Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (186)

Search Parameters:
Keywords = botanical insecticides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 315 KiB  
Article
Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu
by Geraldo Matheus de Lara Alves, Adeney de Freitas Bueno, Gabriel Siqueira Carneiro, Guilherme Julião Zocolo, Taynara Cruz dos Santos, Rafael Stempniak Iasczczaki, Letícia Carolina Chiampi Munhoz, Nicole de Oliveira Vilas Boas and Isabel Roggia
Agronomy 2025, 15(8), 1787; https://doi.org/10.3390/agronomy15081787 - 24 Jul 2025
Viewed by 362
Abstract
There is a global demand for reducing the adoption of traditional chemical insecticides in agriculture. Among the most promising alternatives, botanical insecticides have been increasingly gaining attention due to their efficacy combined with a more environmentally safe impact. Among the different botanical insecticides [...] Read more.
There is a global demand for reducing the adoption of traditional chemical insecticides in agriculture. Among the most promising alternatives, botanical insecticides have been increasingly gaining attention due to their efficacy combined with a more environmentally safe impact. Among the different botanical insecticides commercially available, oxymatrine is an alkaloid found in the roots of Sophora flavescens which exhibits wide insecticide activity. However, their side-effects on non-target organisms have not been extensively evaluated. Therefore, this study aimed to investigate in laboratory conditions the insecticidal potential of a commercial botanical insecticide (Matrine®) based on ethanolic extract of S. flavescens roots at 0.2; 0.6; 1.0; 1.4; 1.8; and 2.2 L of commercial product per hectare to control third-instar larvae of Rachiplusia nu and its selectivity in the egg parasitoid Trichogramma pretiosum. Overall, our results showed that the ethanolic extract of S. flavescens is an efficient tool to control R. nu from 0.6 to 2.2 L/ha, with similar R. nu mortality at 48 and 72 h after spraying (close to 100% mortality) associated with no impact to pupae and minimum impact to adults (slightly harmful) of the egg parasitoid. The botanical insecticide was classified as harmless to the pupae and slightly harmful to the adults of T. pretiosum according to the International Organization for Biological Control (IOBC) protocols. Thus, the use of the ethanolic extract of S. flavescens emerges as a relevant alternative to control R. nu, which needs to be confirmed in future field trials. Full article
(This article belongs to the Section Pest and Disease Management)
18 pages, 1034 KiB  
Article
Preparation and Characterization of Efficient and Safe Rotenone Solid Nanodispersion by Self-Emulsifying Technique
by Yunfei Zhang, Xuesheng Lin, Yunlong Qian, Mingda Qin, Shujing Zhang, Lanying Wang and Yanping Luo
Nanomaterials 2025, 15(14), 1056; https://doi.org/10.3390/nano15141056 - 8 Jul 2025
Viewed by 378
Abstract
Self-emulsifying solid nanodispersion technology is emerging as an attractive strategy to prepare new eco-friendly and efficient nano-formulations due to its simple, energy efficient and easy scale-up process. However, it is still unknown whether this technology can be employed to cope with the drawbacks [...] Read more.
Self-emulsifying solid nanodispersion technology is emerging as an attractive strategy to prepare new eco-friendly and efficient nano-formulations due to its simple, energy efficient and easy scale-up process. However, it is still unknown whether this technology can be employed to cope with the drawbacks of botanical insecticides including poor water solubility, rapid photodegradation and limited targeting efficiency. In this study, rotenone (Rot) was selected as a model of botanical insecticides, and its solid nanodispersion (Rot–SND) was prepared by a self-emulsifying method combined with parameter optimization. Our target nano-formulation, consisting of 5% Rot, 20% surfactant complexes of 8% Ethylan 992 and 12% EL–80, and 75% lactose, exhibited excellent storage stability and significantly improved the pseudo-solubility of Rot by at least 250 times. The average particle size and polydispersity index (PDI) of Rot–SND were determined to be 101.19 nm and 0.21, respectively. Rot–SND displayed smaller contact angles and greater retention on both cucumber and cabbage leaves than those of a commercial emulsifiable concentrates (ECs). Rot–SND was also more resistant to photodegradation, with a degradation rate reduced by 27.01% as compared with the ECs. In addition, the toxicity of Rot–SND towards Aphis gossypii was 3.01 times that of the ECs, with a median lethal concentration (LC50) of 1.45 µg a.i./mL. Under the field conditions, Rot–SND showed a prolonged duration for A. gossypii control, with a significantly higher control efficacy (88.10%) on the 10th day than that of the ECs (77.02%). Moreover, a 2.34-fold decline in the toxicity towards nontarget mosquito larvae was observed for Rot–SND as compared with the EC. Overall, for the first time, our results indicate the role of Rot–SND as an eco-friendly and efficient way to improve the solubility, foliar affinity, photostability, bioactivity and eco-safety of Rot. This research also provided a feasible strategy to prepare more eco-friendly botanical pesticide formulations of high efficiency. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 2055 KiB  
Article
Extract of Tangerine Peel as a Botanical Insecticide Candidate for Smallholder Potato Cultivation
by José-Manuel Pais-Chanfrau, Lisbeth J. Quiñonez-Montaño, Jimmy Núñez-Pérez, Julia K. Prado-Beltrán, Magali Cañarejo-Antamba, Jhomaira L. Burbano-García, Andrea J. Chiliquinga-Quispe and Hortensia M. Rodríguez Cabrera
Insects 2025, 16(7), 680; https://doi.org/10.3390/insects16070680 - 29 Jun 2025
Viewed by 842
Abstract
Background: Contemporary agriculture heavily relies on synthetic chemicals to ensure high yields and food security; however, their overuse has led to health issues and the development of pesticide resistance in pests. Researchers are now exploring natural, eco-friendly alternatives for pest control. Methods: This [...] Read more.
Background: Contemporary agriculture heavily relies on synthetic chemicals to ensure high yields and food security; however, their overuse has led to health issues and the development of pesticide resistance in pests. Researchers are now exploring natural, eco-friendly alternatives for pest control. Methods: This study evaluated two ethanol-based formulations (1.25% and 2.50%, v/v) derived from the tangerine peel (Citrus reticulata L. var. Clementina) against conventional chemical treatments and an untreated control group in the cultivation of potatoes (Solanum tuberosum L. var. Capiro). A randomised block design was used, with three blocks per treatment containing 45 plants. The experiment was conducted during the wet season (February–April 2023). Results: According to visual inspections and yellow traps, following weekly application from days 30 to 105 post-planting to monitor pest (e.g., Frankliniella occidentalis, Aphididae) and beneficial insect (e.g., Coccinellidae, Apis mellifera) populations, the 2.50% formulation performed similarly to chemical treatments against pests, whilst being harmless to beneficial insects. Post-harvest analysis showed that the formulations achieved 73% of conventional yields, with comparable tuber damage and levels of Premnotrypes vorax larvae. Conclusions: Toxicological tests confirmed the eco-friendliness of the formulations, making them suitable for small-scale Andean ‘chakras’ in organic farming and honey production, without the use of chemicals. Full article
Show Figures

Graphical abstract

15 pages, 1027 KiB  
Article
Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)
by Isabella Maria Pompeu Monteiro Padial, Silvana Aparecida de Souza, Claudia Andrea Lima Cardoso, Juliana Rosa Carrijo Mauad, Anelise Samara Nazari Formagio and Rosilda Mara Mussury
Agronomy 2025, 15(6), 1464; https://doi.org/10.3390/agronomy15061464 - 16 Jun 2025
Viewed by 446
Abstract
The growing demand for sustainable phytosanitary products has renewed interest in botanical insecticides as viable pest control tools. Amid rising demand for sustainable crop protection, this study screens Cerrado plants traditionally used in medicine to pinpoint bioactive compounds that could replace synthetic pesticides. [...] Read more.
The growing demand for sustainable phytosanitary products has renewed interest in botanical insecticides as viable pest control tools. Amid rising demand for sustainable crop protection, this study screens Cerrado plants traditionally used in medicine to pinpoint bioactive compounds that could replace synthetic pesticides. These products have complex chemical compositions, with compounds acting synergistically through multiple mechanisms, including oral (ingestion of allelochemicals) and topical (contact of allelochemicals on epidermis) toxicity. This study evaluated the oral and topical toxicity of aqueous leaf extracts from Anemopaegma arvense (AEAa), Coussarea hydrangeifolia (AECh), Tapirira guianensis (AETg), and Duguetia furfuracea (AEDf) on Plutella xylostella. In the oral toxicity test, first-instar larvae were fed treated diets until pupation, with biological parameters monitored until adulthood. The extracts caused an average of 45% larval mortality, reduced pupal duration, and lowered egg production. In the topical toxicity test, only the extract from T. guianensis showed significant effect (p = 0.0171), causing 30% mortality in third-instar larvae. The other extracts showed no significant topical toxicity, and AECh showed no lethal or sublethal effects at all. Phytochemical screening was assessed by quantitative spectrophotometric assays, and semi-quantitative classical colorimetric tests. Major compound classes identified were tannins, flavonoids, triterpenoids, coumarins, and alkaloids. These findings highlight the potential of the evaluated plant extracts for pest control, particularly via ingestion, while also underscoring the need for further studies to better understand their efficacy and mechanisms of action. Full article
Show Figures

Figure 1

17 pages, 911 KiB  
Article
Toxicodynamic Assessment of Aqueous Neem (Azadirachta indica A. Juss) Seed Extract on Mortality and Carboxylesterase Activity in Key Organs of Bombyx mori L. Larvae
by Ajin Rattanapan, Chuthep Phannasri, Chawiwan Phannasri, Patcharawan Sujayanont and Kattinat Sagulsawasdipan
Toxins 2025, 17(6), 304; https://doi.org/10.3390/toxins17060304 - 16 Jun 2025
Viewed by 484
Abstract
Botanical insecticides derived from neem (Azadirachta indica A. Juss.) seeds have gained significant interest due to their sustainable characteristics and low environmental impact. However, their use in sericulture remains contentious due to the heightened sensitivity of domesticated silkworms to environmental stressors. This [...] Read more.
Botanical insecticides derived from neem (Azadirachta indica A. Juss.) seeds have gained significant interest due to their sustainable characteristics and low environmental impact. However, their use in sericulture remains contentious due to the heightened sensitivity of domesticated silkworms to environmental stressors. This study systematically investigates the toxicodynamic effects of aqueous neem seed extract (ANSE) on fifth instar larvae of Thai multivoltine Bombyx mori L., focusing on larval mortality and carboxylesterase (CarE) enzyme activity in essential detoxification organs. Larvae were exposed to ANSE concentrations ranging from 5 to 50 mg L−1 for up to 72 h. Key findings highlight a pronounced dose- and time-dependent increase in mortality, with an accurately determined LC50 value of 17 mg L−1 at the longest time exposure, accompanied by mortality rates reaching approximately 83% at the highest concentration tested, indicating considerable susceptibility. Additionally, notable and distinct organ-specific responses were observed, with significant inhibition of CarE activity in the midgut contrasting with elevated activities in the fat body and Malpighian tubules. These differential enzymatic responses reveal previously undocumented adaptive detoxification mechanisms. Consequently, the study advocates cautious and regulated application of neem-based insecticides in sericulture, recommending precise management of concentrations and exposure durations according to silkworm strain sensitivities to ensure optimal silk production. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Figure 1

15 pages, 1828 KiB  
Article
Efficacy of Foliar Applications of Entomopathogenic Nematodes in the Management of the Invasive Tomato Leaf Miner Phthorimaea absoluta Compared to Local Practices Under Open-Field Conditions
by Joelle N. Kajuga, Bancy W. Waweru, Didace Bazagwira, Primitive M. Ishimwe, Stephano Ndacyayisaba, Grace C. Mukundiyabo, Marie Mutumwinka, Jeanne d’Arc Uwimana and Stefan Toepfer
Agronomy 2025, 15(6), 1417; https://doi.org/10.3390/agronomy15061417 - 9 Jun 2025
Viewed by 483
Abstract
The tomato leaf miner Phthorimaea (syn. Tuta) absoluta (Lepidoptera: Gelechiidae) is invasive in many agricultural regions. Its larvae feed inside leaf mines and tomato fruits, causing yield losses. Repeated sprays of insecticides disrupt agri-ecosystems. Conducting three open-field tomato experiments, we assessed whether [...] Read more.
The tomato leaf miner Phthorimaea (syn. Tuta) absoluta (Lepidoptera: Gelechiidae) is invasive in many agricultural regions. Its larvae feed inside leaf mines and tomato fruits, causing yield losses. Repeated sprays of insecticides disrupt agri-ecosystems. Conducting three open-field tomato experiments, we assessed whether formulations of entomopathogenic nematodes could improve the efficacy of these promising biocontrol agents or whether other nature-based agents such as pyrethrin or spinosad would be the better option(s), as compared to a standard insecticide. Steinernema carpocapsae formulated in an alkyl polyglycoside polymeric surfactant, in canola oil, or mixed in both reduced 37 to 68% of pest larvae within two weeks post-treatment, followed by the botanical pyrethrin (48%). Neither spinosad nor lambda cyhalothrin achieved sufficient control. Increasing the frequency of treatments to every two weeks moderately increased efficacy. Positively, the nematodes can, if properly formulated and applied, still be recovered alive from leaf surfaces up to two hours after spraying, indicating that they have time to enter the leaf mines. A small proportion can even be still extracted alive from the leaf mines one week later. Despite these promising results, further research is needed to improve the efficacy of nature-based management options for use against this pest, with the aim of ultimately reducing reliance on chemical insecticides and minimizing the impact on agri-ecosystems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 1900 KiB  
Article
Harmful to Parents, Harmless to Offspring: Lethal and Transgenerational Effects of Botanical and Synthetic Insecticides on the Egg Parasitoid Trichogramma atopovirilia
by Emile Dayara Rabelo Santana, Leonardo Vinicius Thiesen, Leandro do Prado Ribeiro, Tamara Akemi Takahashi, José Roberto Postali Parra and Pedro Takao Yamamoto
Insects 2025, 16(5), 493; https://doi.org/10.3390/insects16050493 - 5 May 2025
Cited by 1 | Viewed by 630
Abstract
This study investigated the lethal and transgenerational effects of botanical and synthetic insecticides on the egg parasitoid Trichogramma atopovirilia, an important natural enemy of Spodoptera frugiperda in Brazil and beyond. The treatments were assessed for their impact on parasitism, emergence, sex ratio, [...] Read more.
This study investigated the lethal and transgenerational effects of botanical and synthetic insecticides on the egg parasitoid Trichogramma atopovirilia, an important natural enemy of Spodoptera frugiperda in Brazil and beyond. The treatments were assessed for their impact on parasitism, emergence, sex ratio, and flight capacity of adults exposed to contaminated eggs. The botanical insecticide ESAM (ethanolic seed extract of Annona mucosa) significantly reduced the parasitism in the F0 generation by 99.76%, categorizing it as toxic. Anosom® [acetogenins (annonin as a major component)] and Azamax® [limonoids (azadirachtin + 3-tigloilazadirachtol)] also caused substantial reductions (99.13% and 92.36%, respectively) in the parasitism rate. EFAMON (ethanolic leaf extract of Annona montana) reduced the parasitism by 62%, while the synthetic insecticide Premio® (chlorantraniliprole) resulted in a 28.21% reduction. In the F1 generation, emergence rates for EFAMON, Azamax®, and Premio® exceeded 70%, showing no significant differences from the negative control (82%), while Anosom® resulted in a lower emergence rate of 61.39%. No significant effects were observed on sex ratio or parasitism in the F1 and F2 generations. Most adults reached high flight capacity (above 80%). These results indicate that while ESAM was toxic, the other treatments showed no transgenerational effects. Our findings contribute to understanding insecticide selectivity and highlight the importance of such studies for the sustainable management of S. frugiperda within integrated pest management programs. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 2649 KiB  
Article
Electrophysiological Mechanism and Identification of Effective Compounds of Ginger (Zingiber officinale Roscoe) Shoot Volatiles Against Aphis gossypii Glover (Hemiptera: Aphididae)
by Jiawei Ma, Ye Tian, Xuli Liu, Shengyou Fang, Chong Sun, Junliang Yin, Yongxing Zhu and Yiqing Liu
Horticulturae 2025, 11(5), 490; https://doi.org/10.3390/horticulturae11050490 - 30 Apr 2025
Viewed by 390
Abstract
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic [...] Read more.
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic and insecticidal properties; however, the underlying mechanisms remain poorly understood. This study evaluated the repellent activity of ginger shoot extract (GSE) across four solvent phases—petroleum ether, trichloromethane, ethyl acetate, and methanol—against A. gossypii. The results demonstrated that GSE exhibited significant repellent effects, with the methanol phase showing the most pronounced activity. Twelve fractions were chromatographically separated from the methanol phase, and electroantennography (EAG) analysis revealed that fraction 4 induced strong EAG responses in both winged and wingless aphids. Further identification of active compounds in fraction 4 by gas chromatography–mass spectrometry (GC–MS) indicated the presence of terpenes, aromatics, alkanes, esters, and phenols as major constituents. Subsequent EAG analysis identified several key compounds—octahydro-pentalene (C1), (Z)-cyclooctene (C2), dimethylstyrene (C3), tetramethyl-heptadecane (C5), tetrahydro-naphthalene (C6), and heptacosane (C9)—as responsible for eliciting EAG responses in both aphid forms. Additionally, results from Y-tube olfactometer assays showed that (Z)-cyclooctene and heptacosane were significantly attractive, while octahydro-pentalene acted as a strong repellent to both winged and wingless aphids. These findings offer valuable insights for the development of synthetic attractants and repellents for A. gossypii and provide a theoretical foundation for utilizing ginger in the creation of botanical pesticides targeting this pest. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds of Horticultural Plants)
Show Figures

Figure 1

26 pages, 1038 KiB  
Review
Advances in Stored-Product Pest Management: Combined Effects of Diatomaceous Earths with Botanicals, Insecticides, Entomopathogenic/Plant Pathogenic Fungi, and Silica Gel
by Waqas Wakil, Maria C. Boukouvala, Nickolas G. Kavallieratos, Demeter Lorentha S. Gidari, Anna Skourti and Tahira Riasat
Sustainability 2025, 17(8), 3316; https://doi.org/10.3390/su17083316 - 8 Apr 2025
Cited by 1 | Viewed by 644
Abstract
Diatomaceous earth (DE) consists of fossilized remnants of diatoms, which are marine or freshwater unicellular algae. Most DEs originate from fossilized sedimentary layers of diatoms deposited in water bodies during the Eocene and Miocene periods, much more than 20 million years ago. Processed [...] Read more.
Diatomaceous earth (DE) consists of fossilized remnants of diatoms, which are marine or freshwater unicellular algae. Most DEs originate from fossilized sedimentary layers of diatoms deposited in water bodies during the Eocene and Miocene periods, much more than 20 million years ago. Processed DE, a soft, chalky powder, is widely used as an insecticide due to the highly absorptive and abrasive nature of its particles. As an insecticide, DE removes the wax coating of the insect epicuticle, the primary barrier against water loss. This results in water evaporation, leading to desiccation and death of the targeted insects. This review emphasizes the co-treatment of DEs with biological agents that have insecticidal properties (e.g., essential oils, plant powders, silica gel, and species/isolates of fungi), reducing the quantities used in single-application treatments and suggesting paths for the sustainable management of insects damaging stored products. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

18 pages, 1829 KiB  
Article
Oviposition Deterrence and Larvicidal Activity of Propyl Ether Dillapiole and Piperidyl Dillapiole Against Aedes (Stegomyia) aegypti (Diptera: Culicidae)
by Junielson Soares da Silva, Ana Cristina da Silva Pinto, Samara Silva de Souza, Francisco Célio Maia Chaves, Sabrina da Fonseca Meireles, Rosalina Pinheiro Pereira, Rosemary Aparecida Roque, João Marcelo de Castro e Sousa and Míriam Silva Rafael
Toxics 2025, 13(4), 283; https://doi.org/10.3390/toxics13040283 - 8 Apr 2025
Viewed by 541
Abstract
The study of substances of botanical origin is fundamental for the development of new effective alternatives for the control of Aedes (Stegomyia) aegypti (Culicidae), a vector of arboviruses in humans. In this study, the potential of two new dillapiole derivatives, propyl ether dillapiole [...] Read more.
The study of substances of botanical origin is fundamental for the development of new effective alternatives for the control of Aedes (Stegomyia) aegypti (Culicidae), a vector of arboviruses in humans. In this study, the potential of two new dillapiole derivatives, propyl ether dillapiole and piperidyl dillapiole, was tested to determine their ability to deter oviposition and their larvicidal and residual effects against Ae. aegypti under simulated field conditions, as alternatives for the control of this mosquito. The ability of these substances to deter oviposition by pregnant Ae. aegypti females was assessed in the laboratory, and then the larvicide and residual effects of different concentrations were tested under simulated field conditions. The determination of the enzymatic activity in exposed larvae was carried out using sublethal concentrations. The LC50 values of propyl ether dillapiole after 24 and 48 h were 24.60 µg/mL and 14.76 µg/mL, and those of piperidyl dillapiole were 31.58 µg/mL and 24.85 µg/mL, respectively. After 48 h of exposure to aged, treated water, the mortality of propyl ether dillapiole (100 µg/mL) and piperidyl dillapiole (200 µg/mL) fell to 81.7% and 75% on the second day, and to 73.3% and 66.7% on the fourth day, respectively. The concentrations of 100 µg/mL of propyl ether dillapiole and 200 µg/mL of piperidyl dillapiole caused oviposition rates of only 3.80% and 4.63% of the eggs of the females, respectively, compared to 22.01% in the negative control (water and DMSO at 2%). In the larvae exposed to propyl ether, piperidyl dillapiole, dillapiole, or the chemical insecticide temephos (positive control), inhibition of acetylcholinesterase (AChE) occurred. Propyl ether dillapiole and piperidyl dillapiole have potential for use as alternative forms of control of Ae. aegypti, with propyl ether dillapiole being the most promising molecule. Further studies are needed to understand the effects of these substances on this mosquito and on non-target organisms. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Figure 1

13 pages, 279 KiB  
Article
Control Effectiveness of Kaolin Clay and Neem on Agonoscena pistaciae in Pistachio Orchards
by Halil Dilmen, Mehmet Salih Özgökçe, Cevdet Kaplan and Hilmi Kara
Agronomy 2025, 15(4), 854; https://doi.org/10.3390/agronomy15040854 - 29 Mar 2025
Viewed by 967
Abstract
The pistachio psyllid (Agonoscena pistaciae) is a major pest threatening pistachio production in Siirt province, Türkiye. This study evaluated the efficacy of a clay mineral, kaolin, and a botanical insecticide, neem extract, in managing this pest, aiming to reduce the reliance [...] Read more.
The pistachio psyllid (Agonoscena pistaciae) is a major pest threatening pistachio production in Siirt province, Türkiye. This study evaluated the efficacy of a clay mineral, kaolin, and a botanical insecticide, neem extract, in managing this pest, aiming to reduce the reliance on chemical pesticides. Field experiments were conducted to compare the performance of these treatments with that of the synthetic insecticide spirotetramat SC 100 at various application rates. The results demonstrated that kaolin significantly reduced oviposition rates, achieving up to 100% deterrence, while neem extract exhibited substantial nymph mortality rates of up to 84.75%. These findings highlight the potential of mineral- and plant-based alternatives as effective components of integrated pest management strategies for pistachio psyllid control, offering sustainable and environmentally friendly solutions for minimizing economic losses and pesticide residues in pistachio production. Full article
15 pages, 2947 KiB  
Article
Neem and Gliricidia Plant Leaf Extracts Improve Yield and Quality of Leaf Mustard by Managing Insect Pests’ Abundance Without Harming Beneficial Insects and Some Sensory Attributes
by Rowland Maganizo Kamanga, Salifu Bhikha, Felix Dalitso Kamala, Vincent Mgoli Mwale, Yolice Tembo and Patrick Alois Ndakidemi
Insects 2025, 16(2), 156; https://doi.org/10.3390/insects16020156 - 3 Feb 2025
Cited by 1 | Viewed by 1676
Abstract
Production and consumption of vegetable crops has seen a sharp increase in the recent past owing to an increasing recognition of their nutraceutical benefits. In tandem, there has been unwarranted application of agrochemicals such as insecticides to enhance productivity and vegetable quality, at [...] Read more.
Production and consumption of vegetable crops has seen a sharp increase in the recent past owing to an increasing recognition of their nutraceutical benefits. In tandem, there has been unwarranted application of agrochemicals such as insecticides to enhance productivity and vegetable quality, at the cost of human health, and fundamental environmental and ecosystem functions and services. This study was conducted to evaluate the efficacy of neem and gliricidia botanical extracts in managing harmful insect pest populations in leaf mustard. Our results report that neem and gliricidia plant extracts enhance the yield and quality of leaf mustard by reducing the prevalence and feeding activity of harmful insect pests in a manner similar to synthetic insecticides. Some of the key insect pests reduced were Lipaphis erysimi, Pieris oleracea, Phyllotreta Cruciferae, Melanoplus sanguinipes, and Murgantia histrionica. However, compared to synthetic insecticides, neem and gliricidia plant extracts were able to preserve beneficial insects such as the Coccinellidae spp., Trichogramma minutum, Araneae spp., Lepidoptera spp., and Blattodea spp. Furthermore, plant extracts did not significantly alter sensory attributes, especially taste and odor, whereas the visual appearance of leaf mustard was greater in plants sprayed with neem and synthetic insecticides. Physiologically, plant extracts were also able to significantly lower leaf membrane damage as shown through the electrolyte leakage assay. Therefore, these plant extracts represent promising pesticidal plant materials and botanically active substances that can be leveraged to develop environmentally friendly commercial pest management products. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

22 pages, 849 KiB  
Review
Botanical Antifeedants: An Alternative Approach to Pest Control
by Roman Pavela, Kateřina Kovaříková and Matěj Novák
Insects 2025, 16(2), 136; https://doi.org/10.3390/insects16020136 - 31 Jan 2025
Cited by 1 | Viewed by 1735
Abstract
Plant protection against phytophagous pests still largely relies on the application of synthetic insecticides, which can lead to environmental and health risks that are further exacerbated by the development of resistant pest populations. These are the driving forces behind the current trend of [...] Read more.
Plant protection against phytophagous pests still largely relies on the application of synthetic insecticides, which can lead to environmental and health risks that are further exacerbated by the development of resistant pest populations. These are the driving forces behind the current trend of research and the development of new ecological insecticides. The mode of action does not have to rely exclusively on acute or chronic toxicity. Another promising approach is the use of plant antifeedants, which can significantly reduce the food intake of phytophagous insects. However, the information on antifeedant substances has not yet been sufficiently evaluated. The aim of this review was to find the most promising plants that provide potent extracts, essential oils (EOs), or isolated compounds with antifeedant properties. The selection was based on a comparison of effective concentrations or doses. Effective extracts were obtained from 85 plant species belonging to 35 families and the EOs came from 38 aromatic plant species from 11 families. Based on the results, Angelica archangelica, Caesalpinia bonduc, Grindelia camporum, Inula auriculata, Lavandula luisieri, Mentha pulegium, Piper hispidinervum, and Vitis vinifera were selected as promising plants with antifeedant potential. These plants are potent antifeedants, and at the same time provide sufficient biomass for industrial use in the development and production of botanical antifeedants. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

18 pages, 1065 KiB  
Article
Salvia connivens Methanolic Extract Against Spodoptera frugiperda and Tenebrio molitor and Its Effect on Poecilia reticulata and Danio rerio
by Manolo Rodríguez-Cervantes, Luis Ricardo León-Herrera, Salvador Alejandro Ventura-Salcedo, María del Carmen Monroy-Dosta, Eloy Rodríguez-deLeón, Mamadou Moustapha Bah, Juan Campos-Guillén, Aldo Amaro-Reyes, Carlos Eduardo Zavala-Gómez, Rodolfo Figueroa-Brito, Karla Elizabeth Mariscal-Ureta, Héctor Pool, Itzel Ramos-Mayorga and Miguel Angel Ramos-López
Toxics 2025, 13(2), 94; https://doi.org/10.3390/toxics13020094 - 26 Jan 2025
Viewed by 1020
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) and Tenebrio molitor (Coleoptera: Tenebrionidae) are two prominent pests of maize and its stored grains, respectively. Botanical pesticides have been proposed as an alternative for their management. This study evaluated the insecticidal activity of Salvia connivens (Lamiaceae) methanolic extract [...] Read more.
Spodoptera frugiperda (Lepidoptera: Noctuidae) and Tenebrio molitor (Coleoptera: Tenebrionidae) are two prominent pests of maize and its stored grains, respectively. Botanical pesticides have been proposed as an alternative for their management. This study evaluated the insecticidal activity of Salvia connivens (Lamiaceae) methanolic extract and rosmarinic acid against S. frugiperda and T. molitor by adding them to an artificial diet, as well as their ecotoxicological effects on Poecilia reticulata (Cyprinodontiformes: Poeciliidae) and Danio rerio (Cypriniformes: Danionidae) through acute toxicity tests. The methanolic extract showed higher mortality activity against S. frugiperda (LC50 = 874.28 ppm) than against T. molitor (LC50 = 1856.94 ppm) and was non-toxic to fish. Rosmarinic acid, the most abundant compound in the extract (80.45 mg g−1), showed higher activity against S. frugiperda (LC50 = 176.81 ppm). This compound did not cause a toxic effect on adult P. reticulata at the tested concentrations. However, in P. reticulata fingerlings and D. rerio adults, it was non-toxic, except in D. rerio embryos, where it was slightly toxic. These findings suggest that S. connivens methanolic extract has potential as a botanical product for the management of S. frugiperda and T. molitor with low ecotoxicological impact, while rosmarinic acid may be a useful compound for the management of S. frugiperda. Full article
(This article belongs to the Special Issue Impacts of Agrochemicals on Insects and Soil Organisms)
Show Figures

Graphical abstract

17 pages, 1514 KiB  
Article
Essential Oils as Bioinsecticides Against Blattella germanica (Linnaeus, 1767): Evaluating Its Efficacy Under a Practical Framework
by Ana Manzanares-Sierra, Eduard Monsonís-Güell, Crisanto Gómez, Sílvia Abril and Mara Moreno-Gómez
Insects 2025, 16(1), 98; https://doi.org/10.3390/insects16010098 - 18 Jan 2025
Viewed by 2038
Abstract
Concerns about the negative effects of traditional insecticides and increasing insecticide resistance have prompted the exploration of botanical alternatives like essential oils (EOs). The registration of biocides is a mandatory procedure, and some regions have established a special status for compounds that meet [...] Read more.
Concerns about the negative effects of traditional insecticides and increasing insecticide resistance have prompted the exploration of botanical alternatives like essential oils (EOs). The registration of biocides is a mandatory procedure, and some regions have established a special status for compounds that meet specific low-risk criteria, which includes certain EOs. This study aimed to evaluate and compare the efficacy of sixteen EOs, both registered as low-risk biocides and/or standard biocides, against the German cockroach, Blattella germanica. A topical application was performed with undiluted EOs (15 µL) on the dorsal surface of awake cockroaches. The results showed significant variations in efficacy, as follows: thyme, sweet orange, and lavender oils were the most effective, achieving 100% mortality within 24 h and a less than 30 s knockdown effect. In contrast, linseed and cottonseed oils were the least effective, resulting in 70% and 40% 24 h mortality. Remarkably, some EOs registered as low-risk biocides performed as well as the ones registered as standard biocides, suggesting that this category does not have to always be at odds with efficacy. Future research should adopt practical, application-driven approaches to ensure bioinsecticides balance performance and safety, meeting both regulatory and consumer demands. Full article
Show Figures

Graphical abstract

Back to TopTop