Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications
Abstract
1. Introduction
2. Materials and Methods
3. Earliest Biochar Applications
4. Historical Use of Formiguers in the Iberian Peninsula
4.1. Origins and Historical Use of the Formiguer Method
4.2. Agronomic Impacts of Formiguers
4.3. Agronomic and Environmental Benefits of Formiguers
5. Discussion
5.1. Formiguer Method Compared to Similar Historical and Current Practices
Agricultural Biochar Attribute | Amazon Terra Preta | Spanish Formiguers | Indian Jhum/Asian Rice Husk Charcoal | Soil Paring-and- Burning | Modern Biochar |
---|---|---|---|---|---|
Time period | 475 BCE to 1550s 1 [70,73] | 1800s to 1960s [110] | ~7000 BCE to present [121]; 1000s of years [125,126] | As early as 900s in Europe; present day Africa [124] | 1980s to present [127] |
Agricultural: | |||||
Type | Settled | Settled | Swidden/Settled | Settled | Settled |
Environment | Tropical Forest | Temperate Forest/Shrubland | Temperate & Sub-tropical Forest [122,125,126,127] | Grassland/Heathland [124] | Various |
Location(s) | Amazon | Iberia | Northeast India/Asia | Europe and Sub-Sahara Africa [124] | Various |
Pyrolysis: | |||||
Temperature Range | Lower [128] | 250–300 °C when used for disinfectant/autoclaving [114,115]; low/high from lack of temperature control | Higher if slash- and-burn; Lower if slash- and-char [121]/Lower [126] | Lower [124] | Lower at 300–600 °C [76,77,127] |
Low/No Oxygen | Yes [128,129] | Yes [108,109] | Limited if slash-and-char, depends on quantity of soil cover/biomass [121] 2/Low [126] | Variable depends on amount of soil cover [124] | Yes [1] |
Production Speed | Unknown and debated if dark earth entirely of anthropogenic origin [98] | Slow smoldering process for each formiguer potentially taking several days [110] | Depends on biomass quantity and burning intensity during December to February [121,130] 2 /Slow since smothered by more rice husks [126] | Slower since sod slower to turn over, dry out, and burn [124] | Slow [127] |
Intended Agriculture Use? | Debated [98] | Yes, clearly intended for fertilization [109,110,112] | For short-term fertility [121,122] 2 /Yes [125,126] | Yes [124] | Yes [16,18,19,20] |
pH Level | Alkaline [120,127] | Not evaluated [109,110,112] | Slightly alkaline post-burning but can be variable [121,123,130] 2 /Neutralizes [126] | Fire mineralizes organic matter lowering pH [124] | Biochars from plant residue alkaline, animal residue acidic [15] |
Nutrient Availability | High [127] | Increases labile potassium and phosphorus with short-term soil nitrogen level decrease [108,110,112] | Temporarily high from ashes [121,130] 2 /Increases [126] | Improved [124] | Makes nutrients more available for plants [15], but can be variable [16,18] |
Specific Surface Area | High [127] | Biopores result in greater soil total porosity [108] | Improves initially [121] 2/Similar to wood charcoal [126] | Not evaluated [124] | High due to increased porosity due to carbon structure [77,78] |
Water-Holding Capacity | High [127] | Not evaluated [109,110,112] | Improves initially [121] 2/Improves [126] | Not evaluated [124] | High due to porosity increases [15,20,77,78] |
5.2. Formiguers Versus Biochar from Wildfires and Charcoal Production
5.3. Applying Formiguers to Biochar as a Modern-Day Resource
5.3.1. Formiguers for Developing Nations
5.3.2. Industrial Upscaling of Formiguers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. Chapter 2—A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Stoyle, A. Biochar Production for Carbon Sequestration. Undergraduate Major Qualifying Project, Worcester Polytechnic Institute, Worcester, MA, USA, 11 March 2011, pp. 1–37. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0bf5218c71bf1ec32327a0ef346c2912f5a53a4f (accessed on 5 December 2024).
- Zhou, Y.; Qin, S.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.K.; Binod, P.; et al. Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Dong, Z.; Zhu, B. An optimal global biochar application strategy based on matching biochar and soil properties to reduce global cropland greenhouse gas emissions: Findings from a global meta-analysis and density functional theory calculation. Biochar 2024, 6, 92. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.S.; Tang, C.S.; Gu, K.; Shi, B. Remediation of heavy-metal-contaminated soils by biochar: A review. Environ. Geotech. 2022, 9, 135–148. [Google Scholar] [CrossRef]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef]
- Akhil, D.; Lakshmi, D.; Kartik, A.; Vo, D.-V.N.; Arun, J.; Gopinath, K.P. Production, characterization, activation and environmental applications of engineered biochar: A review. Environ. Chem. Lett. 2021, 19, 2261–2297. [Google Scholar] [CrossRef]
- Panwar, N.L.; Pawar, A. Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Convers. Biorefin. 2022, 12, 925–947. [Google Scholar] [CrossRef]
- Zhu, H.; An, Q.; Nasir, A.S.M.; Babin, A.; Saucedo, S.L.; Vallenas, A.; Li, L.; Baldwin, S.A.; Lau, A.; Bi, X. Emerging applications of biochar: A review on techno-environmental-economic aspects. Bioresour. Technol. 2023, 388, 129745. [Google Scholar] [CrossRef]
- Saletnik, B.; Zagula, G.; Bajcar, M.; Tarapatskyy, M.; Bobula, G.; Puchalski, C. Biochar as a Multifunctional Component of the Environment—A Review. Appl. Sci. 2019, 9, 1139. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Tan, Z.; Lin, C.S.K.; Ji, X.; Rainey, T.J. Returning biochar to fields: A review. Appl. Soil Ecol. 2017, 116, 1–11. [Google Scholar] [CrossRef]
- Novotny, E.H.; de Freitas Maia, C.M.B.; de Melo Carvalho, M.T.; Madari, B.E. Biochar: Pyrogenic Carbon for Agricultural Use—A Critical Review. Rev. Bras. Ciênc. Solo 2015, 39, 321–344. [Google Scholar] [CrossRef]
- Allohverdi, T.; Mohanty, A.K.; Roy, P.; Misra, M. A Review on Current Status of Biochar Uses in Agriculture. Molecules 2021, 26, 5584. [Google Scholar] [CrossRef] [PubMed]
- Rex, P.; Mohammed Ismail, K.R.; Meenakshisundaram, N.; Barmavatu, P.; Sai Bharadwaj, A.V.S.L. Agricultural Biomass Waste to Biochar: A Review on Biochar Applications Using Machine Learning Approach and Circular Economy. ChemEngineering 2023, 7, 50. [Google Scholar] [CrossRef]
- Lone, A.H.; Najar, G.R.; Ganie, M.A.; Sofi, J.A.; Ali, T. Biochar for Sustainable Soil Health: A Review of Prospects and Concerns. Pedosphere 2015, 25, 639–653. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A Review of Biochar and Soil Nitrogen Dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef]
- Khorram, M.S.; Zhang, Q.; Lin, D.; Zheng, Y.; Fang, H.; Yu, Y. Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. J. Environ. Sci. 2016, 44, 269–279. [Google Scholar] [CrossRef]
- Ahmad Bhat, S.; Kuriqi, A.; Dar, M.U.D.; Bhat, O.; Sammen, S.S.; Towfiqul Islam, A.R.M.; Elbeltagi, A.; Shah, O.; AI-Ansari, N.; Ali, R.; et al. Application of Biochar for Improving Physical, Chemical, and Hydrological Soil Properties: A Systematic Review. Sustainability 2022, 14, 11104. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Yu, X.; Skreiberg, Ø. A critical review on production, modification and utilization of biochar. J. Anal. Appl. Pyrolysis 2021, 161, 105405. [Google Scholar] [CrossRef]
- Rakshit, A.; Sarkar, B.; Abhilash, P.C. (Eds.) Soil Amendments for Sustainability: Challenges and Perspectives, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–428. ISBN 978-0-8153-7077-2. [Google Scholar]
- Jeffrey, S.; Verheijen, F.G.A.; Kammann, C.; Abalos, D. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biol. Biochem. 2016, 101, 251–258. [Google Scholar] [CrossRef]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 044049. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Xu, H.; Cai, A.; Wu, D.; Liang, G.; Xiao, J.; Xu, M.; Colinet, G.; Zhang, W. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis. Soil Tillage Res. 2021, 213, 105125. [Google Scholar] [CrossRef]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kämper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.-Y.; et al. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci. Total Environ. 2022, 808, 152073. [Google Scholar] [CrossRef]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Zhang, N.; Ye, X.; Gao, Y.; Liu, G.; Liu, Z.; Zhang, Q.; Liu, E.; Sun, S.; Ren, X.; Jia, Z.; et al. Environment and agricultural practices regulate enhanced biochar-induced soil carbon pools and crop yield: A meta-analysis. Sci. Total Environ. 2023, 905, 167290. [Google Scholar] [CrossRef]
- Liu, R.; Hu, Y.; Zhan, X.; Zhong, J.; Zhao, P.; Feng, H.; Dong, Q.; Siddique, K.H.M. The response of crop yield, carbon sequestration, and global warming potential to straw and biochar applications: A meta-analysis. Sci. Total Environ. 2024, 907, 167884. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Ghorbani, M.; Adani, F. Biochar contribution in greenhouse gas mitigation and crop yield considering pyrolysis conditions, utilization strategies and plant type—A meta-analysis. Field Crop. Res. 2025, 333, 110040. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Rahimzadeh, S.; Farhanghi-Abriz, S. Utilization of biochar in rainfed farming systems: A meta-analysis. Bioresour. Technol. Rep. 2023, 22, 101436. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E. Insights into soil and biochar variations and their contribution to soil aggregate status—A meta-analysis. Soil Tillage Res. 2024, 244, 106282. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Z.; Zhou, J.; Zhou, L.; Lu, Y.; Xiang, Y.; Zhang, R.; Deng, Q.; Wu, W. Meta-Analysis of the Response of the Productivity of Different Crops to Parameters and Processes in Soil Nitrogen Cycle under Biochar Addition. Agronomy 2022, 12, 1857. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total Environ. 2021, 775, 145869. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Hu, T.; Mahmoud, A.; Li, J.; Zhu, R.; Jiao, X.; Jing, P. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis. Sci. Total Environ. 2022, 830, 154792. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xu, L.; Wang, M.; Sun, S.; Yang, Y.; Xu, C. Effects of Biochar Application on Tomato Yield and Fruit Quality: A Meta-Analysis. Sustainability 2024, 16, 6397. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Li, Y.; Li, J.; Jing, Y.; Xiang, Y.; Yao, B.; Deng, Q. Linkage of Crop Productivity to Soil Nitrogen Dynamics under Biochar Addition: A Meta-Analysis across Field Studies. Agronomy 2022, 12, 247. [Google Scholar] [CrossRef]
- Melo, L.C.A.; Lehmann, J.; da Silva Carneiro, J.S.; Camps-Arbestain, M. Biochar-based fertilizer effects on crop productivity: A meta-analysis. Plant Soil 2022, 472, 45–58. [Google Scholar] [CrossRef]
- Su, Z.; Liu, X.; Wang, Z.; Wang, J. Biochar effects on salt-affected soil properties and plant productivity: A global meta-analysis. J. Environ. Manag. 2024, 366, 121653. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Xu, C.-Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci. Total Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef]
- Tesfaye, F.; Liu, X.; Zheng, J.; Cheng, K.; Bian, R.; Zhang, X.; Li, L.; Drosos, M.; Joseph, S.; Pan, G. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments. Environ. Sci. Pollut. Res. 2021, 28, 34108–34120. [Google Scholar] [CrossRef]
- Glaser, B.; Lehr, V.-I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shao, G.; Yang, Z.; Zhang, K.; Lu, J.; Wang, Z.; Wu, S.; Xu, D. Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: A meta-analysis. Eur. J. Agron. 2021, 130, 126345. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Liu, B.; Amonette, J.E.; Lin, Z.; Liu, G.; Ambus, P.; Xie, Z. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. Glob. Change Biol. Bioenerg. 2016, 8, 392–406. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Li, B.; Guo, Y.; Liang, F.; Liu, W.; Wang, Y.; Cao, W.; Song, H.; Chen, J.; Guo, J. Global integrative meta-analysis of the responses in soil organic carbon stock to biochar amendment. J. Environ. Manag. 2024, 351, 119745. [Google Scholar] [CrossRef]
- Pokharel, P.; Ma, Z.; Chang, S.X. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar 2020, 2, 65–79. [Google Scholar] [CrossRef]
- Arabi, Z.; Rinklebe, J.; El-Naggar, A.; Hou, D.; Sarmah, A.K.; Moreno-Jiménez, E. (Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis. Environ. Pollut. 2021, 286, 117199. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Islam, M.U.; Jiang, F.; Guo, Z.; Peng, X. Does biochar application improve soil aggregation? A meta-analysis. Soil Tillage Res. 2021, 209, 104926. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E. Biochar and soil contributions to crop lodging and yield performance—A meta-analysis. Plant Physiol. Biochem. 2024, 215, 109053. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Wei, B.; Peng, Y.; Lin, L.; Zhang, D.; Ma, L.; Jiang, L.; Li, Y.; He, T.; Wang, Z. Drivers of biochar-mediated improvement of soil water retention capacity based on soil texture: A meta-analysis. Geoderma 2023, 437, 116591. [Google Scholar] [CrossRef]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Shao, J.; Wang, X.; Xu, Z.; Hosseini-Bai, S.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. Glob. Change Biol. Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Song, X.; Pan, G.; Zhang, C.; Zhang, L.; Wang, H. Effects of biochar application on fluxes of three biogenic greenhouse gases: A meta-analysis. Ecosyst. Health Sustain. 2016, 2, e01202. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Xue, J.; Zhang, L. Quantifying the Effects of Biochar Application on Greenhouse Gas Emissions from Agricultural Soils: A Global Meta-Analysis. Sustainability 2020, 12, 3436. [Google Scholar] [CrossRef]
- Shakoor, A.; Arif, M.S.; Shahzad, S.M.; Farooq, T.H.; Ashraf, F.; Altaf, M.M.; Ahmed, W.; Tufail, M.A.; Ashraf, M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?—A global meta-analysis. Environ. Res. 2021, 202, 111789. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahzad, S.M.; Chatterjee, N.; Arif, M.S.; Farooq, T.H.; Altaf, M.M.; Tufail, M.A.; Dar, A.A.; Mehmood, T. Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis. J. Environ. Manag. 2021, 285, 112170. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, L.; Gui, D.; Xu, B.; Li, R.; Chen, X.; Sha, Z.; Pan, X. Suitable biochar application practices simultaneously alleviate N2O and NH3 emissions from arable soil: A meta-analysis study. Environ. Res. 2024, 242, 117750. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, P.; Gu, Z.; Song, Y.; Cai, X.; Yu, G.; Xu, X.; Kuzyakov, Y. Biochar reduces N2O emission from fertilized cropland soils: A meta-analysis. Carbon Res. 2025, 4, 31. [Google Scholar] [CrossRef]
- Liu, X.; Mao, P.; Li, L.; Ma, J. Impact of biochar application on yield-scaled greenhouse gas intensity: A meta-analysis. Sci. Total Environ. 2019, 656, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gu, K.; Shi, B.; Zhou, Q. Does biochar mitigate rainfall-induced soil erosion? A review and meta-analysis. Biogeotechnics 2024, 2, 100096. [Google Scholar] [CrossRef]
- Gholamahmadi, B.; Jeffery, S.; Gonzalez-Pelayo, O.; Prats, S.A.; Bastos, A.C.; Keizer, J.J.; Verheijen, F.G.A. Biochar impacts on runoff and soil erosion by water: A systemic global scale meta-analysis. Sci. Total Environ. 2023, 871, 161860. [Google Scholar] [CrossRef] [PubMed]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Glob. Change Biol. Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Shi, L.; Li, G.; Pang, Z.; Liu, S.; Chen, Y.; Jia, B. Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant Soil Environ. 2022, 68, 272–289. [Google Scholar] [CrossRef]
- Deshoux, M.; Sadet-Bourgeteau, S.; Gentil, S.; Prévost-Bouré, N.C. Effects of biochar on soil microbial communities: A meta-analysis. Sci. Total Environ. 2023, 902, 166079. [Google Scholar] [CrossRef]
- Bezerra, J.; Turnhout, E.; Vasquez, I.M.; Rittl, T.F.; Arts, B.; Kuyper, T.W. The promises of the Amazonian soil: Shifts in discourses of Terra Preta and biochar. J. Environ. Policy Plan. 2019, 21, 1–13. [Google Scholar] [CrossRef]
- MacDonald, K.; Scherjon, F.; vsn Veen, E.; Roebroeks, W. Middle Pleistocene fire use: The first signal of widespread cultural diffusion in human evolution. Proc. Natl. Acad. Sci. USA 2021, 118, e2101108118. [Google Scholar] [CrossRef]
- Groot, H.; Fernholz, K.; Frank, M.; Howe, J.; Bowyer, J.; Bratkovich, S. Biochar 101: An Introduction to an Ancient Product Offering Modern Opportunities; Dovetail Partners: Minneapolis, MN, USA, 2016; pp. 1–13. Available online: https://docslib.org/doc/3597304/biochar-101-an-introduction-to-an-ancient-product-offering-modern-opportunities (accessed on 13 December 2024).
- Kamarudin, N.S.; Dahalan, F.A.; Hasan, M.; An, O.S.; Parmin, N.A.; Ibrahim, N.; Hamdzah, M.; Zain, N.A.M.; Muda, K.; Wikurendra, E.A. Biochar: A Review of its History, Characteristics, Factors that Influence its Yield, Methods of Production, Application in Wastewater Treatment and Recent Development. Biointerface Res. Appl. Chem. 2022, 12, 7914–7926. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management: Science and Technology, 1st ed.; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 13–32. ISBN 9781849770552. [Google Scholar]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef]
- Aryal, B. Assessing Carbon Sequestration of Mixed Hardwood Forests Through Optimizing Harvesting Strategies and Biomass Utilization for Biochar. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2024; pp. 1–87. Available online: https://researchrepository.wvu.edu/etd/12588/ (accessed on 5 December 2024).
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Kumari, S.; Sasmal, S.; Pathak, H. Biochar Carbon Sequestration in Soil—A Myth or Reality? Int. J. Bio-Resour. Stress Manag. 2015, 6, 623–630. [Google Scholar] [CrossRef]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef]
- Bikbulatova, S.; Tahmasebi, A.; Zhang, Z.; Rish, S.K.; Yu, J. Understanding water retention behavior and mechanism in bio-char. Fuel Process. Technol. 2018, 169, 101–111. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient leaching in a Colombian savanna Oxisol amended with biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A.; Sherlock, R.R. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 2011, 54, 309–320. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield. Agron. J. 2010, 102, 623–633. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Chen, W.; Meng, J.; Han, X.; Lan, Y.; Zhang, W. Past, present, and future of biochar. Biochar 2019, 1, 75–87. [Google Scholar] [CrossRef]
- King, F.H. Farmers of Forty Centuries: Permanent Agriculture in China, Korea and Japan; Project Gutenberg: Madison, WI, USA, 1911; pp. 1–116. Available online: https://www.gutenberg.org/ebooks/5350 (accessed on 6 December 2024).
- Schmidt, M.J.; Py-Daniel, A.R.; de Paula Moraes, C.; Valle, R.B.M.; Caromano, C.F.; Texeira, W.G.; Barbosa, C.A.; Fonseca, J.A.; Magalhães, M.P.; do Carmo Santos, D.S.; et al. Dark earths and the human built landscape in Amazonia: A widespread pattern of anthrosol formation. J. Archaeol. Sci. 2014, 42, 152–165. [Google Scholar] [CrossRef]
- Silva, L.C.R.; Corrêa, R.S.; Wright, J.L.; Bomfim, B.; Hendricks, L.; Gavin, D.G.; Muniz, A.W.; Martins, G.C.; Motta, A.C.V.; Barbosa, J.Z.; et al. A new hypothesis for the origin of Amazonian Dark Earths. Nat. Commun. 2021, 12, 127. [Google Scholar] [CrossRef]
- Steiner, C.; Glaser, B.; Teixeira, W.G.; Lehmann, J.; Blum, W.E.H.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Sapucci, C.; Mayta, V.C.; Dias, P.S. Evaluation of Diverse-based Precipitation Data Over the Amazon Region. Theor. Appl. Climatol. 2022, 149, 1167–1193. [Google Scholar] [CrossRef]
- Blackmore, A.C.; Mentis, M.T.; Scholes, R.J. The origin and extent of nutrient-enriched patches within a nutrient-poor savanna in South Africa. J. Biogeogr. 1990, 17, 463–470. [Google Scholar] [CrossRef]
- Fairhead, J.; Leach, M. Amazonian Dark Earths in Africa? In Amazonian Dark Earths: Wim Sombroek’s Vision; Chapter 13; Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C., Winkler Prins, A., Rebellato, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 265–278. [Google Scholar] [CrossRef]
- Fujiu, M.; Plante, A.; Ohno, T.; Solomon, D.; Lehmann, J.; Fraser, J.; Leach, M.; Fairhead, J. Characterization of extractable soil organic matter pools from African Dark Earths (AfDE): A case study in historical biochar and organic waste amendments. Geophys. Res. Abstr. 2014, 16, 1. Available online: https://meetingorganizer.copernicus.org/EGU2014/EGU2014-12886.pdf (accessed on 13 December 2024).
- Semida, W.M.; Beheiry, H.R.; Sétamou, M.; Simpson, C.R.; Abd El-Mageed, T.A.; Rady, M.M.; Nelson, S.D. Biochar implications for sustainable agriculture and environment: A review. S. Afr. J. Bot. 2019, 127, 333–347. [Google Scholar] [CrossRef]
- Sandor, J.A.; Eash, N.S. Ancient Agricultural Soils in the Andes of Southern Peru. Soil Sci. Soc. Am. J. 1995, 59, 170–179. [Google Scholar] [CrossRef]
- Downie, A.E.; Zwieten, L.V.; Smernik, R.J.; Morris, S.; Munroe, P.R. Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agric. Ecosyst. Environ. 2011, 140, 137–147. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakar, C. Recent advancement in biochar production and utilization—A combination of traditional and bibliometric review. Int. J. Hydrogen Energy 2024, 54, 1137–1153. [Google Scholar] [CrossRef]
- Alvarez, M.F.; Poch, R.M.; Olarieta, J.R.; Wiedner, K. Charcoal and biological activity in formiguer soils of Catalonia (Spain): Application of a micromorphological approach. Soil Tillage Res. 2023, 234, 105810. [Google Scholar] [CrossRef]
- Tello, E.; Garabou, R.; Cussó, X.; Olarieta, J.R.; Galán, E. Fertilizing Methods and Nutrient Balance at the End of Traditional Organic Agriculture in the Mediterranean Bioregion: Catalonia (Spain) in the 1860s. Hum. Ecol. 2012, 40, 369–383. [Google Scholar] [CrossRef]
- Olarieta, J.R.; Padrò, R.; Masip, G.; Rodríguez-Ochoa, R.; Tello, E. ‘Formiguers’, a historical system of soil fertilization (and biochar production?). Agric. Ecosyst. Environ. 2011, 140, 27–33. [Google Scholar] [CrossRef]
- Ligero, F.B. La toponímia com a mostra de la transformació del territory. L’exemple d’Osor. Quad. Selva 2009, 21, 17–28. Available online: https://core.ac.uk/download/pdf/39004052.pdf (accessed on 14 December 2024).
- Díez, L.; Olarieta, J.R.; Tello, E. Belowground and Aboveground Sustainability: Historical Management Change in a Mediterranean Agroecosystem (Les Oluges, Spain, 1860–1959-1999). Hum. Ecol. 2019, 47, 639–651. [Google Scholar] [CrossRef]
- Mestre, C.; Mestres, A. Aportación al studio de la fertilización del suelo por medio de 20 hormigueros. In Estación de Viticultura y Enología de Villafranca del Penedes; INIA, Ministerio de Agricultura: Madrid, Spain, 1949; pp. 1–21. [Google Scholar]
- Serrasolsas, I.; Khanna, P.K. Changes in heated and autoclaved forest soils of S.E. Australia. I. Carbon and nitrogen. Biogeochemistry 1995, 29, 3–24. [Google Scholar] [CrossRef]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Autoclaving kills soil microbes yet soil enzymes remain active. Pedobiologia 2007, 51, 295–299. [Google Scholar] [CrossRef]
- Masip, G. Els Agroecosistemes Tradicionals de la Bisbal de Falset. Master’s Thesis, Universidad Internacional de Andalucia, Baeza, Spain, 2003. [Google Scholar]
- Jimenez-Ballesta, R.; Bravo, S.; Amorós, J.A.; Pérez-de-los-Reyes, C.; García-Pradas, J.; Sanchez, M.; García-Navarro, F.J. Occurrence of some rare earth elements in vineyard soils under semiarid Mediterranean environment. Environ. Monit. Assess. 2022, 194, 341. [Google Scholar] [CrossRef]
- Marco, I.; Padró, R.; Cattaneo, C.; Caravaca, J.; Tello, E. From vineyards to feedlots: A fund-flow scanning of sociometabolic transition in the Vallès County (Catalonia) 1860–1956–1999. Reg. Environ. Change 2018, 18, 981–993. [Google Scholar] [CrossRef]
- Verma, P.; Yadav, A.N.; Khannam, K.S.; Saxena, A.K.; Suman, A. Potassium-Solubilizing Microbes: Diversity, Distribution, and Role in Plant Growth Promotion. In Microorganisms for Green Revolution, 1st ed.; Microbes for Sustainable Crop, Production; Panpatte, D.G., Jhala, Y.K., Vyas, R.V., Shelat, H.N., Eds.; Springer: New York, NY, USA, 2017; Volume 1, pp. 125–149. ISBN 978-981-10-6240-7. [Google Scholar] [CrossRef]
- Soentgen, J.; Hilbert, K.; von Groote-Bidlingmaier, C.; Herzong-Schröder, G.; Pabst, E.E.; Timpf, S. Terra preta de índio: Commodification and Mythification of the Amazonian Dark Earths. GAIA 2017, 26, 136–143. [Google Scholar] [CrossRef]
- Das, D. Demystifying the Myth of Shifting Cultivation. Econ. Political Wkly. 2006, 41, 4912–4917. Available online: https://www.jstor.org/stable/4418952 (accessed on 30 January 2025).
- Rathore, S.S.; Karunakaran, K.; Prakash, B. Alder based farming system a traditional farming practices in Nagaland for amelioration of jhum land. Indian J. Tradit. Knowl. 2010, 9, 677–680. [Google Scholar]
- Hazarika, S. Replacing slash-and-burn with slash-and-char can improve the quality of Jhum field soils. In Proceedings of the National Seminar on Shifting Cultivation (Jhum) in the 21st Century: Fitness and Improvement, CPGS, CAU, Umiam, Meghalaya, India, 28–29 November 2014. [Google Scholar]
- McKey, D. Making the most of grasslands and heathlands: Unearthing the links between soil paring-and-burning, plaggen cultivation, and raised-field agriculture. Rev. D’ethnoécolog. 2021, 20, 1–24. [Google Scholar] [CrossRef]
- Pu, C. Excerpts from On Farming (Nongshu). In Chinese Civilization: A Sourcebook, 2nd ed.; Ebrey, P.B., Ed.; The Free Press: New York, NY, USA, 1993; pp. 188–191+524. ISBN 002908752X. Available online: https://afe.easia.columbia.edu/ps/china/farming_chenpu.pdf (accessed on 12 July 2025).
- Ogawa, M.; Okimori, Y. Pioneering works in biochar research, Japan. Aust. J. Soil Res. 2010, 48, 489–500. [Google Scholar] [CrossRef]
- Panwar, N.L.; Pawar, A.; Salvi, B.L. Comprehensive review on production and utilization of biochar. SN Appl. Sci. 2019, 1, 168. [Google Scholar] [CrossRef]
- Ricigliano, K. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture. J. Nat. Res. Life Sci. Educ. 2011, 40(1), 69–72. [Google Scholar] [CrossRef]
- Glaser, B. Prehistorically modified soils of central Amazonia: A model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. B 2007, 362, 187–196. [Google Scholar] [CrossRef]
- Khan, R.; Tasung, A.; Makdoh, B.; Bhagawati, K.; Suryawanshi, A.; Alone, R.A.; Angami, T.; Nyodi, M.; Drema, L.; Tsomu, T.; et al. Dynamics of Soil Properties under Jhum Cultivation: A Review. Int. J. Environ. Clim. Change 2024, 14, 378–391. [Google Scholar] [CrossRef]
- Meyer, D. Biochar—A Survey. Special Assignment in Energy and Process Engineering; Tampere University of Technology: Tampere, Finland, 2009; pp. 1–36. Available online: https://docslib.org/doc/3298574/biochar-a-survey-ener-1346-special-assignment-in-energy-and-process-engineering (accessed on 13 December 2024).
- Santin, C.; Doerr, S.H.; Merino, A.; Bucheli, T.D.; Bryant, R.; Ascough, P.; Gao, X.; Masiello, C.A. Carbon sequestration potential and physiochemical properties differ between wildfire charcoals and slow pyrolysis biochars. Sci. Rep. 2017, 7, 11233. [Google Scholar] [CrossRef]
- Hirsch, F.; Raab, T.; Ouimet, W.; Dethier, D.; Schneider, A.; Raab, A. Soils on Historic Charcoal Hearths: Terminology and Chemical Properties. Soil Sci. Soc. Am. J. 2017, 81, 1427–1435. [Google Scholar] [CrossRef]
- Shackley, S.; Ruysschaert, G.; Zwart, K.; Glaser, B. (Eds.) Biochar in European Soils and Agriculture: Science and Practice, 1st ed.; Routledge: New York, NY, USA, 2016; pp. 1–324. ISBN 978-0-415-71166-1. [Google Scholar]
- Mugford, I.; Street-Perrot, A.; Santin, C.; Denman, H. Anthropogenic Charcoal Deposits: Analogues for the Long-Term Functioning and Stability of Biochar in European Soils? Geophys. Res. Abstr. 2014, 16, 1. Available online: https://meetingorganizer.copernicus.org/EGU2014/EGU2014-9835.pdf (accessed on 13 December 2024).
- Coomes, O.T.; Miltner, B.C. Indigenous Charcoal and Biochar Production: Potential for Soil Improvement Under Shifting Cultivation Systems. Land Degrad. Dev. 2017, 28, 811–821. [Google Scholar] [CrossRef]
- Borchard, N.; Ladd, B.; Eschemann, S.; Hegenberg, D.; Möseler, B.M.; Amelung, W. Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma 2014, 232–234, 236–242. [Google Scholar] [CrossRef]
- Hernandez-Soriano, M.C.; Kerré, B.; Goos, P.; Hardy, B.; Dufey, J.; Smolders, E. Long-term effect of biochar on the stabilization of recent carbon: Soils with historical inputs of charcoal. Glob. Change Biol. Bioenergy 2016, 8, 371–381. [Google Scholar] [CrossRef]
- Iacomino, G.; Idbella, M.; Di Costanzo, L.; Amoroso, G.; Allevato, E.; Abd-ElGawad, A.M.; Bonanomi, G. Biochar aging, soil microbiota and chemistry of charcoal kilns in Mediterranean forests. Biochar 2024, 6, 82. [Google Scholar] [CrossRef]
- Hardy, B.; Cornelis, J.-T.; Houben, D.; Leifeld, J.; Lambert, R.; Dufey, J.E. Evaluation of the long-term effect of biochar on properties of temperate agricultural soil at pre-industrial charcoal kiln sites in Wallonia, Belgium. Eur. J. Soil Sci. 2016, 68, 80–89. [Google Scholar] [CrossRef]
- Davidson, D.A.; Dercon, G.; Stewart, M.; Watson, F. The legacy of past urban waste disposal on local soils. J. Archaeol. Sci. 2006, 33, 778–783. [Google Scholar] [CrossRef]
- Lehmann, J.; Da Silva, J.P., Jr.; Rondon, M.; Da Silva, C.M.; Greenwood, J.; Nehls, T.; Steiner, C.; Glaser, B. Slash-and-char: A feasible alternative for soil fertility management in the Central Amazon. In Proceedings of the 17th World Congress of Soil Science (WCCS), Bangkok, Thailand, 14–21 August 2002; Symposium no. 13 Paper no. 449. pp. 1–12. [Google Scholar]
- Li, J.; Sun, W.; Lichtfouse, E.; Maurer, C.; Liu, H. Life cycle assessment of biochar for sustainable agricultural application: A review. Sci. Total Environ. 2024, 951, 175448. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Dissanayake, P.D.; El-Naggar, A.; Gayesha, E.; Wijesekara, H.; Krishnamoorthy, N.; Cai, Y.; Chang, S.X. Biochar-based controlled-release fertilizers for enhancing plant growth and environmental sustainability: A review. Biol. Fertil. Soils 2025, 61, 701–715. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation, 3rd ed.; Routledge: New York, NY, USA, 2024; pp. 1–902. ISBN 978-1-032-28615-0. [Google Scholar]
- Morgan, H.; Tsai, W.-T.; Yen, T.-B. Simplifying Pyrolysis: Localized Solutions for Biochar, Environmental Sustainability, and Societal Advancement in the Caribbean. SSRN 2025. [Google Scholar] [CrossRef]
- Ghilardi, A.; Tarter, A.; Bailis, R. Potential environmental benefits from woodfuel transitions in Haiti: Geospatial scenarios to 2027. Environ. Res. Lett. 2018, 13, 035007. [Google Scholar] [CrossRef]
- Upadhyay, V.; Choudhary, K.K.; Agrawal, S.B. Use of biochar as a sustainable agronomic tool, its limitations and impact on environment: A review. Discov. Agric. 2024, 2, 20. [Google Scholar] [CrossRef]
- Graves, C.; Kolar, P.; Shah, S.; Grimes, J.; Sharara, M. Can Biochar Improve the Sustainability of Animal Production? Appl. Sci. 2022, 12, 5042. [Google Scholar] [CrossRef]
- Li, S.; Tasnady, D. Biochar for Soil Carbon Sequestration: Current Knowledge, Mechanisms, and Future Perspectives. C 2023, 9, 67. [Google Scholar] [CrossRef]
- Patro, A.; Dwivedi, S.; Thakur, A.; Sahoo, P.K.; Biswas, J.K. Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience 2024, 27, 110812. [Google Scholar] [CrossRef]
- Nair, V.D.; Nair, P.K.R.; Dari, B.; Freitas, A.M.; Chatterjee, N.; Pinheiro, F.M. Biochar in the Agroecosystem-Climate-Change-Sustainability Nexus. Front. Plant Sci. 2017, 8, 2051. [Google Scholar] [CrossRef]
- Gelardi, D.L.; Parikh, S.J. Soils and Beyond: Optimizing Sustainability Opportunities for Biochar. Sustainability 2021, 13, 10079. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, M.; Niu, Y.; Liu, X.; Van Zwieten, L.; Chen, D.; Bian, R.; Cheng, K.; Li, L.; Joseph, S.; et al. Is current biochar research addressing global soil constraints for sustainable agriculture? Agric. Ecosyst. Environ. 2016, 226, 25–32. [Google Scholar] [CrossRef]
- Zheng, W.; Sharma, B.K.; Rajagopalan, N. Using Biochar as a Soil Amendment for Sustainable Agriculture; Illinois Sustainable Technology Center, University of Illinois: Champaign, IL, USA, 2010; pp. 1–36. Available online: https://www.ideals.illinois.edu/ (accessed on 12 March 2025).
- Wang, L.; Ok, Y.S.; Tsang, D.C.W.; Alessi, D.S.; Rinklebe, J.; Wang, H.; Mašek, O.; Hou, R.; O’Connor, D.; Hou, D. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag. 2020, 36, 358–386. [Google Scholar] [CrossRef]
- Cornelissen, G.; Pandit, N.R.; Taylor, P.; Pandit, B.H.; Sparrevik, M.; Schmidt, H.P. Emissions and Char Quality of Flame-Curtain “Kon Tiki” Kilns for Farmer-Scale Charcoal/Biochar Production. PLoS ONE 2016, 11, e015617. [Google Scholar] [CrossRef]
- Joseph, S.; Taylor, P. The production and application of biochar in soils. In Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation; Chapter 16; Waldron, K., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 525–555. ISBN 978-0-85709-521-3. [Google Scholar] [CrossRef]
- Prochnow, F.D.; Cavali, M.; Dresch, A.P.; Belli, I.M.; Libardi, N., Jr.; de Castilhos, A.B., Jr. Biochar: From Laboratory to Industry Scale—An Overview of Scientific and Industrial Advances, Opportunities in the Brazilian Context, and Contributions to Sustainable Development. Processes 2024, 12, 1006. [Google Scholar] [CrossRef]
- Garha, N.S. From Decarbonization to Depopulation: An Emerging Challenge for the Carbon-Intensive Regions under the Energy Transition in Spain. Sustainability 2022, 14, 14786. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Das, K.C.; Tassistro, A.S.; Sonon, L.; Harris, K.; Hawkins, B. Characterization of Char for Agricultural Use in the Soils of the Southeastern United States. In Amazonian Dark Earths: Wim Sombroek’s Vision, 1st ed.; Woods, W.I., Teixeira, W.G., Lehmann, J., Steiner, C., Winkler Prins, A., Rebellato, L., Eds.; Springer Dordrecht: Dordrecht, The Netherlands, 2009; pp. 433–443. [Google Scholar] [CrossRef]
- Ferrando, J.; (Farm manager, Mas Esquers, Vila Rodona, Tarragona Province, Catalonia, Spain). Personal communication, 2025. Tel.: +34-609-50-92-16.
- Li, X.; Wu, D.; Liu, X.; Huang, Y.; Cai, A.; Xu, H.; Ran, J.; Xiao, J.; Zhang, W. A global dataset of biochar application effects on crop yield, soil properties, and greenhouse gas emissions. Sci. Data 2024, 11, 57. [Google Scholar] [CrossRef]
- PNGTree. Graphic Resources for Free Download. Available online: https://pngtree.com (accessed on 19 July 2025).
Sector | Agroecosystem Metric | Percent Change | Type/ Measure | Number of Studies | Observations/ Contrasts | Years of Studies | References |
---|---|---|---|---|---|---|---|
Agriculture | Crop Production 1 | 16.08% | Crop yield | 15 | 11,013 | 1980 to 2024 | [23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] |
Crop/Plant | 16.42% | Crop productivity | 4 | 1915 | 1990 to 2024 | [34,38,39,40] | |
Productivity | −6.95% | Lodging (grain) | 1 | 1302 | 2011 to 2023 | [33] | |
Tomato Quality | 5.53% | Total soluble solids/Vit. C | 1 | 458 | 2013 to 2024 | [37] | |
Agronomy | Soil Nitrogen 1 | 16.99% | Total soil nitrogen (N) | 2 | 278 | 1990 to 2024 | [38,40] |
−9.86% | Soil inorganic N | 3 | 1863 | 1990 to 2020 | [38,41,42] | ||
18.7% | Soil microbial biomass N | 1 | 33 | 1990 to 2020 | [38] | ||
15.7% | Biological N fixation | 1 | 19 | 1990 to 2020 | [38] | ||
Soil Phosphorus (P) | 54.8% | Total soil available P | 2 | 1053 | 2000 to 2019 | [42,43] | |
48% | Soil microbial biomass P | 1 | 74 | 2000 to 2017 | [42] | ||
460% | P availability | 1 | 108 | 1980 to 2016 | [44] | ||
Plant Biomass | 16.6% | Plant biomass | 2 | 2700 | 2000 to 2023 | [32,33] | |
Photosynthesis | 23% | Plant photosynthetic rate | 1 | 965 | 2012 to 2020 | [45] | |
Plant Nutrient | 18.8% | Plant N uptake | 2 | 1031 | 1990 to 2020 | [38,46] | |
Uptake/Fixation | 12.04% | Rice N use efficiency | 1 | 1100 | 2011 to 2021 | [36] | |
63% | Biological N fixation | 1 | 25 | 2003 to 2017 | [46] | ||
55% | Plant P uptake | 1 | 516 | 2011 to 2019 | [43] | ||
Soil | Acid /Alkaline 1,2 | 22.9% | Soil pH | 2 | 307 | 2012 to 2024 | [28,40] |
Carbon (C) 1,2 | 39.04% | Soil organic carbon | 8 | 3449 | 2012 to 2024 | [26,28,29,30,40,47,48,49] | |
10.26% | Dissolved organic carbon | 1 | 276 | 2012 to 2022 | [29] | ||
37.08% | Easily oxidized carbon | 1 | 138 | 2012 to 2022 | [29] | ||
139.98% | Particulate organic carbon | 1 | 40 | 2012 to 2022 | [29] | ||
C:N Ratio 2 | 23.81% | Carbon: Nitrogen ratio | 1 | 394 | 2012 to 2022 | [29] | |
Cation Exchange 2 | 20% | Cation exchange capacity | 1 | 73 | 2012 to 2021 | [28] | |
Conductivity 2 | −7.4% | Soil electrical conductivity | 1 | 180 | Up until 2024 | [40] | |
Enzyme Activity | 22.7% | Four enzymes 3 | 1 | 397 | 2009 to 2019 | [50] | |
Immobilization | 1750% | Chromium and nickel | 1 | 18,702 | 2006 to 2019 | [51] | |
Microbes 1,4 | 18.9% | Soil microbial biomass C | 3 | 463 | 2012 to 2024 | [29,47,50] | |
Quality | 16.9% | Aggregates and stability | 3 | 1205 | 2010 to 2024 | [52,53,54] | |
−12.25% | Soil bulk density | 4 | 471 | 2010 to 2024 | [28,40,52,55] | ||
15.4% | Soil mean weight diameter | 1 | 554 | 2011 to 2024 | [54] | ||
41.2% | Soil porosity | 2 | 108 | 2012 to 2021 | [28,52] | ||
Water Retention and Transmission | 26.13% | Available H2O holding capacity | 3 | 766 | 1990 to 2020 | [52,55,56] | |
25.99% | Field capacity | 2 | 650 | 1990 to 2020 | [55,56] | ||
25.2% | Saturated hydraulic conductivity | 1 | 24 | Up until 2018 | [52] | ||
47% | H2O content held at wilting point | 1 | 176 | 2010 to 2019 | [55] | ||
14.3% | Permanent wilting point | 1 | 333 | 1990 to 2020 | [56] | ||
Environment | Greenhouse Gas (GHG) | 12.14% | Soil carbon dioxide emissions | 4 | 1125 | 2005 to 2020 | [57,58,59,60] |
Emissions 5 | 19% | NH3 volatilization | 1 | 99 | 2003 to 2017 | [46] | |
1.3% | Soil methane emissions | 3 | 611 | 2002 to 2023 | [31,59,60] | ||
−14.2% | Nitrous oxide emissions | 8 | 2815 | 1980 to 2024 | [31,38,46,57,58,59,61,62,63] | ||
−29% | Yield-scaled GHG emissions | 1 | 81 | 2011 to 2018 | [64] | ||
−24.43% | Global warming potential | 2 | 1059 | 2006 to 2022 | [26,30] | ||
Nutrient Leaching | −20.4% | Soil nitrogen leaching | 2 | 179 | 1990 to 2020 | [38,46] | |
Soil Loss | −22.9% | Soil erosion and runoff | 2 | 542 | 2002 to 2023 | [65,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farré, N.S.; Hoshide, A.K. Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications. Resources 2025, 14, 120. https://doi.org/10.3390/resources14080120
Farré NS, Hoshide AK. Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications. Resources. 2025; 14(8):120. https://doi.org/10.3390/resources14080120
Chicago/Turabian StyleFarré, Nicolas Sesson, and Aaron Kinyu Hoshide. 2025. "Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications" Resources 14, no. 8: 120. https://doi.org/10.3390/resources14080120
APA StyleFarré, N. S., & Hoshide, A. K. (2025). Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications. Resources, 14(8), 120. https://doi.org/10.3390/resources14080120