Research on Carbon Emission Accounting of Municipal Wastewater Treatment Plants Based on Carbon Footprint
Abstract
1. Introduction
2. Material and Methods
2.1. Basic Information on Municipal WWTPs Investigated
2.2. System Boundary of the Case Study
2.3. Carbon Emission Calculation in the Pretreatment Stage
2.3.1. Direct Carbon Emissions and Emission Intensity
2.3.2. Indirect Carbon Emissions and Emission Intensity
2.4. Carbon Emission Calculation in the Biological Treatment Stage
2.4.1. Direct Carbon Emissions and Emission Intensity
2.4.2. Indirect Carbon Emissions and Emission Intensity
2.5. Carbon Emission Calculation of Sludge Treatment Stage
3. Results and Discussion
3.1. Analysis of Accounting Results in the Pretreatment Stage
3.2. Analysis of Accounting Results in the Biological Treatment Stage
3.3. Analysis of Accounting Results in the Sludge Treatment Stage
3.4. Analysis of Whole Plant Accounting Results
4. Conclusions
- (1)
- The plant’s total annual carbon emissions are 42,947 t CO2eq, with an emission intensity of 0.573 kg CO2eq/m3. Direct emissions account for 29,263 t CO2eq, while indirect emissions total 13,684 tCO2eq. Direct emissions constitute the dominant portion, representing 68.14% of the plant’s overall carbon footprint.
- (2)
- The biological treatment stage constitutes the core carbon emission hotspot, with direct emissions (CH4, N2O, CO2) and indirect emissions (electricity, chemicals, transportation) accounting for 68.14% and 63.74% of the plant’s total emissions, respectively. Notably, N2O emerges as the primary contributor to direct emissions due to its high global warming potential (GWP), exhibiting an emission intensity of 0.333 kg CO2eq/m3. In contrast, both preliminary and sludge treatment stages are dominated by indirect emissions from electricity consumption.
- (3)
- To achieve energy conservation and emission reduction, the biological treatment stage requires optimization of the aeration system through intelligent control technologies to reduce air supply, alongside methane (CH4) recovery for carbon offsetting and adoption of innovative nitrogen removal processes. For the preliminary treatment stage, variable frequency drives (VFDs) and IoT technologies should be implemented to enhance pumping station efficiency. In the sludge treatment stage, there should be many critical pathways for carbon mitigation, such as low-carbon dewatering technologies, energy substitution strategies, sludge resource recovery and carbon sequestration techniques, and synergistic policy-market mechanisms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, Y.M.; Chen, K.Y.; Kang, J.N.; Chen, W.M.; Wang, X.Y.; Zhang, X.Y. Policy and management of carbon peaking and carbon neutrality: A literature review. Engineering 2022, 14, 52–63. [Google Scholar] [CrossRef]
- Nayeb, H.; Mirabi, M.; Motiee, H.; Alighardashi, A.; Khoshgard, A. Estimating greenhouse gas emissions from Iran’s domestic wastewater sector and modeling the emission scenarios by 2030. J. Clean. Prod. 2019, 236, 117673. [Google Scholar] [CrossRef]
- Yang, M.J.; Peng, M.; Wu, D.; Feng, H.Y.; Wang, Y.X.; Lv, Y.P.; Sun, F.Y.; Sharma, S.; Che, Y.; Yang, K. Greenhouse gas emission from wastewater treatment plants in China: Historical emissions and future mitigation potentials. Resour. Conserv. Recycl. 2023, 190, 106794. [Google Scholar] [CrossRef]
- Du, W.J.; Lu, J.Y.; Hu, Y.R.; Xiao, J.X.; Yang, C.; Wu, J.; Huang, B.C.; Cui, S.; Wang, Y.; Li, W.W. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat. Water 2023, 1, 166–175. [Google Scholar] [CrossRef]
- Li, L.Q.; Wang, X.H.; Miao, J.Y.; Abulimiti, A.; Jing, X.S.; Ren, N.Q. Carbon neutrality of wastewater treatment-A systematic concept beyond the plant boundary. Environ. Sci. Ecotechnol. 2022, 11, 100180. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Tuo, H.R.; Xie, X.T.; Chen, J.; Han, S.L.; Zhao, X.Q.; Liu, X.M. Research on characteristics of carbon emissions in medium- sized urban sewage treatment plants using improved A2O processes. J. South China Norm. Univ. (Nat. Sci. Ed.) 2024, 56, 63–71. [Google Scholar] [CrossRef]
- Hao, X.D.; Wang, X.Y.; Cao, D.Q.; Wu, Y.Y. Analysis of CO2 emission from fossil carbon in organics from wastewater. China Water Wastewater 2018, 34, 13–17. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, X.Y.; Zeng, S.Y. Measuring and explaining eco-Efficiencies of wastewater treatment plants in China: An uncertainty analysis perspective. Water Res. 2017, 112, 195–207. [Google Scholar] [CrossRef]
- Karakas, A.; Tozum-akgul, S.; Komesli, O.T.; Kaplan-Bekaroglu, S.S. Carbon footprint analysis of advanced biological wastewater treatment plant. J. Water Process Eng. 2024, 61, 105254. [Google Scholar] [CrossRef]
- Xi, J.R.; Gong, H.; Zhang, Y.J.; Dai, X.H.; Chen, L. The evaluation of GHG emissions from Shanghai municipal wastewater treatment plants based on IPCC and operational data integrated methods (ODIM). Sci. Total Environ. 2021, 797, 148967. [Google Scholar] [CrossRef]
- Liao, X.W.; Tian, Y.J.; Gan, Y.W.; Ji, J.P. Quantifying urban wastewater treatment sector’s greenhouse gas emissions using a hybrid life cycle analysis method-an application on Shenzhen city in China. Sci. Total Environ. 2020, 745, 141176. [Google Scholar] [CrossRef]
- Chen, S.Q.; Zhang, L.M.; Liu, B.B.; Yi, H.; Su, H.S.; Kharrazi, A.; Jiang, F.; Lu, Z.M.; Crittenden, J.C.; Chen, B. Decoupling wastewater-related greenhouse gas emissions and water stress alleviation across 300 cities in China is challenging yet plausible by 2030. Nat. Water 2023, 1, 534–546. [Google Scholar] [CrossRef]
- Qiu, D.Z.; Chen, C.; Guo, L.; Liu, D.; Ma, J.H.; Lei, M.; Li, T.N.; Xu, K.K.; Yan, X. Characteristics of Greenhouse Gas Emission from Municipal Wastewater Treatment Plants in Major Urban Groups of China Based on Emission Factor Method. Environ. Eng. 2022, 40, 116–122. [Google Scholar] [CrossRef]
- Bao, Z.Y.; Sun, S.C.; Sun, D.Z. Characteristics of direct CO2 emissions in four full-scale wastewater treatment plants. Desalin. Water Treat. 2015, 54, 1070–1079. [Google Scholar] [CrossRef]
- Shrestha, A.; Bhattarai, T.N.; Ghimire, S.; Mainali, B.; Treichel, H.; Paudel, S.R. Estimation of greenhouse gases emission from domestic wastewater in Nepal: A scenario-based analysis applicable for developing countries. Chemosphere 2022, 300, 134501. [Google Scholar] [CrossRef]
- Maziotis, A.; Molinos-Senante, M. A comprenhesive eco-efficiency analysis of wastewater treatment plants: Estimation of optimal operational costs and greenhouse gas emissions. Water Res. 2023, 243, 120354. [Google Scholar] [CrossRef]
- Corominas, L.; Flores-alsina, X.; Snip, L.; Vanrolleghem, P.A. Comparison of different modeling approaches to better evaluate greenhouse gas emissions from whole wastewater treatment plants. Biotechnol. Bioeng. 2012, 109, 2854–2863. [Google Scholar] [CrossRef]
- Zhang, J.B.; Shao, Y.T.; Wang, H.C.; Liu, G.H.; Qi, L.; Xu, X.L.; Liu, S. Current operation state of wastewater treatment plants in urban China. Environ. Res. 2021, 195, 110843. [Google Scholar] [CrossRef]
- GB 18918-2002; China’s Discharge Standard of Pollutants for Municipal Wastewater Treatment Plants. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002.
- Li, P.F.; Sun, Y.L.; Zhang, Y.; Ge, T.G.; Gao, C.C.; Wu, B.L.; Wei, S.; Xia, Q.Q. Discussion on Carbon Emission Characteristics and Carbon Reduction Path of Urban Sewage System. Water Environ. Res. 2025, 51, 35–41. [Google Scholar]
- Zuo, Z.Q.; Ren, D.H.; Qiao, L.K.; Li, H.; Huang, X.; Liu, Y.C. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers. Water Res. 2021, 203, 117494. [Google Scholar] [CrossRef]
- Chen, H.; Ye, J.F.; Zhou, Y.F.; Wang, Z.N.; Jia, Q.L.; Nie, Y.H.; Li, L.; Liu, H.; Benoit, G. Variations in CH4 and CO2 Productions and emissions driven by pollution sources in municipal sewers: An assessment of the role of dissolved organic matter components and microbiota. Environ. Pollut. 2020, 263, 114489. [Google Scholar] [CrossRef]
- Yan, X.F.; Sun, J.; Kenjiahan, A.; Dai, X.H.; Ni, B.J.; Yuan, Z.G. Rapid and strong biocidal effect of ferrate on sulfidogenic and methanogenic sewer biofilms. Water Res. 2020, 169, 115208. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.H. Study on Production Emissions Calculation of Exhaust Gas from Sewer System. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2013. [Google Scholar]
- Liu, S.Y.; Zhu, X.Y.; Liang, S.; Tian, X.Y.; Ma, Y.G.; Gao, W.C. Carbon Emission Accounting and Emission Reduction Path Analysis of Urban Wastewater Treatment Plants: A Case of a Wastewater Treatment Plant in Shenyang City. Environ. Sci. 2025, 46, 4149–4158. [Google Scholar] [CrossRef]
- China Urban Water Association. Guidelines for Carbon Accounting and Emission Reduction in the Urban Water Sector; China Architecture & Building Press: Beijing, China, 2022. [Google Scholar]
- Ministry of Ecology and Environment the People’s Republic of China. Baseline Emission Factors for China’s Regional Power Grids in Emission Reduction Projects. [R/OL]. 2019. Available online: https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/W020201229610353340851.pdf (accessed on 20 February 2025).
- Schreiber, F.; Wunderlin, P.; Udert, K.M.; Wells, G.F. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions and novel technologies. Front. Microbiol. 2012, 3, 372–396. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Qi, L.; Chen, J.B.; Xia, Z.H.; Li, Q.G.; Ao, Z.D.; Jiang, Z.; Zhang, T.T.; Wang, H.C.; Liu, G.H. Mechanisms and differences of N2O emission characterstics in typical wastewater treatment processes. China Environ. Sci. 2025, 45, 718–726. [Google Scholar] [CrossRef]
- T/CAEPI 49-2022; Technical Specification for Low-Carbon Operation Evaluation of Sewage Treatment Plant. China Association of Environmental Protection Industry: Beijing, China, 2022.
- Parravicini, V.; Svardal, K.; Krampe, J. Greenhouse gas emission from wastewater treatment plants. Energy Procedia 2016, 97, 246–253. [Google Scholar] [CrossRef]
- Jiang, F.H.; Li, J.Q.; Zhang, X.Z.; Chen, J. Fine management & control of pollution control and carbon reduction in the urban WWTPs. China Water Wastewater 2024, 40, 13–20. [Google Scholar] [CrossRef]
- Van Dijk, E.J.H.; Van Loosdrecht, M.C.M.; Pronk, M. Nitrous oxide emission from full-scale municipal aerobic granular sludge. Water Res. 2021, 198, 117159. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Maktabifard, M.; Grubba, D.; Majtacz, J.; Hassan, G.K.; Lu, X.; Piechota, G.; Mannina, G.; Bott, C.B.; Makinia, J. An advanced synergy of partial denitrification-anammox for optimizing nitrogen removal from wastewater: A review. Bioresour. Technol. 2023, 381, 129168. [Google Scholar] [CrossRef]
- Hausheer, D.; Niederdorfer, R.; Bürgmann, H.; Lehmann, M.F.; Magyar, P.; Mohn, J.; Morgenroth, E.; Joss, A. Successful year-round mainstream partial nitritation anammox: Assessment of effluent quality, performance and N2O emissions. Water Res. X 2022, 16, 100145. [Google Scholar] [CrossRef]
- Rossi, S.; Carecci, D.; Proietti, L.; Parati, K.; Ficara, E. Enhancing the environmental and economic sustainability of heterotrophic microalgae cultivation: Kinetic modelling and screening of alternative carbon sources. Chem. Eng. J. Adv. 2024, 19, 100632. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.H.; Zhang, J.T.; Chi, Z.Y.; Kong, F.T.; Zhang, Q. The long overlooked microalgal nitrous oxide emission: Characteristics, mechanisms, and influencing factors in microalgae-based wastewater scenarios. Sci. Total Environ. 2023, 856 Pt 2, 159153. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Ji, B.; Tian, J.N.; Liu, Y. Development, performance and microbial community analysis of a continuous-flow microalgal-bacterial biofilm photoreactor for municipal wastewater treatment. J. Environ. Manag. 2023, 338, 117770. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Woo, S.G.; Yao, Y.N.; Chen, H.H.; Wu, Y.J.; Criddle, C.S. Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. Water Res. 2020, 173, 115575. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yuan, L.J. Generation, emission reduction/utilization, and challenges of greenhouse gas nitrous oxide in wastewater treatment plants—A review. J. Water Process Eng. 2023, 386, 129574. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, W.J. Economic and ecological assessment of photovoltaic systems for wastewater treatment plants in China. Renew. Energy 2022, 191, 852–867. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, R.Q.; Xiao, L.G.; Zhang, L.J.; Wang, S.; Chuai, X.W.; Hang, Y.C.; Jiao, S.X. Carbon emission of urban wastewater treatment system based on the “water-energy-carbon” nexus. Resour. Sci. 2020, 42, 1052–1062. [Google Scholar] [CrossRef]
Phase | Operation Parameters | Concentration of Pollutants | ||||
---|---|---|---|---|---|---|
Influent (m3/d) Range (Mean) | Effluent (m3/d) Range (Mean) | COD (mg/L) Range (Mean) | BOD5 (mg/L) Range (Mean) | TN (mg/L) Range (Mean) | TP (mg/L) Range (Mean) | |
Pretreatment stage | 177,866–234,429 (205,551) | — | 169.67–270.17 (205.84) | 85.02–108.16 (100.14) | 14.43–19.59 (16.45) | 2.13–3.73 (2.78) |
Biological treatment stage | — | 169,576–198,477 (184,352) | 12.19–15.98 (13.82) | 2.61–4.89 (3.73) | 6.88–9.23 (7.78) | 0.17–0.28 (0.23) |
Sludge treatment stage | 3224–4627 (3952) | 58.7–68.4 (65.6 moisture conten 78%) | — | — | — | — |
Phase | Carbon Source | Abbreviation | Emission (kg/y) | Intensity (kg CO2eq/m3) |
---|---|---|---|---|
Pretreatment stage | Fossil-derived CO2 | CO2f1 | 13,780 | 0.00018 |
Methane | CH4f1 | 1389 | 0.00052 | |
Nitrous oxide | N2Of1 | 1702 | 0.00676 | |
Sewage lifting pump | e1 | 2,255,517 | 0.03006 | |
Cyclone grit chamber | e2 | 20,238 | 0.00027 | |
Biological treatment stage | Methane | CH4f2 | 74,658 | 0.02786 |
Nitrous oxide | N2Of1 | 84,273 | 0.33275 | |
Fossil-derived CO2 | CO2f2 | 1,728,081 | 0.02303 | |
Aeration | e3 | 3,056,933 | 0.04074 | |
Internal recirculation | e4 | 503,923 | 0.00672 | |
sludge return | e5 | 1,249,690 | 0.01666 | |
Mixed liquor mixing | e6 | 683,029 | 0.00910 | |
Chemical reagent addition | e7 | 196,101 | 0.00261 | |
Disinfectants | p1 | 818,901 | 0.01091 | |
Phosphorus precipitant | p2 | 2,213,548 | 0.02950 | |
Sludge treatment stage | Sludge thickening | e8 | 237,759 | 0.00317 |
Sludge dewatering via filter pressing | e9 | 642,553 | 0.00856 | |
Flocculation aid dosing | e10 | 217,557 | 0.00290 | |
Conveyance of WAS | e11 | 661,779 | 0.00882 | |
Sludge agitation | e12 | 393,627 | 0.00525 | |
Coagulant aids | CO2f3 | 13,545 | 0.00018 | |
Sludge transportation | CO2exp | 518,610 | 0.00691 |
Phase | Direct Emission | Electricity Emission | Chemical Emission | Total Emission | ||||
---|---|---|---|---|---|---|---|---|
CO2-Fossil | CH4 | N2O | CO2-Electricity | CO2-Chemical | CO2-Transportion | |||
Pretreatment stage | Emission (tCO2eq/y) | 14 | 35 | 507 | 2276 | - | - | 2832 |
Intensity (kgCO2eq/m3) | 0.00018 | 0.00052 | 0.00672 | 0.03033 | - | - | 0.03775 | |
Biological treatment stage | Emission (tCO2eq/y) | 1728 | 1866 | 25,113 | 5690 | 3032 | - | 37,429 |
Intensity (kgCO2eq/m3) | 0.02303 | 0.02786 | 0.33275 | 0.07583 | 0.04041 | - | 0.49988 | |
Sludge treatment stage | Emission (tCO2eq/y) | - | - | - | 2153 | 14 | 519 | 2686 |
Intensity (kgCO2eq/m3) | - | - | - | 0.0287 | 0.00018 | 0.00691 | 0.03579 | |
Whole plant | Emission (tCO2eq/y) | 1742 | 1901 | 25,620 | 10,119 | 3046 | 519 | 42,947 |
Intensity (kgCO2eq/m3) | 0.02321 | 0.02838 | 0.33947 | 0.13486 | 0.04059 | 0.00691 | 0.57342 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Yu, Y.; Zheng, Z.; Zhou, L.; Wang, C.; Deng, R.; Hursthouse, A.; Deng, M. Research on Carbon Emission Accounting of Municipal Wastewater Treatment Plants Based on Carbon Footprint. Processes 2025, 13, 3057. https://doi.org/10.3390/pr13103057
Zhou S, Yu Y, Zheng Z, Zhou L, Wang C, Deng R, Hursthouse A, Deng M. Research on Carbon Emission Accounting of Municipal Wastewater Treatment Plants Based on Carbon Footprint. Processes. 2025; 13(10):3057. https://doi.org/10.3390/pr13103057
Chicago/Turabian StyleZhou, Saijun, Yongyi Yu, Zhijie Zheng, Liang Zhou, Chuang Wang, Renjian Deng, Andrew Hursthouse, and Mingjun Deng. 2025. "Research on Carbon Emission Accounting of Municipal Wastewater Treatment Plants Based on Carbon Footprint" Processes 13, no. 10: 3057. https://doi.org/10.3390/pr13103057
APA StyleZhou, S., Yu, Y., Zheng, Z., Zhou, L., Wang, C., Deng, R., Hursthouse, A., & Deng, M. (2025). Research on Carbon Emission Accounting of Municipal Wastewater Treatment Plants Based on Carbon Footprint. Processes, 13(10), 3057. https://doi.org/10.3390/pr13103057