Experimental Study on the Effect of Drilling Fluid Rheological Properties on the Strength of Brittle Mud Shale
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.1.1. Drilling Fluid Formulation
2.1.2. Experimental Samples
2.2. Experimental Methods
2.2.1. Determination of Rheological Parameters
2.2.2. Hydration Dispersion Test
2.2.3. Determination of Fracture Intensity Index
2.3. Experimental Steps
3. Results and Discussion
3.1. Effect of Drilling Fluid Rheology on the Hydration Dispersion of Brittle Mud Shale
3.2. Effect of Rheology on the Strength of Brittle Mud Shale
3.3. Coupled Effects on the Attenuation Mechanism of Brittle Mud Shale Strength
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gholami, R.; Elochukwu, H.; Fakhari, N.; Sarmadivaleh, M. A review on borehole instability in active shale formations: Interactions, mechanisms and inhibitors. Earth-Sci. Rev. 2018, 177, 2–13. [Google Scholar] [CrossRef]
- Ibrahim, A. A review of mathematical modelling approaches to tackling wellbore instability in shale formations. J. Nat. Gas. Sci. Eng. 2021, 89, 103870. [Google Scholar] [CrossRef]
- Fang, C.; Wang, Q.; Jiang, H.; Chen, Z.; Wang, Y.; Zhai, W.; Chen, S. Shale wellbore stability and well trajectory optimization: A case study from Changning, Sichuan, China. Pet. Sci. Technol. 2023, 41, 564–585. [Google Scholar] [CrossRef]
- Stephens, M.; He, W.; Freeman, M.; Sartor, G. Drilling fluids: Tackling drilling, production, wellbore stability, and formation evaluation issues in unconventional resource development. In SPE/AAPG/SEG Unconventional Resources Technology Conference; Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers: Tulsa, OK, USA, 2013; pp. 1029–1037. [Google Scholar]
- Pacheco, J.A. New Nanoparticle Water-Based Drilling Fluid Formulation with Enhanced Thermal Stability and Inhibition Capabilities in the Woodford Shale; Missouri University of Science and Technology: Rolla, MO, USA, 2018. [Google Scholar]
- Suo, Y.; Li, F.; He, W.; Fu, X.; Pan, Z.; Feng, F.; Zhao, W. Invasion of drilling fluid into laminated shale model. Chin. J. Eng. 2024, 46, 547–555. [Google Scholar] [CrossRef]
- Suo, Y.; Zhao, Y.-J.; Fu, X.-F.; He, W.-Y.; Pan, Z.-J. Study on fracture propagation behavior of deep high-temperature shale gas based on the modified MERR criterion. Theor. Appl. Fract. Mech. 2024, 131, 104352. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, Y.; Pan, Y.; Liu, T.; Du, D. The invasion of drilling fluid into coal under fluctuating wellbore pressure. Arab. J. Geosci. 2020, 13, 334. [Google Scholar] [CrossRef]
- Zhang, J.; Keaney, G.; Standifird, W. Wellbore stability with consideration of pore pressure and drilling fluid interactions. In ARMA US Rock Mechanics/Geomechanics Symposium; ARMA: Prague, Czech Republic, 2006; p. ARMA-06-922. [Google Scholar]
- Nguyen, V.X.; Abousleiman, Y.N.; Hoang, S. Analyses of Wellbore Instability in Drilling Through Chemically Active Fractured Rock Formations: Nahr Umr Shale. Eur. J. Immunol. 2007. [Google Scholar] [CrossRef]
- Gamwo, I.K.; Kabir, M.A. Impact of drilling fluid rheology and wellbore pressure on rock cuttings removal performance: Numerical investigation. Asia-Pac. J. Chem. Eng. 2015, 10, 809–822. [Google Scholar] [CrossRef]
- Calçada, L.; Neto, O.D.; Magalhães, S.; Scheid, C.; Filho, M.B.; Waldmann, A. Evaluation of suspension flow and particulate materials for control of fluid losses in drilling operation. J. Pet. Sci. Eng. 2015, 131, 1–10. [Google Scholar] [CrossRef]
- Bayat, A.E.; Moghanloo, P.J.; Piroozian, A.; Rafati, R. Experimental investigation of rheological and filtration properties of water-based drilling fluids in presence of various nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 256–263. [Google Scholar] [CrossRef]
- Li, Y.; Xia, C.; Liu, X. Water-based drilling fluids containing hydrophobic nanoparticles for minimizing shale hydration and formation damage. Heliyon 2023, 9, e22990. [Google Scholar] [CrossRef] [PubMed]
- Barati, P.; Shahbazi, K.; Kamari, M.; Aghajafari, A. Shale hydration inhibition characteristics and mechanism of a new amine-based additive in water-based drilling fluids. Petroleum 2017, 3, 476–482. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, C.; Li, X.; Zhang, Z.; Wang, X.; Dai, X.; Zhou, M.; Liu, Q. Investigation of the inhibition mechanism of polymer/nano-silica composite as shale inhibitor in water-based drilling fluids. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128099. [Google Scholar] [CrossRef]
- Murtaza, M.; Gbadamosi, A.; Hussain, S.M.S.; Alarifi, S.A.; Mahmoud, M.; Patil, S.; Kamal, M.S. Experimental investigation of pyrrolidinium-based ionic liquid as shale swelling inhibitor for water-based drilling fluids. Geoenergy Sci. Eng. 2023, 231, 212374. [Google Scholar] [CrossRef]
- Wang, W.; Deng, J.-G.; Yu, B.-H.; Zheng, X.-J.; Yan, C.-L.; Deng, Y. Coupled effects of stress damage and drilling fluid on strength of hard brittle shale. J. Cent. South. Univ. 2016, 23, 3256–3261. [Google Scholar] [CrossRef]
- American Petroleum Institute. API Recommended Practice 13B-1: Recommended Practice for Field Testing of Water-Based Drilling Fluids; API: Washington, DC, USA, 2009. [Google Scholar]
- Culshaw, M.G.; Ulusay, R. (Eds.) The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Zhang, X.; Sanderson, D.J.; Barker, A.J. (Eds.) Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Li, H.; Dong, Z.; Yang, Y.; Liu, B.; Chen, M.; Jing, W. Experimental study of damage development in salt rock under uniaxial stress using ultrasonic velocity and acoustic emissions. Appl. Sci. 2018, 8, 553. [Google Scholar] [CrossRef]
Num | Formulations |
---|---|
1# Drilling Fluid | 3% bentonite + 0.2% NaOH + 0.3% XC (xanthan gum) + 0.6% PAC + balance distilled water |
2# Drilling Fluid | 3% bentonite + 0.2% NaOH + 0.3% XC (xanthan gum) + 1.2% PAC + balance distilled water |
3# Drilling Fluid | 3% bentonite + 0.2% NaOH + 0.3% XC (xanthan gum) + 2.0% PAC + balance distilled water |
No. | Initial Gel Strength (Pa) | Final Gel Strength (Pa) | API Fluid Loss (mL) | Apparent Viscosity (mPa·s) | Plastic Viscosity (mPa·s) | Yield Point (Pa) |
---|---|---|---|---|---|---|
Distilled Water | — | — | — | 1 | 0 | 1 |
1# | 2.5 | 4.0 | 10.0 | 25.5 | 15.0 | 10.5 |
2# | 4.0 | 7.5 | 9.0 | 47.0 | 28.0 | 19.0 |
3# | 7.5 | 12 | 6.0 | 100.0 | 60.0 | 40.0 |
Fluid | Mass Before Experiment (g) | Mass After Experiment (g) | Rolling Recovery Rate (%) |
---|---|---|---|
Distilled Water | 50 | 46.56 | 93.12 |
#1 Drilling Fluid | 50 | 45.14 | 90.28 |
#2 Drilling Fluid | 50 | 45.69 | 91.38 |
#3 Drilling Fluid | 50 | 46.13 | 92.26 |
Type | Confining Pressure (MPa) | Soaking Time (h) | Strength Reduction (%) |
---|---|---|---|
FII = 0 | |||
Distilled Water | 0 | 24 | 5.8 |
72 | 12.9 | ||
144 | 12.5 | ||
5 | 24 | 26.8 | |
72 | 42.8 | ||
144 | 43.0 | ||
1# Drilling Fluid | 0 | 24 | 5.1 |
72 | 10.6 | ||
144 | 11.2 | ||
5 | 24 | 21.6 | |
72 | 31.5 | ||
144 | 33.1 | ||
2# Drilling Fluid | 0 | 24 | 6.2 |
72 | 6.5 | ||
144 | 9.2 | ||
5 | 24 | 20.6 | |
72 | 26.9 | ||
144 | 25.7 | ||
3# Drilling Fluid | 0 | 24 | 3.2 |
72 | 6.5 | ||
144 | 4.8 | ||
5 | 24 | 10.7 | |
72 | 17.2 | ||
144 | 20.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhang, Y.; Dou, F.; Ma, C.; Chen, J.; Li, T.; Zhang, H.; Yuan, W. Experimental Study on the Effect of Drilling Fluid Rheological Properties on the Strength of Brittle Mud Shale. Processes 2025, 13, 3059. https://doi.org/10.3390/pr13103059
Wang W, Zhang Y, Dou F, Ma C, Chen J, Li T, Zhang H, Yuan W. Experimental Study on the Effect of Drilling Fluid Rheological Properties on the Strength of Brittle Mud Shale. Processes. 2025; 13(10):3059. https://doi.org/10.3390/pr13103059
Chicago/Turabian StyleWang, Wei, Yi Zhang, Fengke Dou, Chengyun Ma, Jianguo Chen, Tongtong Li, Hui Zhang, and Wenzhen Yuan. 2025. "Experimental Study on the Effect of Drilling Fluid Rheological Properties on the Strength of Brittle Mud Shale" Processes 13, no. 10: 3059. https://doi.org/10.3390/pr13103059
APA StyleWang, W., Zhang, Y., Dou, F., Ma, C., Chen, J., Li, T., Zhang, H., & Yuan, W. (2025). Experimental Study on the Effect of Drilling Fluid Rheological Properties on the Strength of Brittle Mud Shale. Processes, 13(10), 3059. https://doi.org/10.3390/pr13103059