High Red–Blue Light Ratio Promotes Accelerated In Vitro Flowering and Seed-Set Development in Amaranthus hypochondriacus Under a Long-Day Photoperiod
Abstract
1. Introduction
2. Results
2.1. Flowering Induction
2.2. Selection of Relevant Ah Flowering-Related Genes for Analysis
2.3. Gene Expression Analysis
2.4. PCA of the Gene Expression Levels Produced Under R-BLL and a Long-Day Photoperiod at 12 WAC
2.5. Analysis of the Cis-Acting Elements in the Ah FT Gene
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Flowering Induction Conditions
4.3. Interaction Analysis of Proteins Involved in Amaranth Flowering
4.4. Isolation of RNA and qPCR Analysis
4.5. Principal Component Analysis (PCA) of Gene Expression
4.6. Analysis of Cis-Acting Regulatory Elements in the Ah FT Gene
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Ah | Amaranthus hypochondriacus |
CO | CONSTANS |
COP1 | CONSTITUTIVE PHOTOMORPHOGENESIS PROTEIN 1 |
CRY2 | CRYPTOCHROME2 |
FT | FLOWERING LOCUS T |
GI | GIGANTEA |
LEC1 | LEAFY COTYLEDON1 |
LFY | LEAFY |
NOB1 | NIN1 (0NE) BINDING PROTEIN1 |
PCA | Principal component analysis |
PHL | PHYTOCHROME-DEPENDENT LATE FLOWERING |
PHYB | PHYTOCHROME B |
PPI | Protein–protein interaction |
R-BLL | Red–blue LED light |
RPL21C | RIBOSOMAL PROTEIN L21 SUBUNIT C |
RPS18 | RIBOSOMAL PROTEIN S18 |
SPA1 | SUPPRESOR OF PHYA1 |
TF | Transcription factor |
TFL1 | TERMINAL FLOWER 1 |
TOC1/PRR1 | TIMING OF CHLOROPHYLL A/B BINDING PROTEIN/PSEUDO RESPONSE REGULATOR1 |
WLL | White LED light |
References
- Sauer, J.D. The Grain Amaranths: A Survey of Their History and Classification. Ann. Mo. Bot. Gard. 1950, 37, 561–632. [Google Scholar] [CrossRef]
- Brenner, D.M.; Baltensperger, D.D.; Kulakow, P.A.; Lehmann, J.W.; Myers, R.L.; Slabbert, M.M.; Sleugh, B.B. Genetic Resources and Breeding of Amaranthus. In Plant Breeding Reviews; Janick, J., Ed.; Wiley: Hoboken, NJ, USA, 2000; pp. 227–285. ISBN 978-0-471-38787-9. [Google Scholar]
- Rastogi, A.; Shukla, S. Amaranth: A New Millennium Crop of Nutraceutical Values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Comp. Rev. Food Sci. Food Safe 2013, 12, 381–412. [Google Scholar] [CrossRef]
- De Ron, A.M.; Sparvoli, F.; Pueyo, J.J.; Bazile, D. Editorial: Protein Crops: Food and Feed for the Future. Front. Plant Sci. 2017, 8, 105. [Google Scholar] [CrossRef]
- Hoidal, N.; Díaz Gallardo, M.; Jacobsen, S.-E.; Alandia, G. Amaranth as a Dual-Use Crop for Leafy Greens and Seeds: Stable Responses to Leaf Harvest Across Genotypes and Environments. Front. Plant Sci. 2019, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Flores, H.E.; Thier, A.; Galston, A.W. In Vitro Culture of Grain and Vegetable Amaranths (Amaranthus spp.). Am. J. Bot. 1982, 69, 1049–1054. [Google Scholar] [CrossRef]
- Bagga, S.; Venkateswarlu, K.; Sopory, S.K. In Vitro Regeneration of Plants from Hypocotyl Segments of Amaranthus paniculatus. Plant Cell Rep. 1987, 6, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Bennici, A.; Schiff, S.; Bovelli, R. In Vitro Culture of Species and Varieties of Four Amaranthus L. Species. Euphytica 1992, 62, 181–186. [Google Scholar] [CrossRef]
- Murthy, K.S.R.; Kondamudi, R.; Rao, P.C.; Pullaiah, T. In Vitro Flowering-a Review. J. Agric. Technol. 2012, 8, 1517–1536. [Google Scholar]
- Zabka, G.G. Photoperiodism in Amaranthus caudatus. I. A Re-examination of the Photoperiodic Response. Am. J. Bot. 1961, 48, 21–28. [Google Scholar] [CrossRef]
- Kulakow, P.A.; Jain, S.K. The Inheritance of Flowering Time in Amaranthus Species. J. Genet. 1985, 64, 85–100. [Google Scholar] [CrossRef]
- Kauffman, C.S.; Weber, L.E. Grain Amaranth. In Advances in New Crops; Timber Press: Portland, OR, USA, 1990; pp. 127–139. [Google Scholar]
- Kauffman, C.S. The Status of Grain Amaranth for the 1990s. Food Rev. Int. 1992, 8, 165–185. [Google Scholar] [CrossRef]
- Lehmann, J.W.; Clark, R.L.; Frey, K.J. Biomass Heterosis and Combining Ability in Interspecific and Intraspecific Matings of Grain Amaranths. Crop Sci. 1991, 31, 1111–1116. [Google Scholar] [CrossRef]
- Brenner, D.M.; Widriechner, M. Amaranthus Seed Regeneration in Plastic Tents in Greenhouses. In Plant Genetic Resources Newsletter; FAO: Rome, Italy, 1998; pp. 1–4. [Google Scholar]
- Tisserat, B.; Galletta, P.D. In Vitro Flowering in Amaranthus. HortScience 1988, 23, 210–212. [Google Scholar] [CrossRef]
- Stetter, M.G.; Zeitler, L.; Steinhaus, A.; Kroener, K.; Biljecki, M.; Schmid, K.J. Crossing Methods and Cultivation Conditions for Rapid Production of Segregating Populations in Three Grain Amaranth Species. Front. Plant Sci. 2016, 7, 816. [Google Scholar] [CrossRef] [PubMed]
- Lazaro, A.; Valverde, F.; Piñeiro, M.; Jarillo, J.A. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering. Plant Cell 2012, 24, 982–999. [Google Scholar] [CrossRef] [PubMed]
- Osnato, M.; Cota, I.; Nebhnani, P.; Cereijo, U.; Pelaz, S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. Front. Plant Sci. 2022, 12, 805635. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, R.; Proietti, S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Li, X.; Liang, T.; Liu, H. How plants coordinate their development in response to light and temperature signals. Plant Cell 2022, 34, 955–966. [Google Scholar] [CrossRef]
- Hughes, J.; Winkler, A. New Insight Into Phytochromes: Connecting Structure to Function. Annu. Rev. Plant Biol. 2024, 75, 153–183. [Google Scholar] [CrossRef]
- Wang, F.; Han, T.; Jeffrey Chen, Z. Circadian and Photoperiodic Regulation of the Vegetative to Reproductive Transition in Plants. Commun. Biol. 2024, 7, 579. [Google Scholar] [CrossRef]
- Turck, F.; Fornara, F.; Coupland, G. Regulation and Identity of Florigen: FLOWERING LOCUS T Moves Center Stage. Annu. Rev. Plant Biol. 2008, 59, 573–594. [Google Scholar] [CrossRef]
- Griffin, J.H.C.; Prado, K.; Sutton, P.; Toledo-Ortiz, G. Coordinating Light Responses between the Nucleus and the Chloroplast, a Role for Plant Cryptochromes and Phytochromes. Physiol. Plant 2020, 169, 515–528. [Google Scholar] [CrossRef]
- Romanowski, A.; Furniss, J.J.; Hussain, E.; Halliday, K.J. Phytochrome Regulates Cellular Response Plasticity and the Basic Molecular Machinery of Leaf Development. Plant Physiol. 2021, 186, 1220–1239. [Google Scholar] [CrossRef]
- Valverde, F.; Mouradov, A.; Soppe, W.; Ravenscroft, D.; Samach, A.; Coupland, G. Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering. Science 2004, 303, 1003–1006. [Google Scholar] [CrossRef]
- Endo, M.; Tanigawa, Y.; Murakami, T.; Araki, T.; Nagatani, A. PHYTOCHROME-DEPENDENT LATE-FLOWERING Accelerates Flowering through Physical Interactions with Phytochrome B and CONSTANS. Proc. Natl. Acad. Sci. USA 2013, 110, 18017–18022. [Google Scholar] [CrossRef]
- Zhu, Y.; Klasfeld, S.; Wagner, D. Molecular Regulation of Plant Developmental Transitions and Plant Architecture via PEPB Family Proteins: An Update on Mechanism of Action. J. Exp. Bot. 2021, 72, 2301–2311. [Google Scholar] [CrossRef]
- Chen, H.; Huang, X.; Gusmaroli, G.; Terzaghi, W.; Lau, O.S.; Yanagawa, Y.; Zhang, Y.; Li, J.; Lee, J.-H.; Zhu, D.; et al. Arabidopsis CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time. Plant Cell 2010, 22, 108–123. [Google Scholar] [CrossRef]
- Missbach, S.; Weis, B.L.; Martin, R.; Simm, S.; Bohnsack, M.T.; Schleiff, E. 40S Ribosome Biogenesis Co-Factors Are Essential for Gametophyte and Embryo Development. PLoS ONE 2013, 8, e54084. [Google Scholar] [CrossRef]
- Li, K.; Wang, P.; Ding, T.; Hou, L.; Li, G.; Zhao, C.; Zhao, S.; Wang, X.; Li, P. Mutation of an Essential 60S Ribosome Assembly Factor MIDASIN 1 Induces Early Flowering in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 6509. [Google Scholar] [CrossRef]
- Romero, J.M.; Serrano-Bueno, G.; Camacho-Fernández, C.; Vicente, M.H.; Ruiz, M.T.; Pérez-Castiñeira, J.R.; Pérez-Hormaeche, J.; Nogueira, F.T.S.; Valverde, F. CONSTANS, a HUB for All Seasons: How Photoperiod Pervades Plant Physiology Regulatory Circuits. Plant Cell 2024, 36, 2086–2102. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pin, P.A.; Nilsson, O. The Multifaceted Roles of FLOWERING LOCUS T in Plant Development. Plant Cell Environ. 2012, 35, 1742–1755. [Google Scholar] [CrossRef]
- Anuradha, K.M.; Zinta, G.; Chauhan, R.; Kumar, A.; Singh, S.; Singh, S. Genetic Resources and Breeding Approaches for Improvement of Amaranth (Amaranthus spp.) and Quinoa (Chenopodium quinoa). Front. Nutr. 2020, 10, 1129723. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, A.; Dhakte, P.; Raturi, G.; Vishwakarma, G.; Barbadikar, K.M.; Das, B.K.; Shivaraj, S.M.; Humira Sonah, H.; Deshmukh, R. Speed Breeding Opportunities and Challenges for Crop Improvement. J. Plant Growth Regul. 2023, 42, 46–59. [Google Scholar] [CrossRef]
- Moraes, T.S.; Dornelas, M.C.; Martinelli, A.P. FT/TFL1: Calibrating Plant Architecture. Front. Plant Sci. 2019, 10, 97. [Google Scholar] [CrossRef]
- Zhu, Y.; Klasfeld, S.; Jeong, C.W.; Jin, R.; Goto, K.; Yamaguchi, N.; Wagner, D. TERMINAL FLOWER 1-FD Complex Target Genes and Competition with FLOWERING LOCUS T. Nat. Commun. 2020, 11, 5118. [Google Scholar] [CrossRef]
- Liu, B.; Woods, D.P.; Li, W.; Amasino, R.M. INDETERMINATE1-Mediated Expression of FT Family Genes Is Required for Proper Timing of Flowering in Brachypodium Distachyon. Proc. Natl. Acad. Sci. USA 2023, 120, e2312052120. [Google Scholar] [CrossRef]
- Xu, H.; Guo, X.; Hao, Y.; Lu, G.; Li, D.; Lu, J.; Zhang, T. Genome-Wide Characterization of PEBP Gene Family in Perilla Frutescens and PfFT1 Promotes Flowering Time in Arabidopsis Thaliana. Front. Plant Sci. 2022, 13, 1026696. [Google Scholar] [CrossRef]
- Saidi, A.; Hajibarat, Z. In Silico Analysis of Floral MADS-BOX Gene in Brachypodium Distachyon. Bionature 2018, 38, 366–375. Available online: https://globalpresshub.com/index.php/BN/article/view/720 (accessed on 10 March 2025).
- Argüello-Astorga, G.; Herrera-Estrella, L. Evolution of Light-Regulated Plant Promoters. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 525–555. [Google Scholar] [CrossRef]
- Dehesh, K.; Bruce, W.B.; Quail, P.H. A Trans-Acting Factor That Binds to a GT-Motif in a Phytochrome Gene Promoter. Science 1990, 250, 1397–1399. [Google Scholar] [CrossRef]
- Anderson, S.L.; Teakle, G.R.; Martino-Catt, S.J.; Kay, S.A. Circadian Clock- and Phytochrome-regulated Transcription Is Conferred by a 78 Bp Cis-acting Domain of the Arabidopsis CAB2 Promoter. Plant J. 1994, 6, 457–470. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Puente, P.; Deng, X.; Wei, N. Combinatorial Interaction of Light-responsive Elements Plays a Critical Role in Determining the Response Characteristics of Light-regulated Promoters in Arabidopsis. Plant J. 1998, 15, 69–77. [Google Scholar] [CrossRef]
- Qian, G.; Yang, J.; Wang, M.; Li, L. Identification of the Dof Gene Family in Quinoa and Its Potential Role in Regulating Flavonoid Synthesis Under Different Stress Conditions. Biology 2025, 14, 446. [Google Scholar] [CrossRef]
- Moyroud, E.; Kusters, E.; Monniaux, M.; Koes, R.; Parcy, F. LEAFY Blossoms. Trends Plant Sci. 2010, 15, 346–352. [Google Scholar] [CrossRef]
- Li, H.; Burgie, E.S.; Gannam, Z.T.K.; Li, H.; Vierstra, R.D. Plant Phytochrome B Is an Asymmetric Dimer with Unique Signalling Potential. Nature 2022, 604, 127–133. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Shi, H.; Guo, M.; Chai, M.; He, Q.; Yan, M.; Cao, D.; Zhao, L.; Cai, H.; et al. Evolutionary and Expression Analyses of Soybean Basic Leucine Zipper Transcription Factor Family. BMC Genom. 2018, 19, 159. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, Y.; Li, X.; Wang, G.; Zhou, Q.; Chen, Q.; Li, J.; Wang, X.; Tang, H. An Evolutionary Analysis of B-Box Transcription Factors in Strawberry Reveals the Role of FaBBx28c1 in the Regulation of Flowering Time. Int. J. Mol. Sci. 2021, 22, 11766. [Google Scholar] [CrossRef]
- Maassen, A.; Steciuk, J.; Wilga, M.; Szurmak, J.; Garbicz, D.; Sarnowska, E.; Sarnowski, T.J. SWI/SNF-Type Complexes–Transcription Factor Interplay: A Key Regulatory Interaction. Cell. Mol. Biol. Lett. 2025, 30, 30. [Google Scholar] [CrossRef]
- Weigel, D.; Nilsson, O. A Developmental Switch Sufficient for Flower Initiation in Diverse Plants. Nature 1995, 377, 495–500. [Google Scholar] [CrossRef]
- Nilsson, O.; Weigel, D. Modulating the Timing of Flowering. Curr. Opin. Biotechnol. 1997, 8, 195–199. [Google Scholar] [CrossRef]
- He, Z.; Zhu, Q.; Dabi, T.; Li, D.; Weigel, D.; Lamb, C. Transformation of Rice with the Arabidopsis Floral Regulator LEAFY Causes Early Heading. Transgenic Res. 2000, 9, 223–227. [Google Scholar] [CrossRef]
- Peña, L.; Martín-Trillo, M.; Juárez, J.; Pina, J.A.; Navarro, L.; Martínez-Zapater, J.M. Constitutive Expression of Arabidopsis LEAFY or APETALA1 Genes in Citrus Reduces Their Generation Time. Nat. Biotechnol. 2001, 19, 263–267. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, Y.; Liu, K.; Zheng, G.; Gao, L.; Li, Z.; Huang, M.; Jiang, Y. Transcriptome Profiles Reveal Gene Regulation of Ginger Flowering Induced by Photoperiod and Light Quality. Bot. Stud. 2023, 64, 12. [Google Scholar] [CrossRef]
- Andrés, F.; Coupland, G. The Genetic Basis of Flowering Responses to Seasonal Cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef]
- Guo, H.; Yang, H.; Mockler, T.C.; Lin, C. Regulation of Flowering Time by Arabidopsis Photoreceptors. Science 1998, 279, 1360–1363. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kiba, T.; Chua, N. The Arabidopsis SPA1 Gene Is Required for Circadian Clock Function and Photoperiodic Flowering. Plant J. 2006, 46, 736–746. [Google Scholar] [CrossRef]
- Hajdu, A.; Ádám, É.; Sheerin, D.J.; Dobos, O.; Bernula, P.; Hiltbrunner, A.; Kozma-Bognár, L.; Nagy, F. High-level Expression and Phosphorylation of Phytochrome B Modulates Flowering Time in Arabidopsis. Plant J. 2015, 83, 794–805. [Google Scholar] [CrossRef]
- Lu, X.-D.; Zhou, C.-M.; Xu, P.-B.; Luo, Q.; Lian, H.-L.; Yang, H.-Q. Red-Light-Dependent Interaction of phyB with SPA1 Promotes COP1–SPA1 Dissociation and Photomorphogenic Development in Arabidopsis. Mol. Plant 2015, 8, 467–478. [Google Scholar] [CrossRef]
- Sheerin, D.J.; Menon, C.; Zur Oven-Krockhaus, S.; Enderle, B.; Zhu, L.; Johnen, P.; Schleifenbaum, F.; Stierhof, Y.-D.; Huq, E.; Hiltbrunner, A. Light-Activated Phytochrome A and B Interact with Members of the SPA Family to Promote Photomorphogenesis in Arabidopsis by Reorganizing the COP1/SPA Complex. Plant Cell 2015, 27, 189–201. [Google Scholar] [CrossRef]
- Santos-Mendoza, M.; Dubreucq, B.; Baud, S.; Parcy, F.; Caboche, M.; Lepiniec, L. Deciphering Gene Regulatory Networks That Control Seed Development and Maturation in Arabidopsis. Plant J. 2008, 54, 608–620. [Google Scholar] [CrossRef]
- Rogalski, M.; Ruf, S.; Bock, R. Tobacco Plastid Ribosomal Protein S18 Is Essential for Cell Survival. Nucleic Acids Res. 2006, 34, 4537–4545. [Google Scholar] [CrossRef]
- Van Lijsebettens, M.; Vanderhaeghen, R.; De Block, M.; Bauw, G.; Villarroel, R.; Van Montagu, M. An S18 Ribosomal Protein Gene Copy at the Arabidopsis PFL Locus Affects Plant Development by Its Specific Expression in Meristems. EMBO J. 1994, 13, 3378–3388. [Google Scholar] [CrossRef]
- Moin, M.; Bakshi, A.; Saha, A.; Dutta, M.; Madhav, S.M.; Kirti, P.B. Rice Ribosomal Protein Large Subunit Genes and Their Spatio-Temporal and Stress Regulation. Front. Plant Sci. 2016, 7, 1284. [Google Scholar] [CrossRef]
- Yin, T.; Pan, G.; Liu, H.; Wu, J.; Li, Y.; Zhao, Z.; Fu, T.; Zhou, Y. The Chloroplast Ribosomal Protein L21 Gene Is Essential for Plastid Development and Embryogenesis in Arabidopsis. Planta 2012, 235, 907–921. [Google Scholar] [CrossRef]
- Jung, J.-H.; Seo, Y.-H.; Seo, P.J.; Reyes, J.L.; Yun, J.; Chua, N.-H.; Park, C.-M. The GIGANTEA-Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of CONSTANS in Arabidopsis. Plant Cell 2007, 19, 2736–2748. [Google Scholar] [CrossRef]
- Mattson, N.S.; Erwin, J.E. The Impact of Photoperiod and Irradiance on Flowering of Several Herbaceous Ornamentals. Sci. Hortic. 2005, 104, 275–292. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A Comparative Platform for Green Plant Genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Palmeros-Suárez, P.A.; Massange-Sánchez, J.A.; Martínez-Gallardo, N.A.; Montero-Vargas, J.M.; Gómez-Leyva, J.F.; Délano-Frier, J.P. The Overexpression of an Amaranthus Hypochondriacus NF-YC Gene Modifies Growth and Confers Water Deficit Stress Resistance in Arabidopsis. Plant Sci. 2015, 240, 25–40. [Google Scholar] [CrossRef]
- Bustin, S.A.; Beaulieu, J.-F.; Huggett, J.; Jaggi, R.; Kibenge, F.S.; Olsvik, P.A.; Penning, L.C.; Toegel, S. MIQE Précis: Practical Implementation of Minimum Standard Guidelines for Fluorescence-Based Quantitative Real-Time PCR Experiments. BMC Mol. Biol. 2010, 11, 74. [Google Scholar] [CrossRef]
- Horton, N.J.; Kleinman, K. Using R and RStudio for Data Management, Statistical Analysis, and Graphics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015; ISBN 978-0-429-16156-8. [Google Scholar]
- Lescot, M. PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
N° Experiment | N° Cultured Embryos | N° Surviving Plants | Flowering Plants (%) | N° Seeds/Plant | Germination (%) |
---|---|---|---|---|---|
1 | 100 | 84 | 74.8 | 163 | 68.3 |
2 | 100 | 88 | 65.5 | 136 | 74.5 |
3 | 100 | 98 | 75.1 | 122 | 74.5 |
4 | 100 | 86 | 68.5 | 146 | 67.2 |
5 | 100 | 94 | 72.4 | 131 | 65.8 |
Mean value | 90 | 71.3 | 139.6 | 70.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermudez-Valle, A.R.; Martínez-Gallardo, N.A.; Valencia-Lozano, E.; Délano-Frier, J.P. High Red–Blue Light Ratio Promotes Accelerated In Vitro Flowering and Seed-Set Development in Amaranthus hypochondriacus Under a Long-Day Photoperiod. Plants 2025, 14, 3134. https://doi.org/10.3390/plants14203134
Bermudez-Valle AR, Martínez-Gallardo NA, Valencia-Lozano E, Délano-Frier JP. High Red–Blue Light Ratio Promotes Accelerated In Vitro Flowering and Seed-Set Development in Amaranthus hypochondriacus Under a Long-Day Photoperiod. Plants. 2025; 14(20):3134. https://doi.org/10.3390/plants14203134
Chicago/Turabian StyleBermudez-Valle, Alex R., Norma A. Martínez-Gallardo, Eliana Valencia-Lozano, and John P. Délano-Frier. 2025. "High Red–Blue Light Ratio Promotes Accelerated In Vitro Flowering and Seed-Set Development in Amaranthus hypochondriacus Under a Long-Day Photoperiod" Plants 14, no. 20: 3134. https://doi.org/10.3390/plants14203134
APA StyleBermudez-Valle, A. R., Martínez-Gallardo, N. A., Valencia-Lozano, E., & Délano-Frier, J. P. (2025). High Red–Blue Light Ratio Promotes Accelerated In Vitro Flowering and Seed-Set Development in Amaranthus hypochondriacus Under a Long-Day Photoperiod. Plants, 14(20), 3134. https://doi.org/10.3390/plants14203134