Previous Issue
Volume 14, April
 
 

Robotics, Volume 14, Issue 5 (May 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
25 pages, 5822 KiB  
Review
Analytical Modeling, Virtual Prototyping, and Performance Optimization of Cartesian Robots: A Comprehensive Review
by Yasir Mehmood, Ferdinando Cannella and Silvio Cocuzza
Robotics 2025, 14(5), 62; https://doi.org/10.3390/robotics14050062 - 3 May 2025
Viewed by 91
Abstract
A comprehensive literature review on the kinematics and dynamics modeling and virtual prototyping (V.P) of the Cartesian robots with a flexible configuration is presented in this paper. Different modeling approaches of the main components of the Cartesian robot, which includes linear belt drives [...] Read more.
A comprehensive literature review on the kinematics and dynamics modeling and virtual prototyping (V.P) of the Cartesian robots with a flexible configuration is presented in this paper. Different modeling approaches of the main components of the Cartesian robot, which includes linear belt drives and structural components, are presented and discussed in this paper. Furthermore, the vibrations modeling, trajectory planning, and control strategies of the Cartesian robot are also presented. The performance optimization of the Cartesian robot is discussed here, which is affected by the highly flexible configuration of the robot incurred due to high-mix, low-volume production. The importance of virtual prototyping techniques, like finite element analysis and multi-body dynamics, for modeling Cartesian robots or its components is presented. Design and performance optimization methods for robots with a flexible configuration are discussed, although their application to Cartesian robots is rare in the literature and it presents an exciting opportunity for future research in this area. This review paper focuses on the importance of further research on the virtual prototyping tools for flexibly configured robots and their integration with experimental validation. The findings offer useful insights to industries looking to maximize their production processes while keeping the customization, reliability, and efficiency. Full article
(This article belongs to the Special Issue Integrating Robotics into High-Accuracy Industrial Operations)
Show Figures

Figure 1

25 pages, 2525 KiB  
Article
Singular Configuration Analysis of Modular-Driven 4- and 6-DoF Parallel Topology Robots
by Zoltán Forgó, Ferenc Tolvaly-Roșca and Attila Csobán
Robotics 2025, 14(5), 61; https://doi.org/10.3390/robotics14050061 - 2 May 2025
Viewed by 105
Abstract
The number of applications of parallel topology robots in industry is growing, and the interest of academics in finding new solutions and applications to implement such mechanisms is present all over the world. Industrywide, the most commonly used motion types need four- and [...] Read more.
The number of applications of parallel topology robots in industry is growing, and the interest of academics in finding new solutions and applications to implement such mechanisms is present all over the world. Industrywide, the most commonly used motion types need four- and six-degrees-of-freedom (DoF) robots. While there are commercial variants from different robot vendors, this study offers new alternatives to these. Based on Lie algebra synthesis, symmetrical parallel structures are identified, according to certain rules. Implementing 2-DoF actuation modules, the number of robot limbs is reduced compared to existing commercial robot structures. In terms of the applicability of a parallel mechanism (also concerning the control algorithm), it is important to determine singular configurations. Therefore, in addition to the kinematic schematics of the newly proposed mechanisms, their singular configurations are also discussed. Based on some dimensional simplifications (without a loss of generality), the conditions for the singular configurations are enumerated for the presented parallel topology robots with symmetrical kinematic chains. Finally, a comparison of the proposed mechanism is presented, considering its singular configurations. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
25 pages, 3068 KiB  
Article
A Partitioned Operational Space Approach for Singularity Handling in Six-Axis Manipulators
by Craig Carignan and Giacomo Marani
Robotics 2025, 14(5), 60; https://doi.org/10.3390/robotics14050060 - 30 Apr 2025
Viewed by 101
Abstract
Task prioritization for inverse kinematics can be a powerful tool for realizing objectives in robot manipulation. This is particularly true for robots with redundant degrees of freedom, but it can also help address a debilitating singularity in six-axis robots. A roll-pitch-roll wrist is [...] Read more.
Task prioritization for inverse kinematics can be a powerful tool for realizing objectives in robot manipulation. This is particularly true for robots with redundant degrees of freedom, but it can also help address a debilitating singularity in six-axis robots. A roll-pitch-roll wrist is especially problematic for any six-axis robot because it produces a “gimbal-lock” singularity in the middle of the wrist workspace when the roll axes align. A task priority methodology can be used to realize only the achievable components of the commanded motion in the reduced operational space of a manipulator near singularities while phasing out the uncontrollable direction. In addition, this approach allows the operator to prioritize translation and rotation in the region of singularities. This methodology overcomes a significant drawback to the damped least-squares method, which can produce tool motion that deviates significantly from the desired path even in directions that are controllable. The approach used here reduces the operational space near the wrist singularity while maintaining full command authority over tool translation. The methodology is demonstrated in simulations conducted on a six degree-of-freedom Motoman MH250 manipulator. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Graphical abstract

32 pages, 2540 KiB  
Article
Formation Control of Wheeled Mobile Robots with Fault-Tolerance Capabilities
by Muhammad Shahab, Ali Nasir and Nezar M. Alyazidi
Robotics 2025, 14(5), 59; https://doi.org/10.3390/robotics14050059 - 27 Apr 2025
Viewed by 148
Abstract
This research investigates the impact of actuator faults on the formation control of multiple-wheeled mobile robots—a critical aspect in coordinating multi-robot systems for applications such as surveillance, exploration, and transportation. When a fault occurs in any of the robots, it can disrupt the [...] Read more.
This research investigates the impact of actuator faults on the formation control of multiple-wheeled mobile robots—a critical aspect in coordinating multi-robot systems for applications such as surveillance, exploration, and transportation. When a fault occurs in any of the robots, it can disrupt the formation and adversely affect the system’s performance, thereby compromising system efficiency and reliability. While numerous studies have focused on fault-tolerant control strategies to maintain formation integrity, there is a notable gap in the literature regarding the relationship between controller gains and settling time under varying degrees of actuator loss. In this paper, we develop a kinematic model of wheeled mobile robots and implement a leader–follower-based formation control strategy. Actuator faults are systematically introduced with varying levels of effectiveness (e.g., 80%, 60%, and 40% of full capacity) to observe their effects on formation maintenance. We generate data correlating controller gains with settling time under different actuator loss conditions and fit a polynomial curve to derive an equation describing this relationship. Comprehensive MATLAB simulations are conducted to evaluate the proposed methodology. The results demonstrate the influence of actuator faults on the formation control system and provide valuable insights into optimizing controller gains for improved fault tolerance. These findings contribute to the development of more robust multi-robot systems capable of maintaining formation and performance despite the presence of actuator failures. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

20 pages, 2603 KiB  
Article
A Methodology to Characterize an Optimal Robotic Manipulator Using PSO and ML Algorithms for Selective and Site-Specific Spraying Tasks in Vineyards
by Roni Azriel, Oded Degani and Avital Bechar
Robotics 2025, 14(5), 58; https://doi.org/10.3390/robotics14050058 - 27 Apr 2025
Viewed by 186
Abstract
This paper presents an improved methodology for characterizing task-oriented optimal manipulator configuration, tested on a case study of selective spraying in vineyards. It compares the current approach for optimizing manipulator configurations, which relies on simulation and optimization algorithms, with an improved methodology that [...] Read more.
This paper presents an improved methodology for characterizing task-oriented optimal manipulator configuration, tested on a case study of selective spraying in vineyards. It compares the current approach for optimizing manipulator configurations, which relies on simulation and optimization algorithms, with an improved methodology that integrates machine learning models to enhance the optimization process. The simulation tool was developed using the Gazebo simulator and ROS software to evaluate potential robotic configurations within a simulated vineyard. Particle Swarm Optimization (PSO) was employed as the optimization algorithm in a finite solution space, with the performance measure based on maximizing the Manipulability Index of manipulator configurations reaching all targets. In the proposed methodology, XGBoost models were used to replace the simulation stage in the process and predict the manipulator’s ability to reach the target positions in the spraying task. This prediction served as decision support in selecting which configurations should be tested in the simulation, thereby reducing computational time. The integration of machine learning models in the proposed methodology resulted in an average runtime reduction of 59% while maintaining an average manipulability index score in comparison to the original approach, which did not include the XGBoost model. This methodology demonstrates significant enhancements in optimizing robot configuration for a specific task and shows strong potential for broader applications across various industries. Full article
Show Figures

Figure 1

51 pages, 15792 KiB  
Review
Quadruped Robots: Bridging Mechanical Design, Control, and Applications
by Qimeng Li, Franco Cicirelli, Andrea Vinci, Antonio Guerrieri, Wen Qi and Giancarlo Fortino
Robotics 2025, 14(5), 57; https://doi.org/10.3390/robotics14050057 - 26 Apr 2025
Viewed by 898
Abstract
Quadruped robots have emerged as a prominent field of research due to their exceptional mobility and adaptability in complex terrains. This paper presents an overview of quadruped robots, encompassing their design principles, control mechanisms, perception systems, and applications across various industries. We review [...] Read more.
Quadruped robots have emerged as a prominent field of research due to their exceptional mobility and adaptability in complex terrains. This paper presents an overview of quadruped robots, encompassing their design principles, control mechanisms, perception systems, and applications across various industries. We review the historical evolution and technological milestones that have shaped quadruped robotics. To understand their impact on performance and functionality, key aspects of mechanical design are analyzed, including leg configurations, actuation systems, and material selection. Control strategies for locomotion, balance, and navigation are all examined, highlighting the integration of artificial intelligence and machine learning to enhance adaptability and autonomy. This review also explores perception and sensing technologies that enable environmental interaction and decision-making capabilities. Furthermore, we systematically examine the diverse applications of quadruped robots in sectors including the military, search and rescue, industrial inspection, agriculture, and entertainment. Finally, we address challenges and limitations, including technical hurdles, ethical considerations, and regulatory issues, and propose future research directions to advance the field. By structuring this review as a systematic study, we ensure clarity and a comprehensive understanding of the domain, making it a valuable resource for researchers and engineers in quadruped robotics. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

20 pages, 29832 KiB  
Article
Human-Centric Robotic Solution for Motor and Gearbox Assembly: An Industry 5.0 Pilot Study
by Aitor Ibarguren, Sotiris Aivaliotis, Javier González Huarte, Arkaitz Urquiza, Panagiotis Baris, Apostolis Papavasileiou, George Michalos and Sotiris Makris
Robotics 2025, 14(5), 56; https://doi.org/10.3390/robotics14050056 - 26 Apr 2025
Viewed by 266
Abstract
The automotive industry is one of the most automatized industries, employing more than one million robots worldwide. Although several steps in car production are completely automated, many steps are still carried out by operators, especially in tasks requiring high dexterity. Additionally, customization and [...] Read more.
The automotive industry is one of the most automatized industries, employing more than one million robots worldwide. Although several steps in car production are completely automated, many steps are still carried out by operators, especially in tasks requiring high dexterity. Additionally, customization and deployability are still pending issues in this industry, where a real collaboration between robots and operators would increase the reconfigurability of the assembly lines. This paper presents an innovative robotic cell focused on the motor and gearbox assembly, including collaborative industrial robots and autonomous mobile manipulators along the different assembly stations. The design also incorporates a human-centered approach, with an enhanced human interface to facilitate the interaction with operators with the complete robotic cell. The proposed approach has been deployed and validated on a real automotive industrial scenario, obtaining promising metrics and results. Full article
(This article belongs to the Special Issue Integrating Robotics into High-Accuracy Industrial Operations)
Show Figures

Figure 1

23 pages, 2040 KiB  
Review
Trajectory Planning for Robotic Manipulators in Automated Palletizing: A Comprehensive Review
by Samuel Romero, Jorge Valero, Andrea Valentina García, Carlos F. Rodríguez, Ana Maria Montes, Cesar Marín, Ruben Bolaños and David Álvarez-Martínez
Robotics 2025, 14(5), 55; https://doi.org/10.3390/robotics14050055 - 26 Apr 2025
Viewed by 211
Abstract
Recent industrial production paradigms have seen the promotion of the outsourcing of low-value-added operations to robotic cells as a service, particularly end-of-line packaging. As a result, various types of research have emerged, offering different approaches to the trajectory design optimization of robotic manipulators [...] Read more.
Recent industrial production paradigms have seen the promotion of the outsourcing of low-value-added operations to robotic cells as a service, particularly end-of-line packaging. As a result, various types of research have emerged, offering different approaches to the trajectory design optimization of robotic manipulators and their applications. Over time, numerous improvements and updates have been made to the proposed methodologies, addressing the limitations and restrictions of earlier work. This survey-type article compiles research articles published in recent years that focus on the main algorithms proposed for addressing placement and minimum-time path planning for a manipulator responsible for performing pick-and-place tasks. Specifically, the research examines the construction of an automated robotic cell for the palletizing of regular heterogeneous boxes on a collision-free mixed pallet. By reviewing and synthesizing the most recent research, this article sheds light on the state-of-the-art manipulator planning algorithms for pick-and-place tasks in palletizing applications. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

16 pages, 1696 KiB  
Article
A Motion Propagation Force Analysis of Multi-DoF Systems Using the Partial Lagrangian Method
by Hironori Gunji, Takashi Kusaka and Takayuki Tanaka
Robotics 2025, 14(5), 54; https://doi.org/10.3390/robotics14050054 - 24 Apr 2025
Viewed by 183
Abstract
A partial Lagrangian method is proposed as an inverse dynamics analysis method for multi-link systems. This method, combined with automatic differentiation, allows for the derivation of equations of motion and analytical extraction of motion-induced torque components. We introduce the concept of motion propagation [...] Read more.
A partial Lagrangian method is proposed as an inverse dynamics analysis method for multi-link systems. This method, combined with automatic differentiation, allows for the derivation of equations of motion and analytical extraction of motion-induced torque components. We introduce the concept of motion propagation force to describe joint torque components generated by the motion of other joints. This concept aligns with existing notions such as interaction torque, while providing a novel analytical perspective. The effectiveness of the proposed method is confirmed through simulations using a three-DoF arm model, where motion propagation torques are visualized and validated. This method is useful for motion analysis and impedance control in complex robotic systems. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

Previous Issue
Back to TopTop