
Citation: González-Rodríguez, J.-R.;

Córdova-Esparza, D.-M.; Terven, J.;

Romero-González, J.-A. Towards a

Bidirectional Mexican Sign

Language–Spanish Translation

System: A Deep Learning Approach.

Technologies 2024, 12, 7. https://

doi.org/10.3390/technologies12010007

Academic Editor: Luc de Witte

Received: 27 November 2023

Revised: 28 December 2023

Accepted: 3 January 2024

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

technologies

Article

Towards a Bidirectional Mexican Sign Language–Spanish
Translation System: A Deep Learning Approach
Jaime-Rodrigo González-Rodríguez 1 , Diana-Margarita Córdova-Esparza 1,* , Juan Terven 2

and Julio-Alejandro Romero-González 1

1 Facultad de Informática, Universidad Autónoma de Querétaro, Campus Juriquilla, Av. de las Ciencias S/N,
Juriquilla C.P. 76230, Querétaro, Mexico; jgonzalez.rdz28@gmail.com (J.-R.G.-R.);
julio.romero@uaq.mx (J.-A.R.-G.)

2 Instituto Politécnico Nacional, CICATA—Unidad Querétaro, Cerro Blanco No. 141, Col,
Colinas del Cimatario C.P. 76090, Querétaro, Mexico; jrtervens@ipn.mx

* Correspondence: diana.cordova@uaq.mx

Abstract: People with hearing disabilities often face communication barriers when interacting with
hearing individuals. To address this issue, this paper proposes a bidirectional Sign Language Trans-
lation System that aims to bridge the communication gap. Deep learning models such as recurrent
neural networks (RNN), bidirectional RNN (BRNN), LSTM, GRU, and Transformers are compared
to find the most accurate model for sign language recognition and translation. Keypoint detection
using MediaPipe is employed to track and understand sign language gestures. The system features a
user-friendly graphical interface with modes for translating between Mexican Sign Language (MSL)
and Spanish in both directions. Users can input signs or text and obtain corresponding translations.
Performance evaluation demonstrates high accuracy, with the BRNN model achieving 98.8% accuracy.
The research emphasizes the importance of hand features in sign language recognition. Future
developments could focus on enhancing accessibility and expanding the system to support other
sign languages. This Sign Language Translation System offers a promising solution to improve
communication accessibility and foster inclusivity for individuals with hearing disabilities.

Keywords: Mexican sign language; translation; machine learning; recurrent networks; assistive
technologies

1. Introduction

Deaf communities globally encounter significant challenges in accessing vital services
like education, healthcare, and employment due to language barriers, rather than auditory
limitations [1]. Their primary language is often a signed language, such as American,
French, German, or Greek Sign Language, each a unique and complete language, distinct
from spoken languages and each other. These languages, with over two hundred identified
varieties, possess the same depth and expressive power as spoken languages [2,3]. However,
for the Deaf, any spoken language is secondary, leading to low literacy rates; for instance,
in the U.S., deaf high school graduates have an average reading level of third to fourth
grade [4]. This language gap not only hinders everyday interactions with the hearing,
non-signing population but also affects access to critical services. While certified sign
language interpreters are the best solution for essential services, their scarcity and cost
render them impractical for everyday, brief interactions. Thus, the development of effective
automatic translation systems for spoken and signed languages could significantly improve
communication and inclusivity for the Deaf community.

To overcome this barrier, technological solutions have been developed. Translator
gloves [5–7], mobile applications, and automatic translators are the leading technologies
that have been used for unidirectional or bidirectional communication.
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Our research aims to develop a bi-directional sign language translator that can translate
from Spanish to Mexican Sign Language (MSL) and vice versa, bridging the gap between
these two languages. The system involves two operation modes: From Mexican Sign
Language to Spanish (MSL-SPA) and from Spanish to Mexican Sign Language (SPA-MSL).
In the MSL-SPA mode, the system captures live video and processes it to recognize the
sign and translate it to Spanish, as shown in the upper path in Figure 1. Conversely, in
the SPA-MSL mode, the user types the phrase and the system displays a sign language
animation, as shown in the lower path in Figure 1.

Figure 1. General pipeline of the bidirectional sign language translation system. In the MSL-SPA
mode, the system recognizes the sign from live video and displays the text in Spanish on the other
end. Conversely, in the SPA-MSL mode, the user types the phrase and the system displays a sign
language animation on the other end.

Our system is based on deep learning techniques, which have shown great success
in various computer vision and natural language processing tasks. Specifically, we used
MediaPipe for keypoint detection, which is an advanced, real-time framework that utilizes
machine learning to detect and track keypoints on objects, faces, hands, or poses in images
and videos. We also used recurrent networks such as RNN, BRNN, LSTM, and GRU, as
well as an encoder-only transformer for the translation process, which we treated as a
time-series classification.

One of the main challenges in developing a bi-directional sign language translator is
the variability and complexity of sign language gestures, as well as the need to capture the
nuances and context of the conversation. Another challenge is the lack of large and diverse
sign language datasets, which are crucial for training accurate models. To address these
challenges, we collected a new dataset consisting of gestures from MSL, which we used to
train and evaluate our system.

The proposed bi-directional sign language translator has the potential to significantly
improve the communication and integration of the deaf community into society by al-
lowing them to communicate more effectively with hearing people. Moreover, it can
facilitate the learning of sign language for hearing people and promote a more inclusive
and diverse society.

To provide an overview of the paper, we have organized it in the following manner: In
Section 2, we summarize the relevant literature, while Section 3 outlines the methodology
we employed in our project. Section 4 will showcase the results we obtained, and finally, in
Section 5, we present our concluding thoughts.

2. Related Work

The landscape of sign language translation and recognition research is rich and varied,
marked by a series of interconnected advancements that build upon each other. This section
weaves through these developments, highlighting how each contribution sets the stage for
the next.

Starting with Bungeroth & Ney [8], we see the foundations being laid with a German
Sign Language (DGS) translation system. This innovative approach, integrating audio
feedback and animated representation, utilizes IBM Model 1-4 and Hidden Markov Models
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(HMM) for training. The challenge they faced due to limited training samples echoes the
necessity for a robust corpus, as further exemplified by the notation method of [9].

Building on the concept of practical translation, San-Segundo et al. [10] introduced a
real-time method for Spanish-to-sign language translation. Their dual approach, blending
rule-based and statistical methods, demonstrated adaptability and precision, particularly
in contexts with limited vocabulary.

Pichardo-Lagunas et al. [11] continued this trajectory, focusing on Mexican Sign
Language (MSL). They brought a meticulous, analytical lens to Spanish text, using Freeling
to classify words for accurate translation. This method, though currently limited to one-way
translation, reflects the evolving complexity of sign language translation systems.

Segueing to pose detection and classification, Qiao et al. [12] utilized the OpenPose
model, demonstrating a significant leap in motion analysis without the dependency on
specialized hardware. This development represents a shift towards more accessible and
cost-effective solutions in the field.

Barrera-Melchor et al. [13] then added a new dimension by applying these technologies
to educational content translation into MSL. Their cloud-based system, which translates
speech to text and then to MSL using a 3D avatar, exemplifies the integration of cloud
computing in sign language translation.

In a similar vein, focusing on a specific application area, Sosa-Jimenez et al. [14]
developed a research prototype tailored for primary care health services in Mexican Sign
Language. Their use of Microsoft Kinect sensors [15] and HMMs highlights the trend of
specialized systems addressing distinct contexts like healthcare.

Parallel to these developments, Martínez-Gutiérrez et al. [16] and Martinez-Seis et al. [17]
focused on MSL alphabet recognition through advanced computational methods, each achiev-
ing notable accuracy in their respective areas.

Carmona et al. [18] introduced a system for recognizing the static alphabet in Mexican
Sign Language using Leap Motion and MS Kinect 1 sensors. Their unique application of
3D affine moment invariants for sign recognition demonstrated a significant improvement
in accuracy, showcasing the potential of 3D modeling in sign language recognition.

Naranjo et al. [19] attempt to expand the field, developing a graphical tool to aid in
learning Costa Rican Sign Language (LESCO). Their methodology, utilizing phonological
parameters and a similarity formula, provides a bridge for learners to grasp the nuances of
sign languages, emphasizing the role of educational tools in sign language dissemination.

Complementing these efforts, Trujillo et al. [20] presented a translation system from
Mexican Sign Language to spoken language, employing 3D hand movement trajectories.
Their approach to refining movement patterns and using advanced algorithms like KNN
highlights the continuous push for higher precision and efficiency in translation systems.

In a similar spirit of refinement, Jimenez et al. [21], and Cervantes et al. [22] each
contributed distinct methodologies for sign language recognition, whether through 3D affine
invariants or sophisticated video analysis. These studies underscore the diverse technological
avenues being explored to enhance sign language translation and recognition accuracy.

With the advent of the Transformer as a powerful deep learning model for translation,
it has been used to improve the accuracy of sign language translation by effectively ex-
tracting joint visual-text features and capturing contextual information [23]. One approach
is to design an efficient transformer-based deep network architecture that exploits multi-
level spatial and temporal contextual information, such as the proposed heterogeneous
attention-based transformer (HAT) model [24]. Another approach is to address the local
temporal relations and non-local and global context modeling in sign videos, using tech-
niques like the multi-stride position encoding scheme and the adaptive temporal interaction
module [25]. Additionally, transfer learning with pretrained language models, such as
BERT, can be used to initialize sign language translation models and improve
performance [26]. Furthermore, incorporating content-aware and position-aware convolu-
tion layers, as well as injecting relative position information to the attention mechanism,
can enhance sign language understanding and improve translation quality [27].
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Using avatars to translate sign language presents both challenges and benefits. One of
the main challenges is the complexity of sign languages, which requires a deep understand-
ing of their grammatical mechanisms and inflecting mechanisms [28]. Additionally, the
lack of direct participation from the deaf community and the underestimation of sign lan-
guage complexity have resulted in structural issues with signing avatar technologies [29].
However, the benefits of using avatars for sign language translation include increased
accessibility for the deaf community and the potential for automation and efficiency in
translating spoken or written language to sign language [30–32]. Avatars can also be used
as educational tools and have the potential to improve the naturalness and believability of
sign language motion either from text to animation [33], from animation to text [23,34] or
both ways, as proposed in this work.

In recap, this collective body of work forms a tapestry of innovation, each research
piece contributing to a greater understanding and capability in the field of sign language
translation and recognition. Our research aims to add to this rich tapestry by developing a
bi-directional translator between Spanish and Mexican Sign Language (MSL). Leveraging
advanced techniques like MediaPipe and deep learning models, our goal is to bridge the
communication gap for the deaf community. The Section 3 that follows will detail our
unique approach, situating it within this dynamic and evolving research landscape.

3. Methods

This section describes the methodology pursued to develop the bidirectional transla-
tion system. The development stages were the following:

1. Hardware selection
2. Feature Selection
3. Data collection
4. Model definition
5. Graphical user interface

3.1. Hardware Selection

To select the computing board, we compared the Raspberry Pi 4 Model B [35], the
Up Square [36], and the Nvidia Jetson Nano [37], running a benchmark to evaluate the
inference speed of each of them.

For this, we run MediaPipe’s Holistic model on each card. This model includes
detecting points on the body, hands, and face, making it computationally expensive. The
RaspberryPi 4 ran at four frames per second, the UpSquared ran at six frames per second
and the Jetson Nano, being the most powerful due to its GPU, ran at 13 frames per second.

3.2. Feature Selection

The inference and translation of the model depend on the input of keypoints they
receive, so it is necessary to define those features, or in this case, keypoints, that are
statistically significant and contribute to the model’s inference process, always seeking the
balance between the number of features to process and computational cost.

To optimize the Jetson Nano’s resources for keypoint coordinate detection, we reduced
the number of features. This reduction freed up computational capacity for other tasks in
our translation system. We conducted performance tests using MediaPipe’s pose detection,
hand detection, and holistic pipelines. The holistic pipeline was the most resource-intensive,
leading us to combine pose and hand detection pipelines for greater efficiency. This
combination created a lighter version than the holistic model by eliminating the dense facial
keypoint mesh computation. Figure 2, shows the full face mesh containing 468 keypoints
and the eleven keypoints we end using shown in blue. We chose this approach because
the facial mesh keypoints added little value to our model’s inference, particularly since the
signs we needed to identify mainly involved arm movements and finger positions.

For the body, we reduced the body keypoints to five: four from the original BlazePose
model and one midpoint between the shoulder keypoints for chest detection. This selection



Technologies 2024, 12, 7 5 of 16

was due to the movements in the signs being above the waist, making leg keypoints
irrelevant for our model. For the hands, we kept all 21 keypoints because hand and finger
positions are crucial for distinguishing between signs.

Figure 2. Mediapipe Face Mesh includes 468 3D face landmarks. To reduce computation, we used
the blue keypoints obtained from the pose model instead.

Figure 3 displays the final topology of our translation system, comprising 58 keypoints.
We calculated the X, Y, and Z coordinates for each, resulting in 174 features for processing.

By reducing the keypoints, we optimized the model’s input layer, thereby decreasing
its computational demands. This optimization made both the training and inference
processes more efficient and reduced the data volume needed for training, validation, and
testing splits of the model.

Figure 3. Final 58 Keypoints used for the sign-recognition system.
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3.3. Data Collection

To make the system manageable, we chose a subset of ten signs, precisely phrases
applicable in a school setting. The selected phrases are: “Hello”, “Are there any questions?”,
“Help me”, “Good morning”, “Good afternoon”, “Good night”, “What is the homework?”,
“Is this correct?”, “The class is over”, and “Can you repeat it?”. Approximately 1000 samples
of each sign were collected from six individuals, comprising an equal gender split of three
women and three men, with their ages ranging from 22 to 55.

For sample collection of these phrases, we developed a Python script that uses Medi-
aPipe’s keypoint detector to gather samples of each sign. We collected each sign from a
distance of 2m containing 15 frames with detections. We found that in practice, all signs fit
within this time period.

For each keypoint, we calculated the X, Y, and Z coordinates.
To compute the Z coordinate, we used the depth provided by the OAK-D camera [38].

The depth camera is composed of a stereo pair of OMNIVISION’s OV9282 1MP grayscale
image sensor [39]. The depth accuracy varies depending on the distance from the object
being measured being more accurate at closer ranges. From 0.7 m to 4 m, the camera
maintains an absolute depth error below 1.5 cm [40], which is sufficient for our application.

We used perspective projection to determine the distance relative to the camera for
each keypoint of interest, as shown in Equation (1).

distance = (FocalLenth × BaselineDistance)/XYpoint (1)

To increase the variability of the samples, signs were collected from six different indi-
viduals, aiming to reduce sample bias. For each of the ten signs, we gathered approximately
900 samples on average, resulting in a total of around 9300 samples.

3.4. Model Definition

Given the specific challenges of our project, we chose to implement a Recurrent Neural
Network (RNN) model within our translation system. RNNs are particularly effective for
tasks like natural language processing, video analysis, and machine translation, mainly
because of their ability to maintain a form of memory. This memory helps in understanding
sequences, as it can track changes over time.

To find the most suitable RNN model for classifying signs in Mexican Sign Language
(MSL), we evaluated various RNN architectures. The models we considered included the
following:

• Standard RNN [41]: Ideal for handling sequences and time-series data.
• Long Short-Term Memory (LSTM) [42]: Similar to GRU but with a different gating

mechanism, often used for more complex sequence data.
• Bidirectional RNN (BRNN) [43] and Bidirectional LSTM [44]: Enhances the standard

recurrent networks by processing data in both forward and backward directions,
offering a more comprehensive understanding of the sequence context.

• Gated Recurrent Unit (GRU) [45]: A more efficient version of the standard RNN,
known for better performance on certain datasets.

• Transformer [46]: A newer model that has gained popularity in various sequence
modeling tasks, known for handling long-range dependencies well.

• Model Ensemble: An ensemble averaging of all the previous models.

Each of these models was trained and evaluated for its effectiveness in classifying MSL
signs. The designed architectures for the RNN and BRNN used in our tests are depicted in
Figure 4.
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(a) RNN architecture. (b) BRNN architecture.

Figure 4. RNN and BRNN architectures tested for sign language recognition.

The LSTM and Bidirectional LSTM architectures are shown in Figure 5. The GRU
architecture is shown in Figure 6.

(a) LSTM architecture. (b) BLSTM architecture.

Figure 5. LSTM and BLSTM architectures tested for sign language recognition.

Figure 6. GRU architecture tested for sign language recognition.

3.5. Graphical User Interface Design

To improve user interaction with our translation system, we developed a graphical
user interface (GUI). This GUI is aimed at enhancing the usability and accessibility of the
system. A User Interface (UI) is essentially the point of interaction between the user and
the system, enabling the user to input commands and data and to access the system’s
content. UIs are integral to a wide variety of systems, including computers, mobile devices,
and games.

Beyond the UI, we also focused on User Experience (UX). UX is about the overall
experience of the user, encompassing their emotions, thoughts, reactions, and behavior
during both direct and indirect engagement with the system, product, or service. This
aspect of design is critical because it shapes how users perceive and interact with the system.

The outcomes of our efforts to develop a compelling UI and UX for the translation
system are detailed in Section 4.2.
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4. Results

We compared the performance of the models described in Section 3.4 using our
collected data for training and testing. We trained each model using early stopping with a
patience of five epochs. Table 1 shows the epochs and accuracy per model.

To simulate a real environment, we tested our models under different perturbations:

1. Drop keypoints : in this test, we randomly remove keypoints to simulate real-life
situations where the keypoints are incomplete.

2. Noise: in this test, we added Gaussian noise (µ = 0, σ = 0.3) to the keypoints’ coordi-
nates to simulate noisy detections.

3. Drop keypoints + noise: in this test, we added both of the perturbations described.

We used the MacroF1, the unweighted mean of the F1 scores calculated per class, to
compare the models. Equations (2)–(5) show the formulas used to compute this metric.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 = 2 × precision × recall
precision + recall

(4)

MacroF1 =
∑(F1 scores)

Number of classes
(5)

Table 1. Number of epochs and accuracy per model during training.

Model Epochs Accuracy

RNN 44 0.948
BRNN 49 0.970
GRU 83 0.988
LSTM 70 0.988

BLSTM 31 0.986
Transformer 46 0.942

Table 2 shows the MacroF1 score for the different models under the different test
conditions. The model with the best performance overall was the Ensemble averaging
followed by the Bidirectional LSTM.

Table 2. Comparison of Macro F1 scores across various models under diverse testing conditions, with
the highest performing model in each scenario emphasized in bold.

Model Baseline Drop Keypoints Noise Drop Keypoints
+ Noise

RNN 0.9118 0.5648 0.5223 0.4181
BRNN 0.9542 0.7490 0.6140 0.4747
GRU 0.9750 0.8977 0.7205 0.5904
LSTM 0.9591 0.8044 0.8059 0.5935

BLSTM 0.9808 0.7358 0.8260 0.6455
Transformer 0.9333 0.6474 0.5999 0.3875

Ensemble 0.9815 0.8464 0.8779 0.7224

4.1. Ablation Studies

The hands’ features are essential for sign language, not so much the body or face. In
this section, we evaluate the accuracy of the models under different perturbations and with
different combinations of features. We want to know how the body and facial features
contribute to overall sign language recognition. Tables 3–9 show the accuracy for each
model with different combinations of features.
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Focusing on the best model results. Table 9 illustrates the performance of the ensemble
averaging when applied to sign language recognition, with varying input features and
under different conditions of data perturbation. The model’s baseline accuracy is measured
without any perturbations. When keypoints are dropped from the test data, simulating
incomplete data, there is a noticeable decrease in accuracy across all input feature com-
binations, indicating that the model relies significantly on the complete set of keypoints
to make accurate predictions. The addition of Gaussian noise, simulating variations in
keypoint detection, also lowers the model’s accuracy, but less dramatically than dropping
points when using all the keypoints, suggesting that the model has some robustness to
noise. However, when both perturbations are applied (dropping keypoints and adding
noise), the accuracy declines substantially, underscoring that the integrity and quality of
input data are critical for the model’s performance. The most robust combination of input
features against these perturbations is the “Hands + Face + Body”, which achieves the
best results under the most significant data perturbation. Combining the three sources of
keypoints helps to obtain a more robust sign language recognition.

Table 3. Accuracy of the RNN with various input feature combinations, with the highest accuracy in
each testing condition emphasized in bold.

Keypoints Selection Baseline Drop Keypoints Noise Drop Keypoints + Noise

Hands-only 0.9206 0.6393 0.4659 0.3833
Hands + Face 0.9260 0.5464 0.4276 0.3380
Hands + Body 0.9530 0.6020 0.4589 0.3822
Hands + Face + Body 0.9119 0.5583 0.5248 0.4211

Table 4. Accuracy of the BRNN with various input feature combinations, with the highest accuracy
in each testing condition emphasized in bold.

Keypoints Selection Baseline Drop Keypoints Noise Drop Keypoints + Noise

Hands-only 0.9519 0.7154 0.5610 0.4168
Hands + Face 0.9460 0.4843 0.5826 0.5421
Hands + Body 0.9703 0.5399 0.5156 0.4551
Hands + Face + Body 0.9535 0.7365 0.5939 0.4551

Table 5. Accuracy of the LSTM with various input feature combinations, with the highest accuracy in
each testing condition emphasized in bold.

Keypoints Selection Baseline Drop Keypoints Noise Drop Keypoints + Noise

Hands-only 0.9665 0.7429 0.6484 0.4492
Hands + Face 0.9719 0.5626 0.7224 0.5809
Hands + Body 0.9730 0.7143 0.6895 0.5248
Hands + Face + Body 0.9584 0.7937 0.7991 0.5712

Table 6. Accuracy of the BLSTM with various input feature combinations, with the highest accuracy
in each testing condition emphasized in bold.

Keypoints Selection Baseline Drop Keypoints Noise Drop Keypoints + Noise

Hands-only 0.9719 0.8493 0.7899 0.6976
Hands + Face 0.9751 0.7375 0.8596 0.6409
Hands + Body 0.9751 0.9190 0.7861 0.6144
Hands + Face + Body 0.9805 0.7078 0.8191 0.6285
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Table 7. Accuracy of the GRU with various input feature combinations, with the highest accuracy in
each testing condition emphasized in bold.

Keypoints Selection Baseline Drop Keypoints Noise Drop Keypoints + Noise

Hands-only 0.9778 0.9076 0.6193 0.5259
Hands + Face 0.9719 0.8461 0.7521 0.5637
Hands + Body 0.9740 0.8061 0.6625 0.4298
Hands + Face + Body 0.9746 0.8930 0.7143 0.5723

Table 8. Accuracy of the Transformer with various input feature combinations, with the highest
accuracy in each testing condition emphasized in bold.

Keypoints Selection Baseline Drop Keypoints Noise Drop Keypoints + Noise

Hands-only 0.9146 0.7073 0.5248 0.3207
Hands + Face 0.9114 0.5691 0.6279 0.3833
Hands + Body 0.9227 0.4076 0.5583 0.3957
Hands + Face + Body 0.9314 0.6268 0.5928 0.3650

Table 9. Accuracy of the ensemble with various input feature combinations, with the highest accuracy
in each testing condition emphasized in bold.

Keypoints Selection Baseline Drop Keypoints Noise Drop Keypoints + Noise

Hands-only 0.9778 0.8558 0.7629 0.6069
Hands + Face 0.9805 0.9497 0.8639 0.6792
Hands + Body 0.9827 0.7786 0.8083 0.6987
Hands + Face + Body 0.9811 0.8336 0.8752 0.7132

4.2. User Interface

The system operates in two modes: translating from Mexican Sign Language to
Spanish text (MSL-SPA) and from Spanish text to Mexican Sign Language (SPA-MSL). The
user interface comprises three main views:

1. MSL-SPA Mode View: In this view, the system displays a live video feed from a
user-facing camera. This feed shows the user’s body keypoints before the system
classifies the sign. This view is depicted in Figure 7.

2. SPA-MSL Mode View: This view is for the SPA-MSL mode. Here, the system displays
the result of an MSL-SPA translation. The second user can then respond by typing
on a keyboard. This typed text is used to generate a sign language animation for the
other user. This view is illustrated in Figure 8.

3. Animation View: The third view presents the animation generated from the SPA-MSL
mode. Users can see the sign language animation created from the text input. This
view is shown in Figure 9.
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Figure 7. Mexican Sign Language to Spanish mode (MSL-SPA). The system shows the video from a
front-facing camera with the body keypoints and the status Interpretando indicating that the system is
interpreting the sign.

Figure 8. Interface for Spanish to Mexican Sign Language (SPA-MSL) Translation. The interface
presents two input fields: ’Traducción LSM’ for displaying the translation in Spanish and ’Respuesta
ESP’ for entering text to translate into MSL. A virtual keyboard is provided for the user to input text,
which are then converted into MSL animations. The buttons ’Borrar’ and ’Enviar’ allow the user to
delete the input or send it for translation, respectively.

Figure 9. SPA-MSL mode. The user can type text in Spanish and generate an animation showing the
corresponding sign.
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The back-end system consists of multiple parallel processes (daemons) running on
independent CPU threads. Figure 10 shows the general pipeline with the back-end daemons
for processing tasks in blue and interpreter tasks in yellow and green.

Figure 10. The back-end system consists of multiple parallel processes: frames, prediction, feedback
processors, and the two interpreters.

The MSL-SPA mode has two main functions: it receives the video feed from the camera
and displays the live output as shown in Figure 7, along with making sign predictions.
Conversely, the SPA-MSL mode shows sign language translations from the MSL-SPA mode
and can also accept text input to generate animations of sign language, which are then
displayed to the partner. These modes are carried out through three parallel processes: the
frames, prediction, and feedback processors.

The frames processor takes input frames and utilizes the Mediapipe keypoint detector
to obtain the X, Y, and Z coordinates relative to the camera. Because the input is live video,
the frames processor uses a sliding window consisting of 15 frames (as depicted in Figure 11)
to create a feature vector that is placed into the prediction queue. Additionally, the frames
processor performs an initial calibration with the user to ensure they are positioned at least
two meters away from the camera. This distance ensures that the camera captures the
necessary area and maintains consistency between the live data and the training data.

Figure 11. The frames processor applies a sliding window technique to the video stream, creating a
feature vector for analysis. Green frames indicate those that have already been processed, yellow
frames are currently undergoing processing, and red frames are queued for future processing.

The prediction processor can operate in two modes: MSL-SPA and SPA-MSL. In the
MSL-SPA mode, it retrieves data from the frames queue produced by the frames processor
and runs the prediction model to generate a list of results. The final prediction is based
on the number of votes, and a notification is sent to the feedback processor. In contrast,
in the SPA-MSL mode, it receives Spanish text and sends a notification to the feedback



Technologies 2024, 12, 7 13 of 16

processor. In the MSL-SPA mode, the feedback processor is responsible for displaying the
text translation, while in the SPA-MSL mode, it displays an animation video. We have a
database containing animation videos for each sign. The feedback processor searches for
the corresponding video in the database and presents it to the user in the SPA-MSL mode,
as shown in Figure 9.

We created the video animations using Blender3D with the free rig character Rain [47].
We chose to animate Rain (see Figure 9) to enhance the gestures for improved comprehension.

4.3. Prototype

The final prototype consists of a Jetson Nano board that has two seven-inch LCD
touch displays. One of the screens displays the MSL-SPA mode, while the other shows
the SPA-MSL mode. The MSL-SPA mode screen has an OAK-D camera attached to it for
video capture. We used free-access 3D models from Thingiverse [48] to create the mounting
structure of the board and screens and added the camera stand on top of one display.
Finally, we 3D printed the structure. You can see the final prototype in Figure 12.

Figure 12. Final Prototype. The image shows the two touchscreens back-to-back with the main
processor in the middle.

5. Conclusions

Our bidirectional Mexican Sign Language (MSL) translation system aims to bridge
the communication gap between the deaf community and the hearing world. Utilizing
machine learning, including recurrent neural networks, transformers, and keypoint detec-
tion, our system shows promise in enabling seamless communication, with the promise
of integrating individuals with hearing disabilities into society and education more effec-
tively. This innovation emphasizes the importance of inclusive technology and the role of
artificial intelligence in surmounting language barriers. The project’s key successes lie in
its bidirectional translation system, characterized by efficiency and accuracy. The use of
MediaPipe for keypoint detection, along with RNN, BRNN, LSTM, GRU, and Transformer
architectures, facilitates accurate translation of signs into text and vice versa. The system’s
real-time functionality, adaptability to various sign language variations, and user-friendly
interface make it a practical tool for everyday use.

However, the study faced challenges related to the variability and complexity of
sign language gestures, and the scarcity of diverse sign language datasets, impacting the
training accuracy of the models. The system’s performance under different real-world
conditions like varied lighting and backgrounds also presents ongoing challenges. These
issues highlight the necessity for further research, particularly in dataset development and
enhancing the system’s adaptability. Future directions include expanding the system to
more languages and sign language variants, refining algorithms for complex signs and non-
manual signals, and collaborating with the deaf community for feedback and improvements.
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This research opens pathways for more inclusive communication technologies, aiming to
significantly reduce communication barriers for the deaf and hard-of-hearing, leading to a
more inclusive society.
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