Next Issue
Volume 12, February
Previous Issue
Volume 11, December
 
 

Technologies, Volume 12, Issue 1 (January 2024) – 12 articles

Cover Story (view full-size image): Cognitive decline poses a public health challenge; thus, early detection is crucial to initiate timely interventions and improve patient outcomes. However, conventional diagnosis methods often rely on personal interpretations or biases, may not detect the early stages of cognitive decline, or involve invasive procedures. Our paper addresses this gap by presenting a non-invasive solution using deep neural networks to detect the higher fragmentation of daily life activity from wearable and IoT devices data and graph learning to analyze the structural well-being information of assessment questionnaires. The evaluation, conducted in a simulated environment with a large synthetic dataset, demonstrates the potential of our approach as a supportive tool for early cognitive decline detection in patient assessments. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 5677 KiB  
Article
Multi-Arm Trajectory Planning for Optimal Collision-Free Pick-and-Place Operations
by Daniel Mateu-Gomez, Francisco José Martínez-Peral and Carlos Perez-Vidal
Technologies 2024, 12(1), 12; https://doi.org/10.3390/technologies12010012 - 22 Jan 2024
Cited by 1 | Viewed by 1462
Abstract
This article addresses the problem of automating a multi-arm pick-and-place robotic system. The objective is to optimize the execution time of a task simultaneously performed by multiple robots, sharing the same workspace, and determining the order of operations to be performed. Due to [...] Read more.
This article addresses the problem of automating a multi-arm pick-and-place robotic system. The objective is to optimize the execution time of a task simultaneously performed by multiple robots, sharing the same workspace, and determining the order of operations to be performed. Due to its ability to address decision-making problems of all kinds, the system is modeled under the mathematical framework of the Markov Decision Process (MDP). In this particular work, the model is adjusted to a deterministic, single-agent, and fully observable system, which allows for its comparison with other resolution methods such as graph search algorithms and Planning Domain Definition Language (PDDL). The proposed approach provides three advantages: it plans the trajectory to perform the task in minimum time; it considers how to avoid collisions between robots; and it automatically generates the robot code for any robot manufacturer and any initial objects’ positions in the workspace. The result meets the objectives and is a fast and robust system that can be safely employed in a production line. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

28 pages, 16070 KiB  
Article
Drone Forensics: An Innovative Approach to the Forensic Investigation of Drone Accidents Based on Digital Twin Technology
by Asma Almusayli, Tanveer Zia and Emad-ul-Haq Qazi
Technologies 2024, 12(1), 11; https://doi.org/10.3390/technologies12010011 - 19 Jan 2024
Cited by 1 | Viewed by 2557
Abstract
In recent years, drones have become increasingly popular tools in criminal investigations, either as means of committing crimes or as tools to assist in investigations due to their capability to gather evidence and conduct surveillance, which has been effective. However, the increasing use [...] Read more.
In recent years, drones have become increasingly popular tools in criminal investigations, either as means of committing crimes or as tools to assist in investigations due to their capability to gather evidence and conduct surveillance, which has been effective. However, the increasing use of drones has also brought about new difficulties in the field of digital forensic investigation. This paper aims to contribute to the growing body of research on digital forensic investigations of drone accidents by proposing an innovative approach based on the use of digital twin technology to investigate drone accidents. The simulation is implemented as part of the digital twin solution using Robot Operating System (ROS version 2) and simulated environments such as Gazebo and Rviz, demonstrating the potential of this technology to improve investigation accuracy and efficiency. This research work can contribute to the development of new and innovative investigation techniques. Full article
Show Figures

Figure 1

16 pages, 7609 KiB  
Article
A Miniaturized Antenna for Millimeter-Wave 5G-II Band Communication
by Manish Varun Yadav, Chandru Kumar R, Swati Varun Yadav, Tanweer Ali and Jaume Anguera
Technologies 2024, 12(1), 10; https://doi.org/10.3390/technologies12010010 - 18 Jan 2024
Viewed by 1798
Abstract
This article introduces a miniaturized antenna for 5G-II band millimeter-wave communication. The antenna’s performance is meticulously examined through comprehensive simulations carried out using CST Microwave Studio, employing an FR-4 substrate with dimensions measuring 12 × 14 × 1.6 mm3. The proposed [...] Read more.
This article introduces a miniaturized antenna for 5G-II band millimeter-wave communication. The antenna’s performance is meticulously examined through comprehensive simulations carried out using CST Microwave Studio, employing an FR-4 substrate with dimensions measuring 12 × 14 × 1.6 mm3. The proposed design exhibits exceptional qualities, featuring an impressive impedance bandwidth of 70.4% and a remarkable return loss of −35 dBi. The operational frequency range of this antenna extends from 16.2 GHz to 33.8 GHz, featuring a central frequency of 25 GHz, positioning it effectively within the 5G-II Band. The antenna consistently maintains polar patterns throughout this spectrum, which guarantees dependable and efficient performance. It showcases a substantial gain of 3.85 dBi and an impressive efficiency rating of 82.9%. Renowned for its versatility, this antenna is well suited for a diverse range of applications, including but not limited to Ka band, Ku band, 5G-II bands, and various other purposes in microwaves. Full article
(This article belongs to the Special Issue Intelligent Reflecting Surfaces for 5G and Beyond Volume II)
Show Figures

Figure 1

22 pages, 8965 KiB  
Article
A Mixed Reality Design System for Interior Renovation: Inpainting with 360-Degree Live Streaming and Generative Adversarial Networks after Removal
by Yuehan Zhu, Tomohiro Fukuda and Nobuyoshi Yabuki
Technologies 2024, 12(1), 9; https://doi.org/10.3390/technologies12010009 - 11 Jan 2024
Viewed by 1810
Abstract
In contemporary society, “Indoor Generation” is becoming increasingly prevalent, and spending long periods of time indoors affects well-being. Therefore, it is essential to research biophilic indoor environments and their impact on occupants. When it comes to existing building stocks, which hold significant social, [...] Read more.
In contemporary society, “Indoor Generation” is becoming increasingly prevalent, and spending long periods of time indoors affects well-being. Therefore, it is essential to research biophilic indoor environments and their impact on occupants. When it comes to existing building stocks, which hold significant social, economic, and environmental value, renovation should be considered before new construction. Providing swift feedback in the early stages of renovation can help stakeholders achieve consensus. Additionally, understanding proposed plans can greatly enhance the design of indoor environments. This paper presents a real-time system for architectural designers and stakeholders that integrates mixed reality (MR), diminished reality (DR), and generative adversarial networks (GANs). The system enables the generation of interior renovation drawings based on user preferences and designer styles via GANs. The system’s seamless integration of MR, DR, and GANs provides a unique and innovative approach to interior renovation design. MR and DR technologies then transform these 2D drawings into immersive experiences that help stakeholders evaluate and understand renovation proposals. In addition, we assess the quality of GAN-generated images using full-reference image quality assessment (FR-IQA) methods. The evaluation results indicate that most images demonstrate moderate quality. Almost all objects in the GAN-generated images can be identified by their names and purposes without any ambiguity or confusion. This demonstrates the system’s effectiveness in producing viable renovation visualizations. This research emphasizes the system’s role in enhancing feedback efficiency during renovation design, enabling stakeholders to fully evaluate and understand proposed renovations. Full article
(This article belongs to the Section Construction Technologies)
Show Figures

Figure 1

5 pages, 159 KiB  
Editorial
Editorial for the Special Issue “Data Science and Big Data in Biology, Physical Science and Engineering”
by Mohammed Mahmoud
Technologies 2024, 12(1), 8; https://doi.org/10.3390/technologies12010008 - 8 Jan 2024
Viewed by 1599
Abstract
Big Data analysis is one of the most contemporary areas of development and research in the present day [...] Full article
16 pages, 5042 KiB  
Article
Towards a Bidirectional Mexican Sign Language–Spanish Translation System: A Deep Learning Approach
by Jaime-Rodrigo González-Rodríguez, Diana-Margarita Córdova-Esparza, Juan Terven and Julio-Alejandro Romero-González
Technologies 2024, 12(1), 7; https://doi.org/10.3390/technologies12010007 - 5 Jan 2024
Viewed by 1996
Abstract
People with hearing disabilities often face communication barriers when interacting with hearing individuals. To address this issue, this paper proposes a bidirectional Sign Language Translation System that aims to bridge the communication gap. Deep learning models such as recurrent neural networks (RNN), bidirectional [...] Read more.
People with hearing disabilities often face communication barriers when interacting with hearing individuals. To address this issue, this paper proposes a bidirectional Sign Language Translation System that aims to bridge the communication gap. Deep learning models such as recurrent neural networks (RNN), bidirectional RNN (BRNN), LSTM, GRU, and Transformers are compared to find the most accurate model for sign language recognition and translation. Keypoint detection using MediaPipe is employed to track and understand sign language gestures. The system features a user-friendly graphical interface with modes for translating between Mexican Sign Language (MSL) and Spanish in both directions. Users can input signs or text and obtain corresponding translations. Performance evaluation demonstrates high accuracy, with the BRNN model achieving 98.8% accuracy. The research emphasizes the importance of hand features in sign language recognition. Future developments could focus on enhancing accessibility and expanding the system to support other sign languages. This Sign Language Translation System offers a promising solution to improve communication accessibility and foster inclusivity for individuals with hearing disabilities. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

18 pages, 3587 KiB  
Article
Extended-Window Algorithms for Model Prediction Applied to Hybrid Power Systems
by Fu-Cheng Wang and Hsiao-Tzu Huang
Technologies 2024, 12(1), 6; https://doi.org/10.3390/technologies12010006 - 5 Jan 2024
Viewed by 1515
Abstract
This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system comprising solar panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms enable the periodic updating of [...] Read more.
This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system comprising solar panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms enable the periodic updating of prediction models and corresponding changes in system parts and power management based on the accumulated data. We first develop a hybrid power model to evaluate system responses under different conditions. We then build prediction models using five artificial intelligence algorithms. Among them, the light gradient boosting machine and extreme gradient boosting methods achieve the highest accuracies for predicting solar radiation and load responses, respectively. Therefore, we apply these two models to forecast solar and load responses. Third, we introduce extended-window algorithms and investigate the effects of window sizes and replacement costs on system performance. The results show that the optimal window size is one week, and the system cost is 13.57% lower than the cost of the system that does not use the extended-window algorithms. The proposed method also tends to make fewer component replacements when the replacement cost increases. Finally, we design experiments to demonstrate the feasibility and effectiveness of systems using extended-window model prediction. Full article
Show Figures

Figure 1

39 pages, 777 KiB  
Review
Revisiting Probabilistic Latent Semantic Analysis: Extensions, Challenges and Insights
by Pau Figuera and Pablo García Bringas
Technologies 2024, 12(1), 5; https://doi.org/10.3390/technologies12010005 - 3 Jan 2024
Viewed by 1806
Abstract
This manuscript provides a comprehensive exploration of Probabilistic latent semantic analysis (PLSA), highlighting its strengths, drawbacks, and challenges. The PLSA, originally a tool for information retrieval, provides a probabilistic sense for a table of co-occurrences as a mixture of multinomial distributions spanned over [...] Read more.
This manuscript provides a comprehensive exploration of Probabilistic latent semantic analysis (PLSA), highlighting its strengths, drawbacks, and challenges. The PLSA, originally a tool for information retrieval, provides a probabilistic sense for a table of co-occurrences as a mixture of multinomial distributions spanned over a latent class variable and adjusted with the expectation–maximization algorithm. The distributional assumptions and the iterative nature lead to a rigid model, dividing enthusiasts and detractors. Those drawbacks have led to several reformulations: the extension of the method to normal data distributions and a non-parametric formulation obtained with the help of Non-negative matrix factorization (NMF) techniques. Furthermore, the combination of theoretical studies and programming techniques alleviates the computational problem, thus making the potential of the method explicit: its relation with the Singular value decomposition (SVD), which means that PLSA can be used to satisfactorily support other techniques, such as the construction of Fisher kernels, the probabilistic interpretation of Principal component analysis (PCA), Transfer learning (TL), and the training of neural networks, among others. We also present open questions as a practical and theoretical research window. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

25 pages, 3593 KiB  
Article
A Novel Machine Learning-Based Prediction Method for Early Detection and Diagnosis of Congenital Heart Disease Using ECG Signal Processing
by Prabu Pachiyannan, Musleh Alsulami, Deafallah Alsadie, Abdul Khader Jilani Saudagar, Mohammed AlKhathami and Ramesh Chandra Poonia
Technologies 2024, 12(1), 4; https://doi.org/10.3390/technologies12010004 - 2 Jan 2024
Viewed by 2183
Abstract
Congenital heart disease (CHD) represents a multifaceted medical condition that requires early detection and diagnosis for effective management, given its diverse presentations and subtle symptoms that manifest from birth. This research article introduces a groundbreaking healthcare application, the Machine Learning-based Congenital Heart Disease [...] Read more.
Congenital heart disease (CHD) represents a multifaceted medical condition that requires early detection and diagnosis for effective management, given its diverse presentations and subtle symptoms that manifest from birth. This research article introduces a groundbreaking healthcare application, the Machine Learning-based Congenital Heart Disease Prediction Method (ML-CHDPM), tailored to address these challenges and expedite the timely identification and classification of CHD in pregnant women. The ML-CHDPM model leverages state-of-the-art machine learning techniques to categorize CHD cases, taking into account pertinent clinical and demographic factors. Trained on a comprehensive dataset, the model captures intricate patterns and relationships, resulting in precise predictions and classifications. The evaluation of the model’s performance encompasses sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve. Remarkably, the findings underscore the ML-CHDPM’s superiority across six pivotal metrics: accuracy, precision, recall, specificity, false positive rate (FPR), and false negative rate (FNR). The method achieves an average accuracy rate of 94.28%, precision of 87.54%, recall rate of 96.25%, specificity rate of 91.74%, FPR of 8.26%, and FNR of 3.75%. These outcomes distinctly demonstrate the ML-CHDPM’s effectiveness in reliably predicting and classifying CHD cases. This research marks a significant stride toward early detection and diagnosis, harnessing advanced machine learning techniques within the realm of ECG signal processing, specifically tailored to pregnant women. Full article
Show Figures

Figure 1

15 pages, 1887 KiB  
Article
Graph Learning and Deep Neural Network Ensemble for Supporting Cognitive Decline Assessment
by Gabriel Antonesi, Alexandru Rancea, Tudor Cioara and Ionut Anghel
Technologies 2024, 12(1), 3; https://doi.org/10.3390/technologies12010003 - 24 Dec 2023
Viewed by 1958
Abstract
Cognitive decline represents a significant public health concern due to its severe implications on memory and general health. Early detection is crucial to initiate timely interventions and improve patient outcomes. However, traditional diagnosis methods often rely on personal interpretations or biases, may not [...] Read more.
Cognitive decline represents a significant public health concern due to its severe implications on memory and general health. Early detection is crucial to initiate timely interventions and improve patient outcomes. However, traditional diagnosis methods often rely on personal interpretations or biases, may not detect the early stages of cognitive decline, or involve invasive screening procedures; thus, there is a growing interest in developing non-invasive methods benefiting also from the technological advances. Wearable devices and Internet of Things sensors can monitor various aspects of daily life together with health parameters and can provide valuable data regarding people’s behavior. In this paper, we propose a technical solution that can be useful for potentially supporting cognitive decline assessment in early stages, by employing advanced machine learning techniques for detecting higher activity fragmentation based on daily activity monitoring using wearable devices. Our approach also considers data coming from wellbeing assessment questionnaires that can offer other important insights about a monitored person. We use deep neural network models to capture complex, non-linear relationships in the daily activities data and graph learning for the structural wellbeing information in the questionnaire answers. The proposed solution is evaluated in a simulated environment on a large synthetic dataset, the results showing that our approach can offer an alternative as a support for early detection of cognitive decline during patient-assessment processes. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Graphical abstract

18 pages, 3118 KiB  
Article
Transformative Approach for Heart Rate Prediction from Face Videos Using Local and Global Multi-Head Self-Attention
by Smera Premkumar, J. Anitha, Daniela Danciulescu and D. Jude Hemanth
Technologies 2024, 12(1), 2; https://doi.org/10.3390/technologies12010002 - 22 Dec 2023
Viewed by 1484
Abstract
Heart rate estimation from face videos is an emerging technology that offers numerous potential applications in healthcare and human–computer interaction. However, most of the existing approaches often overlook the importance of long-range spatiotemporal dependencies, which is essential for robust measurement of heart rate [...] Read more.
Heart rate estimation from face videos is an emerging technology that offers numerous potential applications in healthcare and human–computer interaction. However, most of the existing approaches often overlook the importance of long-range spatiotemporal dependencies, which is essential for robust measurement of heart rate prediction. Additionally, they involve extensive pre-processing steps to enhance the prediction accuracy, resulting in high computational complexity. In this paper, we propose an innovative solution called LGTransPPG. This end-to-end transformer-based framework eliminates the need for pre-processing steps while achieving improved efficiency and accuracy. LGTransPPG incorporates local and global aggregation techniques to capture fine-grained facial features and contextual information. By leveraging the power of transformers, our framework can effectively model long-range dependencies and temporal dynamics, enhancing the heart rate prediction process. The proposed approach is evaluated on three publicly available datasets, demonstrating its robustness and generalizability. Furthermore, we achieved a high Pearson correlation coefficient (PCC) value of 0.88, indicating its superior efficiency and accuracy between the predicted and actual heart rate values. Full article
Show Figures

Figure 1

20 pages, 7644 KiB  
Article
Information-Analytical Software for Developing Digital Models of Porous Structures’ Materials Using a Cellular Automata Approach
by Igor Lebedev, Anastasia Uvarova and Natalia Menshutina
Technologies 2024, 12(1), 1; https://doi.org/10.3390/technologies12010001 - 20 Dec 2023
Viewed by 1616
Abstract
An information-analytical software has been developed for creating digital models of structures of porous materials. The information-analytical software allows you to select a model that accurately reproduces structures of porous materials—aerogels—creating a digital model by which you can predict their properties. In addition, [...] Read more.
An information-analytical software has been developed for creating digital models of structures of porous materials. The information-analytical software allows you to select a model that accurately reproduces structures of porous materials—aerogels—creating a digital model by which you can predict their properties. In addition, the software contains models for calculating various properties of aerogels based on their structure, such as pore size distribution and mechanical properties. Models have been implemented that allow the description of various processes in porous structures—hydrodynamics of multicomponent systems, heat and mass transfer processes, dissolution, sorption and desorption. With the models implemented in this software, various digital models for different types of aerogels can be developed. As a comparison parameter, pore size distribution is chosen. Deviation of the calculated pore size distribution curves from the experimental ones does not exceed 15%, which indicates that the obtained digital model corresponds to the experimental sample. The software contains both the existing models that are used for porous structures modeling and the original models that were developed for different studied aerogels and processes, such as the dissolution of active pharmaceutical ingredients and mass transportation in porous media. Full article
(This article belongs to the Special Issue Advanced Processing Technologies of Innovative Materials)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop