Previous Issue
Volume 14, July
 
 

Resources, Volume 14, Issue 8 (August 2025) – 13 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 2110 KiB  
Article
Sustainability Assessment of Lake Sediment-Based Soil Blocks for Agricultural Seedling Media
by Miranti Dian Pertiwi, Chanifah Chanifah, Anggi Sahru Romdon, Sri Minarsih, Ari Kabul Paminto, Komalawati Komalawati, Febrian Isharyadi, Hismiaty Bahua, Forita Dyah Arianti, Joko Triastono, Wahyu Wibawa, Ira Nurhayati Djarot, Siswa Setyahadi, Bambang Nuryanto, Abdul Azies Wasil, Siwi Gayatri, Rully Rahadian, Valeriana Darwis, Mat Syukur and Raden Heru Praptana
Resources 2025, 14(8), 129; https://doi.org/10.3390/resources14080129 - 11 Aug 2025
Viewed by 195
Abstract
The high sedimentation rate of Rawapening Lake is both an environmental challenge and a potential resource. Seedlings currently rely on single-use plastic polybags, which contribute significantly to plastic waste. The use of mineral soil as a growing medium can accelerate natural resource depletion. [...] Read more.
The high sedimentation rate of Rawapening Lake is both an environmental challenge and a potential resource. Seedlings currently rely on single-use plastic polybags, which contribute significantly to plastic waste. The use of mineral soil as a growing medium can accelerate natural resource depletion. This study aims to evaluate the feasibility and sustainability of utilizing lake sediment as an alternative seedling media through soil block technology. An integrated Life Cycle Assessment was conducted to quantify the environmental impacts, and Multidimensional Scaling was applied to assess sustainability across environmental, technological, economic, social, and institutional dimensions. Field data from ten seedling producers using soil blocks and ten using polybags were analyzed. The results showed that soil block media reduced Global Warming Potential by 48% compared to polybags, increased phosphorus and organic matter content, and was more financially efficient, with an increase in productivity of 90.24% and a revenue cost ratio of 24.56%. Sustainability analysis classified the innovation as moderately sustainable, with the highest scores in the environmental and technological dimensions. Institutional support was identified as a limiting factor. These findings suggest that sediment-based soil block media are a viable, lower-impact alternative for seedling production, although scaling up will require policy and institutional support. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Graphical abstract

23 pages, 1599 KiB  
Review
Research Progress on Comprehensive Utilization of Silkworm Excrement Bioresource
by Rongxiang Xue, Yu Li, Xiaoqiang Shen and Yongqi Shao
Resources 2025, 14(8), 128; https://doi.org/10.3390/resources14080128 - 11 Aug 2025
Viewed by 90
Abstract
With the vigorous development of sericulture, the traditional labor-intensive small-scale silkworm rearing has been progressively transformed into a large-scale mechanized system. Consequently, silkworm factories can produce cocoons continuously throughout the year. However, this intensive production pattern generates a substantial amount of silkworm excrement. [...] Read more.
With the vigorous development of sericulture, the traditional labor-intensive small-scale silkworm rearing has been progressively transformed into a large-scale mechanized system. Consequently, silkworm factories can produce cocoons continuously throughout the year. However, this intensive production pattern generates a substantial amount of silkworm excrement. If not managed properly or disposed indiscriminately, silkworm excrement can lead to severe environmental pollution. In recent years, increasing attention has been paid to the comprehensive utilization of this bioresource. Numerous studies have explored its potential in a wide range of applications. This review systematically summarizes current research on silkworm excrement utilization, particularly focusing on its fundamental characteristics, key technologies, and application areas. Future efforts should aim to promote efficient resource recycling and support the development of sericulture. Full article
Show Figures

Figure 1

17 pages, 2994 KiB  
Article
Dyeing and Functional Finishing of Cotton Fabric Using Ficus carica and Eucalyptus Leaf Extracts with Aloe barbadensis Miller as a Bio-Mordant
by Imran Ahmad Khan, Hafsa Khalid, Kashif Javed, Ahmad Fraz, Khalid Pasha and Asfandyar Khan
Resources 2025, 14(8), 127; https://doi.org/10.3390/resources14080127 - 11 Aug 2025
Viewed by 141
Abstract
This study explores the sustainable extraction and application of natural dyes from figs (Ficus carica) and Eucalyptus leaves using an aqueous alkaline medium. The dyeing process was optimized for cotton fabric using the exhaust-dyeing method. Fabrics dyed with Ficus carica extract [...] Read more.
This study explores the sustainable extraction and application of natural dyes from figs (Ficus carica) and Eucalyptus leaves using an aqueous alkaline medium. The dyeing process was optimized for cotton fabric using the exhaust-dyeing method. Fabrics dyed with Ficus carica extract and its blend with Eucalyptus exhibited enhanced color strength, excellent crocking fastness (rated 4–5), and good washing fastness (rated 3–4 on the gray scale). The use of Aloe barbadensis Miller as a bio-mordant significantly improved dye fixation, resulting in deeper, earthy shades, such as green, yellow–green, and yellowish brown. The highest K/S value (5.85) was recorded in samples treated with a mordant, sodium chloride (NaCl), and the combined dye extracts, indicating a synergistic effect among the components. Mosquito repellency tests revealed that treated fabrics exhibited up to 70% repellency, compared to just 20% in undyed samples. Antibacterial testing against E. coli showed that dyed fabrics achieved over 80% bacterial reduction after 24 h, indicating promising antimicrobial functionality. Air permeability slightly decreased post-dyeing due to the potential shrinkage in cotton fabrics. Furthermore, adsorption studies showed a removal efficiency of 57% for Ficus carica dye on graphene oxide (GO) under ultrasonication. These findings confirm the potential of GO as an effective adsorbent material for treating wastewater from natural textile dyes. Overall, the study highlights the environmental safety, functional performance, and multifunctional advantages of plant-based dyeing systems in sustainable textile applications. Full article
(This article belongs to the Special Issue Alternative Use of Biological Resources)
Show Figures

Figure 1

22 pages, 773 KiB  
Systematic Review
Digital Pathways Toward Sustainability in Agri-Food Waste: A Systematic Review
by Riccardo Censi, Paola Campana, Anna Maria Tarola and Roberto Ruggieri
Resources 2025, 14(8), 126; https://doi.org/10.3390/resources14080126 - 11 Aug 2025
Viewed by 98
Abstract
The growing environmental and economic impacts of agri-food waste have intensified interest in digital and circular strategies for more sustainable resource management. This study investigates how digital technologies are being applied to enhance the circular management of agri-food waste. A systematic literature review [...] Read more.
The growing environmental and economic impacts of agri-food waste have intensified interest in digital and circular strategies for more sustainable resource management. This study investigates how digital technologies are being applied to enhance the circular management of agri-food waste. A systematic literature review was conducted following PRISMA guidelines, using Scopus as the primary database. The bibliometric analysis included 373 publications from 2015 to 2025 and was complemented by a thematic review of the 20 most cited articles. Results revealed six major research clusters, ranging from predictive waste analytics and smart traceability systems to circular bioeconomy applications such as anaerobic digestion and pyrolysis. In addition, the study examined structural indicators such as food waste per capita and hunger indices to contextualize geographic disparities in research output. The findings underscore the dual role of digital technologies as both operational tools and mechanisms for reducing systemic inequalities. Overall, the integration of intelligent systems and circular models offers promising pathways to support the Sustainable Development Goals and foster a more inclusive and resilient agri-food sector. Full article
Show Figures

Figure 1

15 pages, 1391 KiB  
Article
Valorization of Food By-Products: Formulation and Evaluation of a Feed Complement for Broiler Chickens Based on Bonito Fish Meal and Única Potato Peel Flour
by Ashley Marianella Espinoza Davila and Rebeca Salvador-Reyes
Resources 2025, 14(8), 125; https://doi.org/10.3390/resources14080125 - 1 Aug 2025
Viewed by 459
Abstract
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal ( [...] Read more.
Restaurants and open markets generate considerable quantities of organic waste. Converting these residues into poultry feed ingredients offers a sustainable disposal route. This study aimed to evaluate the nutritional and sensory viability of a novel feed complement formulated from Bonito fish meal (Sarda chiliensis chiliensis) and Única potato peel flour (Solanum tuberosum L. cv. Única). This study was conducted in three phases: (i) production and nutritional characterization of the two by-product flours; (ii) formulation of a 48:52 (w/w) blend, incorporated into broiler diets at 15%, 30%, and 45% replacement levels over a 7-week trial divided into starter (3 weeks), grower (3 weeks), and finisher (1 week) phases; and (iii) assessment of growth performance (weight gain, final weight, and feed conversion ratio), followed by a sensory evaluation of the resulting meat using a Check-All-That-Apply (CATA) analysis. The Bonito fish meal exhibited 50.78% protein, while the Única potato peel flour was rich in carbohydrates (74.08%). The final body weights of broiler chickens ranged from 1872.1 to 1886.4 g across treatments, and the average feed conversion ratio across all groups was 0.65. Replacing up to 45% of commercial feed with the formulated complement did not significantly affect growth performance (p > 0.05). Sensory analysis revealed that meat from chickens receiving 15% and 45% substitution levels was preferred in terms of aroma and taste, whereas the control group was rated higher in appearance. These findings suggest that the formulated feed complement may represent a viable poultry-feed alternative with potential sensory and economic benefits, supporting future circular-economy strategies. Full article
Show Figures

Figure 1

20 pages, 1088 KiB  
Article
The Nexus Between Natural Resources, Renewable Energy and Economic Growth in the Gulf Cooperation Council Countries
by Jamal Alnsour and Farah Mohammad AlNsour
Resources 2025, 14(8), 124; https://doi.org/10.3390/resources14080124 - 30 Jul 2025
Viewed by 478
Abstract
In sustainable development studies, a key question is how the abundance of natural resources influences long-run economic growth. However, there is no consensus on this issue. Some literature suggests a negative impact, while other studies find no effect at all, and other research [...] Read more.
In sustainable development studies, a key question is how the abundance of natural resources influences long-run economic growth. However, there is no consensus on this issue. Some literature suggests a negative impact, while other studies find no effect at all, and other research indicates a positive impact. This study aims to examine the relationship between natural resource rents, renewable energy, and economic growth in the Gulf Cooperation Council (GCC) countries over the period from 1990 to 2023. The study utilizes the Method of Moments Quantile Regression (MMQR) to provide reliable findings across different quantiles. We also incorporate a series of control variables, including capital, labor force participation, non-renewable energy, and trade openness. The findings indicate that natural resources rent enhances economic growth in GCC countries, supporting the Rostow hypothesis. Although renewable energy has a positive impact on economic growth, it does not have an effect on natural resource rents. Additionally, capital, labor force participation, non-renewable energy, and trade openness play a critical role in raising economic growth in these countries. Based on the empirical results, this study provides several valuable recommendations for policymakers to enhance the management of natural resources in GCC countries. Full article
Show Figures

Figure 1

23 pages, 1929 KiB  
Article
Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River
by Emilia Bączkowska, Katarzyna Jankowska, Wojciech Artichowicz, Sylwia Fudala-Ksiazek and Małgorzata Szopińska
Resources 2025, 14(8), 123; https://doi.org/10.3390/resources14080123 - 29 Jul 2025
Viewed by 350
Abstract
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus [...] Read more.
In response to the European Union’s revised Urban Wastewater Treatment Directive, which mandates enhanced monitoring and advanced treatment of micropollutants, this study was conducted. It took place within the Coastal Landscape Park (CLP), a Natura 2000 protected area in northern Poland. The focus was on the municipal wastewater treatment plant in Jastrzębia Góra, located in a region exposed to seasonal tourist pressure and discharging effluent into the Czarna Wda River. A total of 90 wastewater samples were collected during five monitoring campaigns (July, September 2021; February, May, July 2022) and analysed for 13 pharmaceuticals and personal care products (PPCPs) using ultra-high-performance liquid chromatography tandem mass spectrometry with electrospray ionisation (UHPLC-ESI-MS/MS). The monitoring included both untreated (UTWW) and treated wastewater (TWW) to assess the PPCP removal efficiency and persistence. The highest concentrations in the treated wastewater were observed for metoprolol (up to 472.9 ng/L), diclofenac (up to 3030 ng/L), trimethoprim (up to 603.6 ng/L) and carbamazepine (up to 2221 ng/L). A risk quotient (RQ) analysis identified diclofenac and LI-CBZ as priority substances for monitoring. Multivariate analyses (PCA, HCA) revealed co-occurrence patterns and seasonal trends. The results underline the need for advanced treatment solutions and targeted monitoring, especially in sensitive coastal catchments with variable micropollutant presence. Full article
Show Figures

Figure 1

19 pages, 3536 KiB  
Article
Loss and Early Recovery of Biomass and Soil Organic Carbon in Restored Mangroves After Paspalum vaginatum Invasion in West Africa
by Julio César Chávez Barrera, Juan Fernando Gallardo Lancho, Robert Puschendorf and Claudia Maricusa Agraz Hernández
Resources 2025, 14(8), 122; https://doi.org/10.3390/resources14080122 - 29 Jul 2025
Viewed by 400
Abstract
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified [...] Read more.
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified in the total biomass, including both aboveground and belowground components, as well as in the soil to a depth of −50 cm. In addition, soil gas fluxes of CO2, CH4, and N2O were measured. Three sites were evaluated: a conserved mangrove, a site degraded by P. vaginatum, and the same site post-restoration via hydrological rehabilitation and reforestation. Invasion significantly reduced carbon storage, especially in soil, due to lower biomass, incorporation of low C/N ratio organic residues, and compaction. Restoration recovered 7.8% of the total biomass carbon compared to the conserved mangrove site, although soil organic carbon did not rise significantly in the short term. However, improvements in deep soil C/N ratios (15–30 and 30–50 cm) suggest enhanced soil organic matter recalcitrance linked to R. racemosa reforestation. Soil CO2 emissions dropped by 60% at the restored site, underscoring restoration’s potential to mitigate early carbon loss. These results highlight the need to control invasive species and suggest that restoration can generate additional social benefits. Full article
Show Figures

Figure 1

18 pages, 2105 KiB  
Communication
Morphological and Nutritional Characterization of the Native Sunflower as a Potential Plant Resource for the Sierra Gorda of Querétaro
by Ana Patricia Arenas-Salazar, Mark Schoor, María Isabel Nieto-Ramírez, Juan Fernando García-Trejo, Irineo Torres-Pacheco, Ramon Gerardo Guevara-González, Humberto Aguirre-Becerra and Ana Angélica Feregrino-Pérez
Resources 2025, 14(8), 121; https://doi.org/10.3390/resources14080121 - 29 Jul 2025
Viewed by 579
Abstract
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. [...] Read more.
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. In this regard, this study carries out the morphological and nutritional characterization of a native sunflower (Helianthus annuus) grown in the Sierra Gorda, Querétaro, Mexico, known as “Maíz de teja”, to implement a sustainable monoculture production system. The results were compared with some other sunflower varieties and other oilseeds grown and consumed in the country. This study determined that this native sunflower seed is a good source of linoleic acid (84.98%) and zinc (17.2 mg/100 g). It is an alternative protein source (18.6 g/100 g), comparable to foods of animal origin. It also provides a good amount of fiber (22.6 g/100 g) and bioactive compounds (total phenolic compounds (TPC) 3.434 ± 0.03 mg/g and total flavonoids (TFC) 0.67 ± 0.02 mg/g), and seed yield 341.13 kg/ha. This study demonstrated a valuable nutritional profile of this native seed and its potential for cultivation. Further research is needed to improve agricultural management to contribute to food security and improve the socioeconomic status of the community. Full article
Show Figures

Figure 1

24 pages, 2620 KiB  
Review
Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications
by Nicolas Sesson Farré and Aaron Kinyu Hoshide
Resources 2025, 14(8), 120; https://doi.org/10.3390/resources14080120 - 28 Jul 2025
Viewed by 361
Abstract
Biochar is an amendment that can enhance both soil fertility and sequester carbon. However, its historical applications continue to be underexplored. In this overview, we investigate the formiguer method of burning woody biomass to create agricultural biochar for use as fertilizer in Catalonia, [...] Read more.
Biochar is an amendment that can enhance both soil fertility and sequester carbon. However, its historical applications continue to be underexplored. In this overview, we investigate the formiguer method of burning woody biomass to create agricultural biochar for use as fertilizer in Catalonia, Spain, within the context of historical biochar use. A literature review targeted searches of scholarly databases to compare the formiguer method to Amazonian terra preta and other traditional biochar use. We identified sources covering biochar properties, soil impacts, and historical agricultural practices within the Iberian Peninsula and briefly described the main methods or treatments used during this process. Past research demonstrates that the formiguer method, which involves pyrolytic combustion of biomass within soil mounds, improves microbial activity, increases soil phosphorus and potassium availability from soil structure, and leads to long-term carbon stabilization, even though it can result in short-term decreases in soil organic carbon and nitrogen losses. Despite being abandoned in Europe with the rise of chemical fertilizers, the use of formiguers exemplifies a decentralized approach to nutrient and agroecosystem management. The literature highlights the relevance that these traditional biochar practices can have in informing modern soil management and sustainable agricultural strategies. Understanding the formiguer can offer critical insights to optimize contemporary biochar applications and historical techniques into future sustainability frameworks. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

30 pages, 1679 KiB  
Review
Advancing Circularity in Small-Scale Rural Aquaponics: Potential Routes and Research Needs
by Laura Silva, Francisco Javier Martinez-Cordero, Gösta Baganz, Daniela Baganz, Ariadne Hernández-Pérez, Eva Coronado and Maria Celia Portella
Resources 2025, 14(8), 119; https://doi.org/10.3390/resources14080119 - 23 Jul 2025
Viewed by 1147
Abstract
Small-scale fisheries and aquaculture play a crucial role in securing food, income, and nutrition for millions, especially in the Global South. Rural small-scale aquaculture (SSA) is characterized by limited investment and technical training among farmers, diversification and dispersion of farms over large areas, [...] Read more.
Small-scale fisheries and aquaculture play a crucial role in securing food, income, and nutrition for millions, especially in the Global South. Rural small-scale aquaculture (SSA) is characterized by limited investment and technical training among farmers, diversification and dispersion of farms over large areas, reduced access to competitive markets for inputs and products, and family labor. Small-scale integrated circular aquaponic (ICAq) systems, in which systems’ component outputs are transformed into component inputs, have significant potential to increase circularity and promote economic development, especially in a rural context. We offer an integrated and comprehensive approach centered on aquaponics or aquaponic farming for small-scale aquaculture units. It aims to identify and describe a series of circular processes and causal links that can be implemented based on deep study in SSA and ICAq. Circular processes to treat by-products in ICAq include components like composting, vermicomposting, aerobic and anaerobic digestion, silage, and insect production. These processes can produce ICAq inputs such as seedling substrates, plant fertilizers, bioenergy, or feed ingredients. In addition, the plant component can supply therapeutic compounds. Further research on characterization of aquaponic components outputs and its quantifications, the impact of using circular inputs generated within the ICAq, and the technical feasibility and economic viability of circular processes in the context of SSA is needed. Full article
Show Figures

Figure 1

25 pages, 1122 KiB  
Communication
From Resource Abundance to Responsible Scarcity: Rethinking Natural Resource Utilization in the Age of Hyper-Consumption
by César Ramírez-Márquez, Thelma Posadas-Paredes and José María Ponce-Ortega
Resources 2025, 14(8), 118; https://doi.org/10.3390/resources14080118 - 22 Jul 2025
Viewed by 698
Abstract
In an era marked by accelerating ecological degradation and widening global inequalities, prevailing patterns of resource extraction and consumption are proving increasingly unsustainable. Driven by hyper-consumption and entrenched linear production models, the global economy continues to exert immense pressure on planetary systems. This [...] Read more.
In an era marked by accelerating ecological degradation and widening global inequalities, prevailing patterns of resource extraction and consumption are proving increasingly unsustainable. Driven by hyper-consumption and entrenched linear production models, the global economy continues to exert immense pressure on planetary systems. This communication article calls for a fundamental paradigm shift from the long-standing assumption of resource abundance to a framework of responsible scarcity. Drawing from recent data on material throughput, on the transgression of planetary boundaries, and on the structural and geopolitical disparities underlying global resource use, this article highlights the urgent need to realign natural resource governance with ecological limits and social justice. A conceptual framework is proposed to support this transition, grounded in principles of ecological constraint, functional sufficiency, equity, and long-term resilience. The article concludes by outlining a forward-thinking research and policy agenda aimed at fostering sustainable and just modes of resource utilization in the face of growing environmental and socio-economic challenges. Full article
Show Figures

Figure 1

13 pages, 639 KiB  
Article
Forecasting Potential Resources of Humic Substances in the Ukrainian Lignite
by Serhiy Pyshyev, Denis Miroshnichenko, Mariia Shved, Volodymyr Riznyk, Halyna Bilushchak, Olexandr Borisenko, Mikhailo Miroshnychenko and Yurii Lypko
Resources 2025, 14(8), 117; https://doi.org/10.3390/resources14080117 - 22 Jul 2025
Viewed by 347
Abstract
The present research deals with forecasting the potential content of humic acids (HA) in Ukrainian lignite based on the coal’s physicochemical characteristics. The focus is on developing an experimental–statistical model that considers moisture content, volatile matter yield, and calorific value of lignite. The [...] Read more.
The present research deals with forecasting the potential content of humic acids (HA) in Ukrainian lignite based on the coal’s physicochemical characteristics. The focus is on developing an experimental–statistical model that considers moisture content, volatile matter yield, and calorific value of lignite. The development of the humic acid yield’s dependence on some lignite parameters is based on both original research data and literature sources. Humic acids were extracted using alkaline solutions, and HA content was calculated for various lignite deposits in Ukraine. The adequacy check of the model showed a relative prediction error of up to 12%, indicating good agreement between the model and experimental data. The highest potential yield of humic acids was recorded for lignite from the Dnipropetrovsk region (Dnieper-Donets Basin), amounting to 53–56 wt.%. The presented results demonstrate the feasibility of using mathematical forecasting to assess the industrial potential of humic acid production from lignite. Full article
(This article belongs to the Special Issue Mineral Resource Management 2025: Assessment, Mining and Processing)
Show Figures

Figure 1

Previous Issue
Back to TopTop