Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,340)

Search Parameters:
Keywords = in vitro cultivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1113 KiB  
Article
Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum
by Doina Clapa, Monica Hârţa, Ana Maria Radomir, Adrian George Peticilă, Loredana Leopold, Floricuţa Ranga and Dorin Ioan Sumedrea
Plants 2025, 14(15), 2437; https://doi.org/10.3390/plants14152437 - 6 Aug 2025
Abstract
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator [...] Read more.
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator treatments and culture periods. Shoots were grown on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) or meta-topoline (mT) and analyzed after 40 and 60 days. MS medium supplemented with 0.2 mg/L BA was the most effective condition for promoting biomass across all species, with shoot fresh weight increasing significantly at 60 days, particularly in H. olympicum, H. perforatum, and H. triquetrifolium. High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) identified 13 phenolic compounds, including flavonols, hydroxycinnamic acids, anthocyanins, phloroglucinols, and naphthodianthrones. Phenolic profiles were species-specific and influenced by culture period. H. kalmianum accumulated the highest total phenolic content (37.6 mg/g DW), while H. olympicum was the top producer of hypericin and pseudohypericin. These results highlight the crucial role of culture conditions in regulating both biomass and phytochemical production and provide a promising approach for producing bioactive metabolites in Hypericum species through in vitro systems. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

17 pages, 7038 KiB  
Article
Polyploidy Induction of Wild Diploid Blueberry V. fuscatum
by Emily Walter, Paul M. Lyrene and Ye Chu
Horticulturae 2025, 11(8), 921; https://doi.org/10.3390/horticulturae11080921 (registering DOI) - 5 Aug 2025
Abstract
Diploid Vaccinium fuscatum is a wild blueberry species with a low chilling requirement, an evergreen growth habit, and soil adaptability to southeast US growing regions. Regardless of its potential to improve the abiotic and biotic resilience of cultivated blueberries, this species has rarely [...] Read more.
Diploid Vaccinium fuscatum is a wild blueberry species with a low chilling requirement, an evergreen growth habit, and soil adaptability to southeast US growing regions. Regardless of its potential to improve the abiotic and biotic resilience of cultivated blueberries, this species has rarely been used for blueberry breeding. One hurdle is the ploidy barrier between diploid V. fuscatum and tetraploid cultivated highbush blueberries. To overcome the ploidy barrier, vegetative shoots micro-propagated from one genotype of V. fuscatum, selected because it grew vigorously in vitro and two southern highbush cultivars, ‘Emerald’ and ‘Rebel,’ were treated with colchicine. While shoot regeneration was severely repressed in ‘Emerald’ and ‘Rebel,’ shoot production from the V. fuscatum clone was not compromised at either 500 µM or 5000 µM colchicine concentrations. Due to the high number of shoots produced in vitro via the V. fuscatum clone shoots of this clone that had an enlarged stem diameter in vitro were subjected to flow cytometer analysis to screen for induced polyploidy. Sixteen synthetic tetraploid V. fuscatum, one synthetic octoploid ‘Emerald,’ and three synthetic octoploid ‘Rebel’ were identified. Growth rates of the polyploid-induced mutants were reduced compared to their respective wildtype controls. The leaf width and length of synthetic tetraploid V. fuscatum and synthetic octoploid ‘Emerald’ was increased compared to the wildtypes, whereas the leaf width and length of synthetic octoploid ‘Rebel’ were reduced compared to the wildtype controls. Significant increases in stem thickness and stomata guard cell length were found in the polyploidy-induced mutant lines compared to the wildtypes. In the meantime, stomata density was reduced in the mutant lines. These morphological changes may improve drought tolerance and photosynthesis in these mutant lines. Synthetic tetraploid V. fuscatum can be used for interspecific hybridization with highbush blueberries to expand the genetic base of cultivated blueberries. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

14 pages, 1400 KiB  
Article
Potential Roles of Extracellular Vesicles in Murine Tear Fluids in the Physiology of Corneal Epithelial Cells In Vitro
by Saya Oya, Kazunari Higa, Tomohiro Yasutake, Risa Yamazaki-Hokama and Masatoshi Hirayama
Int. J. Mol. Sci. 2025, 26(15), 7559; https://doi.org/10.3390/ijms26157559 - 5 Aug 2025
Abstract
Biological extracellular vesicles in tear fluids, such as exosomes, are thought to have physiological functions in the management of healthy ocular surface epithelium, including corneal epithelium. However, the physiological roles of tear extracellular vesicles in the ocular surface remain unclear. In this study, [...] Read more.
Biological extracellular vesicles in tear fluids, such as exosomes, are thought to have physiological functions in the management of healthy ocular surface epithelium, including corneal epithelium. However, the physiological roles of tear extracellular vesicles in the ocular surface remain unclear. In this study, we investigated the physiological function of tear extracellular vesicles in mouse tear fluids in the ocular surface epithelium in vitro. Morphological analysis of the isolated extracellular vesicles from mouse tear fluids was performed using nanoparticle tracking analysis and transmission electron microscopy. The identified particles were characterised by immunoblotting for exosomal markers. After confirming the uptake of tear exosomes in cultured corneal epithelial cells, gene expression changes in mouse cultured corneal epithelial cells after tear exosome treatment were analysed. Immunostaining analysis was performed to confirm cell proliferation in the cultured corneal epithelial cells with tear exosome treatment. Tear fluids from mice contain nanoparticles with exosome-like morphologies, which express the representative exosomal markers CD9 and TSG101. The extracellular vesicles can be taken up by cultivated murine corneal epithelial cells in vitro and induce expression changes in genes related to the cell cycle, cell membranes, microtubules, and signal peptides. Treatment with the tear extracellular vesicles promoted cell proliferation of cultured murine corneal epithelial cells. Our study provides evidence that murine tear fluids contain extracellular vehicles like exosomes and they may contribute to the maintenance of the physiological homeostatic environment of the ocular surface. Full article
(This article belongs to the Special Issue Molecular Advances in Dry Eye Syndrome)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Galacto-Oligosaccharides Exert Bifidogenic Effects at Capsule-Compatible Ultra-Low Doses
by Lucien F. Harthoorn, Jasmine Heyse, Aurélien Baudot, Ingmar A. J. van Hengel and Pieter Van den Abbeele
Metabolites 2025, 15(8), 530; https://doi.org/10.3390/metabo15080530 - 5 Aug 2025
Abstract
Background: Prebiotics are selectively used by host microorganisms to promote health. Because effective prebiotic doses (1.5–30 g/day) often require inconvenient delivery formats, this study aims to explore whether capsule-compatible doses of galacto-oligosaccharides (GOS) can effectively modulate the gut microbiome. Methods: The impact of [...] Read more.
Background: Prebiotics are selectively used by host microorganisms to promote health. Because effective prebiotic doses (1.5–30 g/day) often require inconvenient delivery formats, this study aims to explore whether capsule-compatible doses of galacto-oligosaccharides (GOS) can effectively modulate the gut microbiome. Methods: The impact of Bimuno® GOS (Reading, UK) at 0.5, 0.75, 1.83, and 3.65 g on the adult gut microbiome was assessed using the ex vivo SIFR® technology (n = 8), a clinically validated, bioreactor-based technology. Results: The GOS were rapidly fermented and significantly increased beneficial Bifidobacterium species (B. adolescentis, B. bifidum, and B. longum), even at the lowest tested dose. In doing so, GOS strongly promoted SCFA production, particularly acetate (significant from 0.5 g) and butyrate (significant from 0.75 g). Gas production only mildly increased, likely as Bifidobacterium species do not produce gases. Based on the ability of the SIFR® technology to cultivate strictly anaerobic, hard-to-culture gut microbes, unlike in past in vitro studies, we elucidated that GOS also enriched specific Lachnospiraceae species. Besides Anaerobutyricum hallii, this included Bariatricus comes, Blautia species (B. massiliensis, Blautia_A, B. faecis), Oliverpabstia intestinalis, Mediterraneibacter faecis, and Fusicatenibacter species. Finally, GOS also promoted propionate (significant from 0.75 g), linked to increases in Phocaeicola vulgatus. Conclusions: GOS displayed prebiotic potential at capsule-compatible doses, offering greater flexibility in nutritional product formulation and consumer convenience. Notably, the strong response at the lowest dose suggests effective microbiome modulation at lower levels than previously expected. Full article
Show Figures

Graphical abstract

15 pages, 24657 KiB  
Article
Identification and Genetic Analysis of Downy Mildew Resistance in Intraspecific Hybrids of Vitis vinifera L.
by Xing Han, Yihan Li, Zhilei Wang, Zebin Li, Nanyang Li, Hua Li and Xinyao Duan
Plants 2025, 14(15), 2415; https://doi.org/10.3390/plants14152415 - 4 Aug 2025
Abstract
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance [...] Read more.
Downy mildew caused by Plasmopara viticola is an important disease in grape production, particularly in the highly susceptible, widely cultivated Vitis vinifera L. Breeding for disease resistance is an effective solution, and V. vinifera intraspecific crosses can yield progeny with both disease resistance and high quality. To assess the potential of intraspecific recurrent selection in V. vinifera (IRSV) in improving grapevine resistance to downy mildew and to analyze the pattern of disease resistance inheritance, the disease-resistant variety Ecolly was selected as one of the parents and crossed with Cabernet Sauvignon, Marselan, and Dunkelfelder, respectively, creating three reciprocal combinations, resulting in 1657 hybrid F1 progenies. The primary results are as follows: (1) significant differences in disease resistance among grape varieties and, significant differences in disease resistance between different vintages of the same variety were found; (2) the leaf downy mildew resistance levels of F1 progeny of different hybrid combinations conformed to a skewed normal distribution and showed some maternal dominance; (3) the degree of leaf bulbous elevation was negatively correlated with the level of leaf downy mildew resistance, and the correlation coefficient with the level of field resistance was higher; (4) five progenies with higher levels of both field and in vitro disease resistance were obtained. Intraspecific hybridization can improve the disease resistance of offspring through super-parent genetic effects, and Ecolly can be used as breeding material for recurrent hybridization to obtain highly resistant varieties. Full article
Show Figures

Figure 1

18 pages, 2864 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 172
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

14 pages, 1742 KiB  
Article
Characterization of Biological Components of Leaves and Flowers in Moringa peregrina and Their Effect on Proliferation of Staurogyne repens in Tissue Culture Conditions
by Hamideh Khajeh, Bahman Fazeli-Nasab, Ali Salehi Sardoei, Zeinab Fotoohiyan, Mehrnaz Hatami, Alireza Mirzaei, Mansour Ghorbanpour and Filippo Maggi
Plants 2025, 14(15), 2340; https://doi.org/10.3390/plants14152340 - 29 Jul 2025
Viewed by 248
Abstract
Moringa peregrina (Forssk.) Fiori is a tropical tree in southern Iran known as the most important natural coagulant in the world. Today, plant tissue culture is a new method that has a very high potential to produce valuable medicinal compounds on a commercial [...] Read more.
Moringa peregrina (Forssk.) Fiori is a tropical tree in southern Iran known as the most important natural coagulant in the world. Today, plant tissue culture is a new method that has a very high potential to produce valuable medicinal compounds on a commercial level. Advances in in vitro cultivation methods have increased the usefulness of plants as renewable resources. In this study, in addition to the phytochemical analysis of the extract of M. peregrina using HPLC, the interaction effect of different concentrations of aqueous extract of M. peregrina (0, 1, 1.5, and 3 mg/L) in two types of MS and ½ MS basal culture media over three weeks on the in vitro growth of Staurogyne repens (Nees) Kuntze was studied. The amounts of quercetin, gallic acid, caffeic acid, and myricetin in the aqueous extract of M. peregrina were 64.9, 374.8, 42, and 4.6 mg/g, respectively. The results showed that using M. peregrina leaf aqueous extract had a positive effect on the length of the branches, the percentage of green leaves, rooting, and the fresh and dry weight of S. repens samples. The highest increase in growth indices was observed in the MS culture medium supplemented with 3 mg/L of M. peregrina leaf aqueous extract after three weeks of cultivation. Of course, this effect was significantly greater in the MS medium and at higher concentrations compared to the ½ MS medium. Three weeks after cultivation at a concentration of 3 mg/L of the extract, the length of the S. repens branches was 5.3 and 1.8 cm in the two basic MS and ½ MS culture media, and the percentage of green leaves was 14 and 4 percent, respectively. Also, rooting was measured at 9.6 and 3.6 percent, fresh weight at 6 and 1.4 g, and dry weight at 1.1 and 0.03 g, respectively. Therefore, adding M. peregrina leaf aqueous extract as a stimulant significantly increased the in vitro growth of S. repens. Full article
Show Figures

Figure 1

33 pages, 1821 KiB  
Review
The “Colors” of Moringa: Biotechnological Approaches
by Edgar Yebran Villegas-Vazquez, Juan Ramón Padilla-Mendoza, Mayra Susana Carrillo-Pérez, Rocío Gómez-Cansino, Liliana Altamirano-Garcia, Rocío Cruz Muñoz, Alvaro Diaz-Badillo, Israel López-Reyes and Laura Itzel Quintas-Granados
Plants 2025, 14(15), 2338; https://doi.org/10.3390/plants14152338 - 29 Jul 2025
Viewed by 427
Abstract
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although [...] Read more.
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although MO’s resilience offers promise for climate-smart agriculture and public health, challenges remain in standardizing cultivation and verifying therapeutic claims. This work underscores MO’s translational potential and the need for integrative, interdisciplinary research. MO is used in advanced materials, like electrospun fibers and biopolymers, showing filtration, antibacterial, anti-inflammatory, and antioxidant properties—important for the biomedical industry and environmental remediation. In textiles, it serves as an eco-friendly alternative for wastewater treatment and yarn sizing. Biotechnological advancements, such as genome sequencing and in vitro culture, enhance traits and metabolite production. MO supports green biotechnology through sustainable agriculture, nanomaterials, and biocomposites. MO shows potential for disease management, immune support, metabolic health, and dental care, but requires further clinical trials for validation. Its resilience is suitable for land restoration and food security in arid areas. AI and deep learning enhance Moringa breeding, allowing for faster, cost-effective development of improved varieties. MO’s diverse applications establish it as a key element for sustainable development in arid regions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

26 pages, 1171 KiB  
Review
Current Context of Cannabis sativa Cultivation and Parameters Influencing Its Development
by Andreia Saragoça, Ana Cláudia Silva, Carla M. R. Varanda, Patrick Materatski, Alfonso Ortega, Ana Isabel Cordeiro and José Telo da Gama
Agriculture 2025, 15(15), 1635; https://doi.org/10.3390/agriculture15151635 - 29 Jul 2025
Viewed by 415
Abstract
Cannabis sativa L. is a versatile plant with significant medicinal, industrial, and recreational applications. Its therapeutic potential is attributed to cannabinoids like THC and CBD, whose production is influenced by environmental factors, such as radiation, temperature, and humidity. Radiation, for instance, is essential [...] Read more.
Cannabis sativa L. is a versatile plant with significant medicinal, industrial, and recreational applications. Its therapeutic potential is attributed to cannabinoids like THC and CBD, whose production is influenced by environmental factors, such as radiation, temperature, and humidity. Radiation, for instance, is essential for photosynthetic processes, acting as both a primary energy source and a regulator of plant growth and development. This review covers key factors affecting C. sativa cultivation, including photoperiod, light spectrum, cultivation methods, environmental controls, and plant growth regulators. It highlights how these elements influence flowering, biomass, and cannabinoid production across different growing systems, offering insights for optimizing both medicinal and industrial cannabis cultivation. Studies indicate that photoperiod sensitivity varies among cultivars, with some achieving optimal flowering and cannabinoid production under extended light periods rather than the traditional 12/12 h cycle. Light spectrum adjustments, especially red, far-red, and blue wavelengths, significantly impact photosynthesis, plant morphology, and secondary metabolite accumulation. Advances in LED technology allow precise spectral control, enhancing energy efficiency and cannabinoid profiles compared to conventional lighting. The photoperiod plays a vital role in the cultivation of C. sativa spp., directly impacting the plant’s developmental cycle, biomass production, and the concentration of cannabinoids and terpenes. The response to photoperiod varies among different cannabis cultivars, as demonstrated in studies comparing cultivars of diverse genetic origins. On the other hand, indoor or in vitro cultivation may serve as an excellent alternative for plant breeding programs in C. sativa, given the substantial inter-cultivar variability that hinders the fixation of desirable traits. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

20 pages, 9891 KiB  
Article
3D-Printed Poly (l-lactic acid) Scaffolds for Bone Repair with Oriented Hierarchical Microcellular Foam Structure and Biocompatibility
by Cenyi Luo, Juan Xue, Qingyi Huang, Yuxiang Deng, Zhixin Zhao, Jiafeng Li, Xiaoyan Gao and Zhengqiu Li
Biomolecules 2025, 15(8), 1075; https://doi.org/10.3390/biom15081075 - 25 Jul 2025
Viewed by 355
Abstract
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a [...] Read more.
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a novel extrusion foaming technology that integrates fused deposition modeling (FDM) 3D printing with supercritical carbon dioxide (SC-CO2) microcellular foaming technology. The influence of the 3D-printed structure on the microcellular morphology of the oriented multi-stage microporous scaffold was investigated and optimized. The combination of FDM and SC-CO2 foaming technology enables a continuous extrusion foaming process for preparing oriented multi-stage microporous scaffolds. The mechanical strength of the scaffold reached 15.27 MPa, meeting the requirements for bone repair in a low-load environment. Notably, the formation of open pores on the surface of the oriented multi-stage microporous scaffold positively affected cell proliferation, differentiation, and activity, as well as the expression of anti-inflammatory and pro-inflammatory factors. In vitro cell experiments (such as CCK-8) showed that the cell proliferation rate in the oriented multi-stage microporous scaffold reached 100–300% after many days of cultivation. This work provides a strategy for the design and manufacture of PLLA scaffolds with hierarchical microcellular structures and biocompatibility for bone repair. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

14 pages, 1069 KiB  
Article
Impact of Temperature and Sucrose Levels on the Slow Growth of Interspecific Grapevine Hybrids In Vitro
by Lidiane Miranda da Silva, Virginia Silva Carvalho, Alexandre Pio Viana, Daniel Pereira Miranda, Kíssila Motta Defanti and Otalício Damásio da Costa Júnior
Int. J. Plant Biol. 2025, 16(3), 83; https://doi.org/10.3390/ijpb16030083 - 23 Jul 2025
Viewed by 275
Abstract
Grapevine breeding programs face difficulties in preserving germplasm, especially from species and interspecific hybrids, since most collections are maintained in the field and exposed to biotic and abiotic stress, which can lead to material loss. The Universidade Estadual do Norte Fluminense Darcy Ribeiro [...] Read more.
Grapevine breeding programs face difficulties in preserving germplasm, especially from species and interspecific hybrids, since most collections are maintained in the field and exposed to biotic and abiotic stress, which can lead to material loss. The Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF) Grapevine Breeding Program faces similar challenges, limiting studies on hybrids resistant to the nematode Pratylenchus brachyurus and downy mildew (Plasmopara viticola), which are valuable for genetic improvement. This study aimed to implement in vitro conservation under minimal growth conditions for interspecific hybrids of Vitis spp. from the UENF program. The protocol followed a completely randomized design in a 2 × 2 × 3 factorial scheme: two hybrids (CH1.2 and CH1.3), two temperatures (18 ± 1 °C and 27 ± 2 °C), and three sucrose concentrations (10, 20, and 30 g L−1), over 180 days of in vitro culture. The results showed that conservation of the UENF hybrids is feasible using nodal segments as explants, at 18 ± 2 °C and 10 g L−1 of sucrose, for up to four months. This protocol may also be applied to other Vitis spp., contributing to the preservation and continued study of valuable germplasm. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

12 pages, 1531 KiB  
Article
Challenges and Achievements in the In Vitro Culture of Balantioides coli: Insights into the Excystation Process
by Alexandra Ibañez-Escribano, Lorena Esteban-Sánchez, Cristina Fonseca-Berzal, Francisco Ponce-Gordo and Juan José García-Rodríguez
Pathogens 2025, 14(8), 725; https://doi.org/10.3390/pathogens14080725 - 23 Jul 2025
Viewed by 306
Abstract
Balantioides coli is the only ciliate currently described as an intestinal parasite of humans, although it can also infect other animals, particularly pigs. Its in vitro cultivation remains challenging, and no axenic culture system is currently available. Cultures are initiated by adding small [...] Read more.
Balantioides coli is the only ciliate currently described as an intestinal parasite of humans, although it can also infect other animals, particularly pigs. Its in vitro cultivation remains challenging, and no axenic culture system is currently available. Cultures are initiated by adding small amounts of feces containing cysts or trophozoites to the culture medium. Implantation success is lower when starting from cysts, and the mechanisms and early events of excystation remain poorly understood. In this study, we describe the sequence of events involved in excystation and identify factors potentially important for culture establishment. Cysts were obtained from orangutan feces and genetically confirmed as B. coli. Only viable cysts, determined by trypan blue or methylene blue exclusion, were used. After artificial digestion with pepsin and trypsin, cysts were incubated at 28 °C for up to 72 h in DMEM supplemented with L-glutamine, yeast extract, fetal bovine serum, and starch granules. Excystation began with a fissure in the cyst wall, allowing for bacterial entry. This appeared to stimulate the trophozoites, the increased motility of which progressively weakened and ruptured the wall, allowing for their emergence. Wall rupture and bacterial entry were critical for activation., whereas starch type had no apparent influence. Excystation occurred within the first hours; otherwise, cysts degenerated. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

16 pages, 4683 KiB  
Article
Abscisic Acid Enhances Ex Vitro Acclimatization Performance in Hop (Humulus lupulus L.)
by Luciana Di Sario, David Navarro-Payá, María F. Zubillaga, José Tomás Matus, Patricia A. Boeri and Gastón A. Pizzio
Int. J. Mol. Sci. 2025, 26(14), 6923; https://doi.org/10.3390/ijms26146923 - 18 Jul 2025
Viewed by 210
Abstract
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, [...] Read more.
Humulus lupulus L. (hop) is a multipurpose crop valued for its essential role in beer production and for its bioactive compounds with recognized medicinal properties. Otherwise, climate change represents a major challenge to agriculture, particularly impacting the cultivation of crops with stenoecious characteristics, such as hop. This highlights the urgent need to enhance crop resilience to adverse environmental conditions. The phytohormone abscisic acid (ABA) is a key regulator of plant responses to abiotic stress, yet the ABA signaling pathway remains poorly characterized in hop. Harnessing the publicly available hop genomics resources, we identified eight members of the PYRABACTIN RESISTANCE 1 LIKE ABA receptor family (HlPYLs). Phylogenetic and gene structure analyses classified these HlPYLs into the three canonical ABA receptor subfamilies. Furthermore, all eight HlPYLs are likely functional, as suggested by the protein sequence visual analysis. Expression profiling indicates that ABA perception in hop is primarily mediated by the HlPYL1-like and HlPYL8-like subfamilies, while the HlPYL4-like group appears to play a more limited role. Structure modeling and topology predictions of HlPYL1b and HlPYL2 provided insights into their potential functional mechanisms. To assess the physiological relevance of ABA signaling in hop, we evaluated the impact of exogenous ABA application during the ex vitro acclimatization phase. ABA-treated plants exhibited more robust growth, reduced stress symptoms, and improved acclimatization success. These effects were associated with reduced leaf transpiration and enhanced stomatal closure, consistent with ABA-mediated drought tolerance mechanisms. Altogether, this study provides the first comprehensive characterization of ABA receptor components in hop and demonstrates the practical utility of ABA in improving plant performance under ex vitro conditions. These findings lay the groundwork for further functional studies and highlight ABA signaling as a promising target for enhancing stress resilience in hop, with broader implications for sustainable agriculture in the face of climate change. Full article
(This article belongs to the Special Issue The Role of Phytohormones in Plant Biotic/Abiotic Stress Tolerance)
Show Figures

Figure 1

15 pages, 2159 KiB  
Article
Selection and Evaluation of Phosphate-Solubilizing Fungal Consortia Inoculated into Three Varieties of Coffea arabica Under Greenhouse Conditions
by Yamel del Carmen Perea-Rojas, Rosa María Arias and Rosario Medel-Ortíz
Microbiol. Res. 2025, 16(7), 162; https://doi.org/10.3390/microbiolres16070162 - 17 Jul 2025
Viewed by 479
Abstract
Phosphorus-solubilizing fungi represent a viable alternative to traditional fertilizers for use in coffee cultivation. The aim of this work was to select fungal consortia with a high phosphorus-solubilizing capacity for application to three varieties of coffee plants under greenhouse conditions. The research comprised [...] Read more.
Phosphorus-solubilizing fungi represent a viable alternative to traditional fertilizers for use in coffee cultivation. The aim of this work was to select fungal consortia with a high phosphorus-solubilizing capacity for application to three varieties of coffee plants under greenhouse conditions. The research comprised three phases: Firstly, solubilizing strains were identified morphologically and molecularly. Secondly, compatibility tests were carried out to select combinations of phosphorus-solubilizing fungi. The selection of the consortia was evaluated based on their phosphorus-solubilizing capacity, and the consortia with the solubilizing activity were chosen for application to coffee plants. In the greenhouse phase, three coffee varieties were inoculated; the treatments involved single, dual, and triple inoculation, as well as a control without fungi. Five species were identified: Fusarium crassum, F. irregulare, Leptobacillium leptobactrum, Penicillium brevicompactum, and Trichoderma spirale, plus one strain of Absidia sp. The in vitro phase of the study revealed that 11 consortia demonstrated compatibility, and their phosphorus solubilization capacity and phosphatase activity were evaluated. As a result, four consortia with high phosphorus solubilization capacity were selected for inoculation on coffee plants. The greenhouse phase results showed that the three coffee varieties inoculated in consortia showed higher phosphorus availability in the substrate and significant growth. Full article
Show Figures

Graphical abstract

Back to TopTop