. 2021, 21, 2197–2204. [Google Scholar] [CrossRef]
- Heinrich, M.; Jalil, B.; Abdel-Tawab, M.; Echeverria, J.; Kulic, Z.; McGaw, L.; Pezzuto, J.M.; Potterat, O.; Wang, J. Best practice in the chemical characterisation of extracts used in pharmacological and toxicological research—The ConPhyMP—Guidelines. Front. Pharmacol. 2022, 13, 953205. [Google Scholar] [CrossRef]
- Basaid, K.; Furze, J. Botanical-microbial synergy—Fundaments of untapped potential of sustainable agriculture. J. Crop Health 2024, 76, 1263–1280. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, H.; Gao, J.; Zhang, J.; Li, X.; Zhou, J.; Liang, P.; Gao, X.; Gu, S. Plant volatile compound methyl benzoate is highly effective against Spodoptera frugiperda and safe to non-target organisms as an eco-friendly botanical-insecticide. Ecotoxicol. Environ. Saf. 2022, 245, 114101. [Google Scholar] [CrossRef]
- Catania, R.; Lima, M.A.; Potrich, M.; Sgolastra, F.; Zappalà, L.; Mazzeo, G. Are botanical biopesticides safe for bees (Hymenoptera, Apoidea)? Insects 2023, 14, 247. [Google Scholar] [CrossRef]
- Silva, R.S.; Tomaz, A.C.; Lopes, M.C.; Martins, J.C.; Xavier, V.M.; Picanço, M.C. Toxicity of botanical insecticides on Diaphania hyalinata, their selectivity for the predatory ant Paratrechina sp., and their potential phytotoxicity on pumpkin. Int. J. Pest Manag. 2016, 62, 95–104. [Google Scholar] [CrossRef]
- Peshin, R.; Dhawan, A.K. (Eds.) Integrated Pest Management: Concept, Opportunities and Challenges. In Integrated Pest Management: Innovation-Development Process; Springer: Dordrecht, The Netherlands, 2009; p. 667. [Google Scholar] [CrossRef]
- Santos, M.M.; Batista, A.C.; Silva, A.D.; Ganassoli, E.; Barradas, A.; Giongo, M. Characterization and dynamics of surface fuel of Cerrado grassland in Jalapão Region-Tocantins, Brazil. Floresta 2021, 51, 127–136. [Google Scholar] [CrossRef]
- Acevedo-Quintero, J.F.; Zamora-Abrego, J.G.; Chica-Vargas, J.P.; Mancera-Rodríguez, N.J. Functional traits of fruits of particular importance for seed dispersers in the tropical dry forest. Rev. Biol. Trop. 2023, 71, e52288. [Google Scholar]
- Nwonuma, C.B.; Omoniwa, B.P.; Elleke, T.E.; Aladele, P.; Ogundipe, O.E. The modes of action of biopesticidal compounds in insect control. Int. J. Trop. Insect Sci. 2025, 45, 513–523. [Google Scholar] [CrossRef]
- Souza, S.A.; Padial, I.M.; Souza, T.S.; Domingues, A.; Ferreira, E.A.; Mauad, M.; Cardoso, C.A.; Malaquias, J.B.; Oliveira, L.V.; Formagio, A.S.; et al. Evaluation of bioinseticide in the control of Plutella xylostella (Linnaeus, 1758): A laboratory study for large-scale implementation. Sustainability 2025, 17, 1626. [Google Scholar] [CrossRef]
- Jeon, H.; Tak, J. Gustatory habituation to essential oil induces reduced feeding deterrence and neuronal desensitization in Spodoptera litura. J. Pest Sci. 2024, 98, 321–336. [Google Scholar] [CrossRef]
- Saini, P.; Gupta, K.K. Bioefficacy of botanicals with special emphasis on Cassia fistula and nano-formulations on survival, growth, and development of insects: A sustainable approach of integrated pest management. Indian J. Nat. Prod. Resour. 2024, 15, 260–273. [Google Scholar] [CrossRef]
- Dai, H.; Liu, B.; Yang, L.; Yao, Y.; Liu, M.; Xiao, W.; Li, S.; Ji, R.; Sun, Y. Investigating the regulatory mechanism of the sesquiterpenol nerolidol from a plant on juvenile hormone-related genes in the insect Spodoptera exigua. Int. J. Mol. Sci. 2023, 24, 13330. [Google Scholar] [CrossRef]
- Hu, H.; Yin, X.; Pang, S.; Jiang, Y.; Weng, Q.; Hu, Q.; Wang, J. Mechanism of destruxin a inhibits juvenile hormone binding protein transporting juvenile hormone to affect insect growth. Pestic. Biochem. Physiol. 2023, 197, 105654. [Google Scholar] [CrossRef]
- Kilani-Morakchi, S.; Morakchi-Goudjil, H.; Sifi, K. Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Front. Agron. 2021, 3, 676208. [Google Scholar] [CrossRef]
- Sun, X.; Li, W.; Yang, S.; Ni, X.; Han, S.; Wang, M.; Zhen, C.; Huang, X. Insecticidal activity and underlying molecular mechanisms of a phytochemical plumbagin against Spodoptera frugiperda. Front. Physiol. 2024, 15, 1427385. [Google Scholar] [CrossRef]
- Hoesain, M.; Suharto; Prastowo, S.; Pradana, A.P.; Alfarisy, F.K.; Adiwena, M. Investigating the plant metabolite potential as botanical insecticides against Spodoptera litura with different application methods. Cogent Food Agric. 2023, 9, 2229580. [Google Scholar] [CrossRef]
- Raisch, T.; Raunser, S. The modes of action of ion-channel-targeting neurotoxic insecticides: Lessons from structural biology. Nat. Struct. Mol. Biol. 2023, 30, 1411–1427. [Google Scholar] [CrossRef]
- Subba, B.; Thapa, S.; Gurung, B.; Pokhrel, P. Plant-based organic insecticides. In Recent Trend in Entomology; Cape Comorin Publisher: Tamil Nadu, India, 2023; Volume 9, pp. 154–164. Available online: https://www.researchgate.net/publication/373396771 (accessed on 15 February 2024).
- Coquerel, Q.R.; Démares, F.; Geldenhuys, W.; Ray, A.; Bréard, D.; Richomme, P.; Legros, C.; Norris, E.; Bloomquist, J. Toxicity and mode of action of the aporphine plant alkaloid liriodenine on the insect GABA receptor. Toxicon 2021, 201, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Cortese, D.; Da Silva, M.M.; Oliveira, G.S.; Mussury, R.M.; Fernandes, M.G. Repellency and reduction of offspring emergence potential of some botanical extracts against Sitophilus zeamais (Coleoptera: Curculionidae) in stored maize. Insects 2022, 13, 842. [Google Scholar] [CrossRef]
- Zhou, W.; Arcot, Y.; Medina, R.F.; Bernal, J.; Cisneros-Zevallos, L.; Akbulut, M. Integrated pest management: An update on the sustainability approach to crop protection. ACS Omega 2024, 9, 41130–41147. [Google Scholar] [CrossRef]
- Deguine, J.; Aubertot, J.; Flor, R.; Lescourret, F.; Wyckhuys, K.; Ratnadass, A. Integrated pest management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Ochieng, L.O.; Ogendo, J.O.; Bett, P.K.; Nyaanga, J.G.; Cheruiyot, E.K.; Mulwa, R.M.; Arnold, S.E.; Belmain, S.R.; Stevenson, P.C. Field margins and botanical insecticides enhance Lablab purpureus yield by reducing aphid pests and supporting natural enemies. J. Appl. Entomol. 2022, 146, 838–849. [Google Scholar] [CrossRef]
- Wiratno; Sutanto, K.D.; Nurawan, A.; Taufik, I.; Surdianto, Y.; Sutrisna, N.; Rizal, M.; Karmawati, E.; Siswanto; Soetopo, D.; et al. Eco-friendly botanical insecticides to control brown leafhoppers and their effects on the predators and aquatic environment. Glob. J. Environ. Sci. Manag. 2025, 11, 113–128. [Google Scholar] [CrossRef]
- Santos, W.P.; Lopes, L.M.; Silva, G.N.; Carvalho, M.S.; de Sousa, A.H. Piper aduncum Essential Oil: Toxicity to Sitophilus zeamais and Effects on the Quality of Corn Grains. Processes 2025, 13, 1363. [Google Scholar] [CrossRef]
- Ebani, V.V.; Mancianti, F. Entomopathogenic fungi and bacteria in a veterinary perspective. Biology 2021, 10, 479. [Google Scholar] [CrossRef] [PubMed]
- Chalivendra, S. Microbial toxins in insect and nematode pest biocontrol. Int. J. Mol. Sci. 2021, 22, 7657. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Wennmann, J.; Goergen, G.; Bryon, A.; Ros, V. Viruses of the fall armyworm spodoptera frugiperda: A review with prospects for biological control. Viruses 2021, 13, 2220. [Google Scholar] [CrossRef] [PubMed]
- Trejo-Meléndez, V.; Ibarra-Rendón, J.; Contreras-Garduño, J. The evolution of entomopathogeny in nematodes. Ecol. Evol. 2024, 14, e10966. [Google Scholar] [CrossRef] [PubMed]
- Saddam, B.; Idrees, M.A.; Kumar, P.; Mahamood, M. Biopesticides: Uses and importance in insect pest control: A review. Int. J. Trop. Insect Sci. 2024, 44, 1013–1020. [Google Scholar] [CrossRef]
Classification | Description |
---|---|
Kingdom | Plantae |
Division | Magnoliophyta |
Class | Magnoliopsida |
Order | Sapindales |
Family | Meliaceae |
Genus | Trichilia |
Species | Trichilia claussenii C.DC. |
Compound | Mode of Action | Reference |
---|---|---|
Terpenes | Repellency against insect pests | [33] |
Toxicity by contact or ingestion | ||
Inhibition of development | ||
Neurotoxic action (mainly affecting cholinergic transmission and acetylcholinesterase activity) | ||
Phenols | Antifeedant action | [34] |
Enzyme inhibition | ||
Effect on metabolism | ||
Esters | Repellency against insect pests | [35] |
Neurotransmitter dysregulation (notably acetylcholine and GABA pathways) | ||
Affects the respiratory system | ||
Osmotic imbalance | ||
Sterols | Growth inhibition | [36] |
Interference with the molting hormone ecdysone, disrupting ecdysteroid signaling | ||
Interruption of the insect life cycle | ||
Carboxylic acids | Antifeedant action | [37] |
Cellular disorganization | ||
Repellency against insect pests | ||
Cytotoxic effect on digestive tissues (disruption of epithelial cell integrity and enzymatic activity) |
Phytochemical Test | Presence of Phytocompounds a |
---|---|
Tannins | − |
Saponins | − |
Flavonoids | + |
Quinone | − |
Coumarin | + |
Alkaloids | + |
Factor | Advantages | Limitations |
---|---|---|
Bioactive compounds | Presence of compounds such as limonoids with natural insecticidal action | The concentration of compounds may vary between plants; need for standardization |
Product formulation | Possibility of producing botanical extracts, oils, and powders | Commercial formulations are still underdeveloped |
Pest resistance | Lower risk of resistance compared to synthetic insecticides | Effectiveness may be limited in severe infestations |
Registration/regulation | Easier insertion into the natural defense market | Lack of specific legislation; regulatory gaps to be addressed |
Market acceptance | Growing demand for sustainable alternatives | Little visibility among producers and agricultural professionals |
Field application | Application to existing technologies | Requires reapplications for high effectiveness |
Production cost | Renewable raw material and local/regional production potential | Production scalability and season dependence |
Integration into IPM | Rotation with other management methods | Little dissemination of technical protocols for integration |
Specificity of action | Potential for selectivity for certain agricultural pests | Need for studies on the scope and spectrum of action |
Impact on pollinators | Reduced potential for adverse effects on bees and other beneficial insects | Indirect interactions with ecosystems still insufficiently studied |
Category | Positive Aspects | Potential Risk Aspects/Limitations |
---|---|---|
Human toxicity | Low acute toxicity by contact and inhalation [53] | Necessity for specific studies on sublethal effects |
Animal toxicity | Low risk in indirect exposures [54] | Lack of data on accidental ingestion in animals |
Non-target insect toxicity | Potential selectivity (low sublethal effect) [55] | It may affect beneficial insects in high concentrations or inappropriate formulations |
Phytotoxicity | It does not have adverse effects on plants [56] | Concentrated doses can interfere with the growth of seedlings and seeds |
Environmental persistence | Rapid natural degradation in soil, water, and air [57] | Low persistence may reduce the time to effectiveness |
Sustainable cultivation | It can be cultivated in the recovery of degraded areas [58] | Risk of overexploitation if there is inadequate collection without correct management |
Ecological interactions | It can favor the natural balance [59] | Few studies on indirect impacts on microorganisms |
Benefit | Description |
---|---|
Synergistic action | Bioactive compounds of T. claussenii (terpenes, limonoids, flavonoids) can weaken insects, facilitating infection by microorganisms |
Reduced resistance | Different modes of action make it difficult for pests to adapt, reducing the risk of resistance |
Ease of infection | Botanical extracts can damage the insect cuticle or cause physiological stress, making them more vulnerable to infection by microbial agents |
Multiplicity of physiological targets | The botanical extract acts as a repellent, antifeedant, or insecticide, while the microorganisms can infect oral, dermal, or respiratory tracts, increasing effectiveness |
Environmental safety and selectivity | Extracts have low toxicity to natural enemies, pollinators, and humans |
Microbial Agents | Mode of Action | Synergy with T. claussenii |
---|---|---|
Fungi | Penetrating the cuticle, causing septicemia after internal colonization [78] | Plant compounds weaken the cuticle and reduce the immunization response, facilitating penetration |
Bacteria | Producing toxins that cause lysis of the intestinal epithelium [79] | Extracts may stimulate feeding or open unconventional entry routes, such as dermal lesions |
Virus | Causing systemic infection with cell lysis and slow death [80] | Botanical compounds slow down metabolism, prolonging the presence of the virus in the host |
Nematodes | Penetrating through natural orifices and releasing symbiotic bacteria [81] | The extract can affect the insect’s defensive behavior (such as locomotion), facilitating nematode access |
Protozoa | Infecting orally and replicating in the intestine and other tissues [82] | Moderate antifeedant action may slow metabolism and increase the rate of infection from ingested spores |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polano Ody, L.; Ferraz, A.d.B.F.; de Mello, E.; Ugalde, G.; Mazutti, M.A.; Tres, M.V.; Zabot, G.L. Trichilia claussenii (Meliaceae): A Review of Its Biological and Phytochemical Activities and a Case Study of Composition. Processes 2025, 13, 3058. https://doi.org/10.3390/pr13103058
Polano Ody L, Ferraz AdBF, de Mello E, Ugalde G, Mazutti MA, Tres MV, Zabot GL. Trichilia claussenii (Meliaceae): A Review of Its Biological and Phytochemical Activities and a Case Study of Composition. Processes. 2025; 13(10):3058. https://doi.org/10.3390/pr13103058
Chicago/Turabian StylePolano Ody, Lissara, Alexandre de Barros Falcão Ferraz, Eduarda de Mello, Gustavo Ugalde, Marcio Antonio Mazutti, Marcus Vinícius Tres, and Giovani Leone Zabot. 2025. "Trichilia claussenii (Meliaceae): A Review of Its Biological and Phytochemical Activities and a Case Study of Composition" Processes 13, no. 10: 3058. https://doi.org/10.3390/pr13103058
APA StylePolano Ody, L., Ferraz, A. d. B. F., de Mello, E., Ugalde, G., Mazutti, M. A., Tres, M. V., & Zabot, G. L. (2025). Trichilia claussenii (Meliaceae): A Review of Its Biological and Phytochemical Activities and a Case Study of Composition. Processes, 13(10), 3058. https://doi.org/10.3390/pr13103058