Sustainability Assessment of Lake Sediment-Based Soil Blocks for Agricultural Seedling Media
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Life Cycle Inventory
2.3. Variable Selection for Multidimensional Analysis
2.4. Analytical Methods
3. Results and Discussion
3.1. Performance of Soil Block Technology for Seedling Media
3.1.1. Life Cycle Analysis of Soil Block Technology Suppressing Global Warming Potential
3.1.2. Potential Nutrient-Rich Content of Soil Block Seedling Media Based on Rawapening Lake Sediment
3.1.3. The Economic Feasibility of Soil Block Seedling Media Business Based on Rawapening Lake Sediment
3.2. Sustainability of Soil Block Seedling Media Business: A Multidimensional Approach
3.2.1. Sustainability and Validity Models
3.2.2. Environmental Dimension
3.2.3. Technological Dimension
3.2.4. Economic Dimension
3.2.5. Social Dimension
3.2.6. Institutional Dimension
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piranti, A.S. Pengendalian Eutrofikasi Danau Rawapening; UNSOED Press: Purwokerto, Indonesia, 2021; p. 72. ISBN 978-623-7144-34-2. [Google Scholar]
- Chapungu, L.; Mudyazhezha, O.C.; Mudzengi, B. Socio-ecological impacts of water hyacinth (Eichhornia crassipes) under dry climatic conditions: The case of Shagashe River in Masvingo, Zimbabwe. J. Environ. Sci. Public Health 2018, 2, 36–52. [Google Scholar] [CrossRef]
- Djihouessi, M.B.; Olokotum, M.; Chabi, L.C.; Mouftaou, F.; Aina, M.P. Paradigm shifts for sustainable management of water hyacinth in tropical ecosystems: A review and overview of current challenges. Environ. Chall. 2023, 11, 100705. [Google Scholar] [CrossRef]
- Gunnarsson, C.C.; Petersen, C.M. Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manag. 2007, 27, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Güereña, D.; Neufeldt, H.; Berazneva, J.; Duby, S. Water hyacinth control in Lake Victoria: Transforming an ecological catastrophe into economic, social, and environmental benefits. Sustain. Prod. Consum. 2015, 3, 59–69. [Google Scholar] [CrossRef]
- Haase, D.I.; Bouzza, K.; Emerton, L.; Friday, J.B.; Lieberg, B.; Aldrete, A.; Davis, A.S. The high cost of the low-cost polybag system: A review of nursery seedling production systems. Land 2021, 10, 826. [Google Scholar] [CrossRef]
- Stafford, W.; Russo, V.; Nahman, A. A comparative cradle-to-grave life cycle assessment of single-use plastic shopping bags and various alternatives available in South Africa. Int. J. Life Cycle Assess. 2022, 27, 1213–1227. [Google Scholar] [CrossRef]
- Novita, A.A.; Ngindana, R.; Putra, E.; Virgiyansha, D. Development and challenges in the implementation of sustainable development goals (SDGs) in Indonesia: A systematic literature review. J. Inov. Ilmu Sos. Dan Polit. JISoP 2023, 5, 189–196. [Google Scholar] [CrossRef]
- Kasper, G.; Kapp, G.; Seidel, C. Greenhouse gas emissions in horticulture: Potentials for reduction using alternative substrates. Acta Hortic. 2019, 1242, 131–138. [Google Scholar] [CrossRef]
- Gheewala, S.H.; Beri, N.P.; Maliwan, N. Environmental performance of soilless cultivation using organic substrates: A comparative LCA of growing media. J. Clean. Prod. 2023, 403, 136872. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Zhang, H.; Zhang, S. Biochar-based growing media reduce N2O and CH4 emissions in nursery production. Sci. Total Environ. 2020, 722, 137896. [Google Scholar] [CrossRef]
- Danso, H.; Martinson, B.; Ali, M.; Mant, C. Performance characteristics of enhanced soil blocks: A quantitative review. Build. Res. Inf. 2015, 43, 253–262. [Google Scholar] [CrossRef]
- Carey, A.; Nair, A.; Thoms, A. Evaluating the soil block method and growing media in organic vegetable transplant production. HortScience 2024, 59, 542–551. [Google Scholar] [CrossRef]
- Yang, L.; Cao, H.; Yuan, Q.; Luoa, S.; Liu, Z. Component optimization of dairy manure vermicompost, straw and peat in seedling compressed substrates using simplex-centroid design. J. Air Waste Manag. Assoc. 2018, 68, 215–226. [Google Scholar] [CrossRef]
- Mechergui, T.; Vanderschaaf, C.L.; Pardos, M. From Waste to Plant Production: Cattle Dung Compost as an Alternative Nursery Substrate to Commercial Peat for Producing Lettuce Plants. HortScience 2024, 59, 1489–1496. [Google Scholar] [CrossRef]
- Zhong, F.; Bai, N.; Chu, X.; He, Y.; Zhang, H.; Li, H. Effects of lake sediment on soil properties, crop growth, and the phod-harboring microbial community. Agriculture 2022, 12, 2065. [Google Scholar] [CrossRef]
- Ge, X.; Chen, X.; Liu, M.; Wang, C.; Zhang, Y.; Wang, Y.; Tran, H.-T.; Joseph, S.; Zhang, T. Toward a Better Understanding of Phosphorus Nonpoint Source Pollution from Soil to Water and the Application of Amendment Materials: Research Trends. Water 2023, 15, 1531. [Google Scholar] [CrossRef]
- Różyło, K.; Szymańska, M.; Kalembasa, S.; Jaremko, D. The use of lake sediment for fertilization: Effect on soil fertility and crop yield. Agronomy 2021, 11, 165. [Google Scholar] [CrossRef]
- Jin, C.; Nan, Z.; Wang, H.; Jin, P. Plant growth and heavy metal bioavailability changes in a loess subsoil amended with municipal sludge compost. J. Soils Sediments 2017, 17, 2797–2809. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Liu, Z. Effect of sediment-based growing medium with biochar on nutrient release and lettuce yield. Environ. Technol. Innov. 2023, 30, 103058. [Google Scholar] [CrossRef]
- Brigham, R.D.; Pelini, S.; Xu, Z.; Vázquez-Ortega, A. Assessing the effects of lake-dredged sediments on soil health: Agricultural and environmental implications for northwestern Ohio. J. Environ. Qual. 2021, 50, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Mutunga, D.; Owino, E. Effect of Production Capacity on the Financial Performance of Manufacturing Firms in Kenya. J. Econ. 2017, 1, 15–24. Available online: https://stratfordjournals.org/journals/index.php/journal-of-economics/article/view/86 (accessed on 23 February 2025).
- Unhelkar, B.; Joshi, S.; Sharma, M.; Prakashf, S.; Mani, A.K.; Prasad, M. Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0–A systematic literature review. Int. J. Inf. Manag. Data Insights 2022, 2, 100084. [Google Scholar] [CrossRef]
- Espolov, T.; Espolov, A.; Satanbekov, N.; Tireuov, K.; Mukash, J.; Suleimenov, Z. Economic trend in developing sustainable agriculture and organic farming. Int. J. Sustain. Dev. Plann. 2023, 18, 1885–1891. [Google Scholar] [CrossRef]
- Chapman, A.; Sen, K.K.; Mochida, T.; Yoshimoto, Y.; Kishimoto, K. Overcoming barriers to proactive plastic recycling toward a sustainable future. Environ. Chall. 2024, 17, 101040. [Google Scholar] [CrossRef]
- ISO14040; Environmental Management-Life Cycle Assessment: Principles and Framework. International Standard Organization (ISO): Geneva, Switzerland, 2006.
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
- Mancell, S.A.; Deutsch, C.V. Multidimensional scaling. In Geostatistics Lessons; Deutsch, J.L., Ed.; Resource Modeling Solutions: Calgary, AB, Canada, 2019; pp. 1–10. Available online: https://geostatisticslessons.com/lessons/mds (accessed on 23 June 2025).
- Sittadewi, E.H.; Tejakusuma, I.G.; Handayani, T.; Santoso, A.D.; Tohari, A.; Mulyono, A.; Zakaria, Z.; Budiman, E.B.; Fatahillah, H.E.H.; Fitriani, R. Novel Rap-Landslide Method for Assessing Agroforestry Sustainability in Landslide-Prone Areas. Resources 2025, 14, 93. [Google Scholar] [CrossRef]
- Nin, S.; Bonetti, D.; Antonetti, M.; Peruzzi, E.; Manzi, D.; Macci, C. Sediment-based growing media provides a window opportunity for environmentally friendly production of ornamental shrubs. Agronomy 2023, 13, 92. [Google Scholar] [CrossRef]
- Levacher, D.; Suriray, A.; Ndahirwa, D.; Zmamou, H.; Leblanc, N.; Shimpo, T. Sediment-based unfired bricks reinforced with waste flax fibers: Implementation, physical aspects and kinetics of air drying-part I. Appl. Sci. 2025, 15, 909. [Google Scholar] [CrossRef]
- Kiani, M.; Raave, H.; Simojoki, A.; Tammeorg, O.; Tammeorg, P. Recycling Lake sediment to agriculture: Effects on plant growth, nutrient availability, and leaching. Sci. Total Environ. 2021, 753, 141984. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and principles of environmentally sustainable food and agriculture systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Komalawati, K.; Hidayat, S.; Praptana, R.H.; Pertiwi, M.D.; Romdon, A.S.; Hidayat, Y.; Yuniati, D.; Syahyuti, S.; Ramadhan, R.P.; Saptana, S.; et al. Indrawanto, Community-government, and private partnership (CGPP): Revisiting the concept of community-based forest management. Int. For. Rev. 2023, 25, 310–326. [Google Scholar] [CrossRef]
- FAO. Building a Common Vision for Sustainable Food and Agriculture; FAO: Rome, Italy, 2014; Volume 56, Available online: https://openknowledge.fao.org/handle/20.500.14283/i3940e (accessed on 5 May 2025).
- Zhang, Y.; Gu, X.; Xu, W.; Zhu, Y.; Zhang, M. Effect of dredged lake sediment as a soil amendment on nutrient supply and rice growth. J. Environ. Manag. 2020, 254, 109808. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.; Wu, J.; Wu, Y. Using lake sediments to improve urban soil fertility and plant productivity. Ecotoxicol. Environ. Saf. 2020, 197, 110586. [Google Scholar] [CrossRef]
- Turno, M.S.; Balingbing, C.A.; Apostol, O.B.; Mendoza, R.C. Growth performance of eggplant seedlings in cocopeat-based growing media with organic additives. Int. J. Agric. Technol. 2021, 17, 1677–1688. [Google Scholar]
- Sutejo, Y.; Setiawan, M.; Nugroho, W. Enhancing soil fertility and maize yield through poultry manure and microbial bioactivator. IOP Conf. Ser. Earth Environ. Sci. 2022, 1041, 012016. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Ejue, W.S.; Dunsin, O. Comparative effects of organic manure and chemical fertilizer on soil properties and maize yield. Agronomy 2023, 13, 1044. [Google Scholar] [CrossRef]
- ISO14044; Environmental Management-Life Cycle Assessment: Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Krisdiana, R.; Prasetiaswati, N.; Sutrisno, I.; Rozi, F.; Harsono, A.; Mejaya, M.J. Financial feasibility and competitiveness levels of soybean varieties in rice-based cropping system of Indonesia. Sustainability 2023, 13, 8334. [Google Scholar] [CrossRef]
- Salamba, H.N.; Malia, I.E.; Hutapea, R.; Rawung, J.B.M.; Sondakh, J.O.; Tandi, O.G. Agronomical and financial feasibility of sweet corn intercropped under the coconut-based farming system in North Sulawesi. In Proceedings of the 4th International Conference on Agribusiness and Rural Development (IConARD 2023), E3S Web of Conferences, Yogyakarta, Indonesia, 9–10 August 2023; EDP Sciences: Les Ulis, France, 2023; p. 02012. [Google Scholar] [CrossRef]
- Borg, I.; Mair, P. The choice of initial configurations in multidimensional scaling: Local minima, fit, and interpretability. Austrian J. Stat. 2017, 46, 19–32. [Google Scholar] [CrossRef]
- Dahliani, L.; Maharani, M.D.D. Palm oil sustainable management using MDS model from social dimension. In Proceedings of the 5th International Conference on Community Development (AMCA 2018), Quezon City, Philippines, 19–20 July 2018; Atlantis Press: Dordrecht, The Netherlands, 2018; pp. 50–53. [Google Scholar] [CrossRef]
- Darwis, V.; Rachmawati, R.R.; Muslim, C.; Chanifah; Sembiring, A.; Ilham, N.; Mufidah, L.; Suhartini, S.H.; Basuki, R.S.; Rina, Y.; et al. Transformation of financial institutions grants from the government to inclusive financial institutions in Indonesia. PLoS ONE 2023, 18, e0286482. [Google Scholar] [CrossRef] [PubMed]
- Smurthwaite, M.; Jiang, L.; Williams, K.S. A review of the LCA literature investigating the methods by which distinct impact categories are compared: M. Environ. Dev. Sustain. 2024, 26, 19113–19129. [Google Scholar] [CrossRef]
- Guinée, J.B. Selection of impact categories and classification of LCI results to impact categories. In Life Cycle Impact Assessment; Springer: Dordrecht, The Netherlands, 2015; pp. 17–37. [Google Scholar]
- Young, K.; Hammett, K.R.W. Temperature patterns in exposed black polyethylene plant containers. Agric. Meteorol. 1980, 21, 165–172. [Google Scholar] [CrossRef]
- Wijayanto, F.; Khairuddin, M.S.; Alfitra, N.Z.; Tsaqif, N.; Hanafi, F.I. The Ecofriendly Polybag: Natural Polybag, as an Alternative for Plastic Polybag Problem. J. Integr. Sains Dan Qur’an JISQu 2022, 1, 1–7. Available online: https://jisqu.trensains.sch.id/index.php/journal/article/view/31 (accessed on 6 May 2025).
- Renella, G. Recycling and reuse of sediments in agriculture: Where is the problem. Sustainability 2021, 13, 1648. [Google Scholar] [CrossRef]
- Aide, M.; Braden, I.; Nakasagga, S.; Svenson, S. Improving forest soil health and ecosystem services to minimize the impact of climate change. Agric. Sci. 2023, 14, 1153–1168. [Google Scholar] [CrossRef]
- Hisano, M.; Searle, E.; Chen, H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 2017, 93, 439–456. [Google Scholar] [CrossRef]
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.; Coscieme, L.; Golden, A.; Purvis, A. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef]
- Riyanto, D.; Dianawati, M.; Sutardi; Susanto, H.; Sasongko, N.A.; Sri Ratmini, N.P.; Rejekiningrum, P.; Yustisia; Susilawati, H.L.; Hanafi, H.; et al. The Effect of P2O5 Fertilizer, Zeolite and Volcanic Soil Media from Different Altitudes on the Soil Mineral, Growth, Yield and Asiaticoside Content of Centella asiatica L. Sustainability 2022, 14, 15394. [Google Scholar] [CrossRef]
- Kartikawati, R.; Hanudin, E.; Purwanto, B.H. Physico-Chemical Properties of Volcanic Soils under Different Perennial Plants from Upland Area of Mt. Merapi, Indonesia. Planta Trop. 2019, 7, 93–102. [Google Scholar] [CrossRef]
- Nitisapto, M.; Maas, A.; Purwanto, B.H.; Sudira, P. Water Use Efficiency in Vertical Cropping System with Volcanic Ash Media by Using Biochar and Urban Waste Compost Fertilizer as Soil Amendment. Ilmu Pertan. Agric. Sci. 2021, 20, 45–56. [Google Scholar] [CrossRef]
- Szara-Bąk, M.; Baran, A.; Klimkowicz-Pawlas, A. Recycling of bottom sediment to agriculture: Effects on plant growth and soil properties. J. Soils Sediments 2023, 23, 539–551. [Google Scholar] [CrossRef]
- Gowthami, K.; Vidhya, D.; Muthuvel, I.; Djanaguiraman, M.; Jagadeeswaran, R. Cocopeat: An alternative to soil medium for propagation of papaya (Carica papaya L.). Plant Sci. Today 2024, 11, 1–10. [Google Scholar] [CrossRef]
- Tataru-Farmus, R.E.; Zaharia, C.; Suteu, D.; Blaga, A.C. Biomass-based soil in ecological agriculture: Characteristics and wheat grains development trends. J. Appl. Life Sci. Environ. 2022, LIV, 273–288. Available online: https://repository.iuls.ro/xmlui/handle/20.500.12811/2281 (accessed on 5 May 2025). [CrossRef]
- Goswami, M.; Daultani, Y. Product quality optimization vs production capacity optimization: An analytical perspective. Int. J. Qual. Reliab. Manag. 2023, 40, 801–819. [Google Scholar] [CrossRef]
- Mishrif, A.; Hammad, M.A. Multi-factor cost adjustment for enhanced export-oriented production capacity in manufacturing firms. Economies 2024, 12, 219. [Google Scholar] [CrossRef]
- Chanifah; Sahara, D.; Susila, A.; Triastono, J. Advantages of early-maturity soybean varieties as a farmer adaptation effort to climate change in Grobogan Regency. IOP Conf. Ser. Earth Environ. Sci. 2024, 1323, 012006. [Google Scholar] [CrossRef]
- Ruma, K.F.; Kamruzzaman, M.; Jui, K.F.; Rahman, K.T.; Hasan, J. A comparative financial analysis of four crops based cropping patternswith existing cropping patternsin different locations of Bangladesh. Asian J. Res. Agric. For. 2023, 9, 110–123. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 1st ed.; Free Press: New York, NY, USA, 1962; 367p. [Google Scholar]
- Hristov, I.; Appolloni, A.; Chirico, A.; Cheng, W. The role of the environmental dimension in the performance management system: A systematic review and conceptual framework. J. Clean. Prod. 2021, 293, 126075. [Google Scholar] [CrossRef]
- Nugroho, N.P. Sediment export estimation from the catchment area of Lake Rawapening using InVEST model. IOP Conf. Ser. Earth Environ. Sci. 2022, 950, 012072. [Google Scholar] [CrossRef]
- Sadewo, B.E.C.; Ni’am, M.F.; Poedjiastoeti, H. Prediksi laju sedimentasi di Sub DAS Rawapening Kabupaten Semarang. BRILIANT J. Ris. Dan Konseptual 2022, 7, 220–228. [Google Scholar] [CrossRef]
- Kebede, T.; Diriba, D.; Boki, A. The effect of organic solid waste compost on soil properties, growth, and yield of Swiss chard crop (Beta vulgaris L.). Sci. World J. 2023, 2023, 6175746. [Google Scholar] [CrossRef]
- Roeswitawati, D.; Fatonah, S.N.; Iriany, A. Study of the use of organic polybags based on water hyacinth and coconut fiber on growth and results of big red chili (Capsicum annum L.). In Proceedings of the 6th International Conference on Community Development (ICCD 2019), Bandar Seri Begawan, Brunei, 24–25 July 2019; Atlantis Press: Dordrecht, The Netherlands, 2019; pp. 152–155. [Google Scholar] [CrossRef]
- Younis, S.M.; Sheded, R.S.M.; Ali, T.H.; Ibrahim, M.M. Development of a drum seeding metering unit for sowing vegetable plug tray seedlings. Plant Arch. 2020, 20, 3119–3130. Available online: https://www.plantarchives.org/SPECIAL%20ISSUE%2020-1/204__3119-3130_.pdf (accessed on 7 May 2025).
- Pudjiono, E.; Ahmad, A.M.; Subekti, R. Engineering tube casting machine of organic planting pouch. J. Teknol. Pertan. 2020, 2, 145–160. Available online: https://jtp.ub.ac.id/index.php/jtp/article/view/128/490 (accessed on 5 May 2025).
- Mwangi, W.; Kariuki, S.; Wagara, N. Substitution of plastics with organic pots in tree seedlings production for sustainable environmental conservation. E. Afr. J. Sci. Technol. Innov. 2021, 2, 1–15. [Google Scholar] [CrossRef]
- Ferrans, L.; Schmieder, F.; Hogland, W. Dredged sediments: A new source of nutrients as a plant-growing substrate. In Proceedings of the 22th EGU General Assembly, EGU22, Vienna, Austria and Online, 23–27 May 2022; p. EGU22-13557. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Omine, K.; Li, J.; Flemmy, S.O. Feasibility study of low-environmental-load methods for treating high-water-content Waste Dredged Clay (WDC)—A case study of WDC treatment at Kumamoto Prefecture Ohkirihata Reservoir in Japan. Sustainability 2023, 15, 8243. [Google Scholar] [CrossRef]
- Han, M.; Dsouza, M.; Zhou, C.; Li, H.; Zhang, J.; Chen, C.; Yao, Q.; Zhong, C.; Zhou, H.; Gilbert, J.A.; et al. Agricultural risk factors influence microbial ecology in Honghu Lake. Genom. Proteom. Bioinform. 2018, 17, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Stenfert Kroese, J.; Batista, P.V.; Jacobs, S.R.; Breuer, L.; Quinton, J.N.; Rufino, M.C. Agricultural land is the main source of stream sediments after conversion of an African montane forest. Sci. Rep. 2020, 10, 14827. [Google Scholar] [CrossRef]
- Askarova, D.A.; Glebov, V.V.; Rodionova, O.M.; Anikina, E.V. Various approaches for reduction of heavy metal pollution of topsoil. AIP Conf. Proc. 2019, 2063, 040003. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Y.; Zhao, Y.; Li, Y.; Sui, Y.; Tang, C.; Jin, J.; Liu, X. Reducing topsoil depth decreases the yield and nutrient uptake of maize and soybean grown in a glacial till. Land Degrad. Dev. 2021, 32, 2849–2860. [Google Scholar] [CrossRef]
- Umeghalu, I.C.E.; Nwachukwu, C.P.; Umobi, C.O.; Uba, J.I.; Anonye, O.F. Agricultural land clearing is imperative for a successful agricultural mechanization program in Nigeria. Agrobiol. Rec. 2022, 10, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Grossnickle, S.C.; MacDonald, J.E. Why seedlings grow: Influence of plant attributes. New For. 2018, 49, 1–34. [Google Scholar] [CrossRef]
- Haj Sghaier, A.; Tarnawa, Á.; Khaeim, H.; Kovács, G.P.; Gyuricza, C.; Kende, Z. The effects of temperature and water on the seed germination and seedling development of rapeseed (Brassica napus L.). Plants 2022, 11, 2819. [Google Scholar] [CrossRef]
- Abera, A.; Wana, D. Effects of agricultural land management practices on crop production and household income in Ojoje, Southern Ethiopia. J. Degraded Min. Lands Manag. 2024, 11, 5817–5828. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. New generation sustainable technologies for soilless vegetable production. Horticulturae 2024, 10, 49. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Mardiatno, D.; Faridah, F.; Listyaningrum, N.; Hastari, N.R.F.; Rhosadi, I.; da Costa, A.D.S.; Rahmadana, A.D.W.; Lisan, A.R.A.K.; Sunarno, S.; Setiawan, M.A. A holistic review of lake rawapening management practices, indonesia: Pillar-based and object-based management. Water 2023, 15, 39. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, X.; Liu, Z.; Yang, Q. Impact of pricing and product information on consumer buying behavior with customer satisfaction in a mediating role. Front. Psychol. 2021, 12, 720151. [Google Scholar] [CrossRef]
- Pello, W.Y.; Renoat, E.; Banunaek, M.F. The effect of agricultural extension agent’s role and motivation on wet-rice cultivation technology innovation in East Kupang Sub District of Kupang Regency of East Nusa Tenggara Province. J. Penyul. 2019, 15, 184–194. Available online: https://journal.ipb.ac.id/index.php/jupe/article/view/27732/17742 (accessed on 7 May 2025).
- Hulopi, I.; Murtisari, A.; Boekoesoe, Y. Pengaruh kegiatan penunjang agribisnis terhadap produksi padi sawah di Kelurahan Dembe Jaya Kecamatan Kota Utara Kota Gorontalo. AGRINESIA J. Ilm. Agribisnis 2018, 2, 219–231. Available online: https://ejurnal.ung.ac.id/index.php/AGR/article/view/9666 (accessed on 6 May 2025).
- Nguyen, P.H.; Hsu-Hao, L.; Pham, H.A.; Thi, H.L.; Do, Q.M.; Nguyen, D.H.; Nguyen, T.H. Material sourcing characteristics andfirm performance: An empirical study in Vietnam. Mathematics 2022, 10, 1691. [Google Scholar] [CrossRef]
- Farnworth, C.R.; Galiè, A.; Gumucio, T.; Jumba, H.; Kramer, B.; Ragasa, C. Women’s seed entrepreneurship in aquaculture, maize, and poultry value chains in Ghana, Kenya, and Tanzania. Front. Sustain. Food Syst 2024, 8, 1198130. [Google Scholar] [CrossRef]
- Jirgi, A.J.; Oluwafemi, R.A.; Oseghale, A.I. Empirical Review of Women Participation in Some Agricultural Sub-Sectors of the Globe. J. Agripreneurship Sustain. Dev. 2020, 3, 163–171. [Google Scholar] [CrossRef]
- Chebet, N. The Role of Women on Agricultural Sector Growth. Int. J. Agric. 2023, 8, 41–50. [Google Scholar] [CrossRef]
- Nicolopoulou, K.; Karataş-Özkan, M.; Vas, C.; Nouman, M. An incubation perspective on social innovation: The London Hub-a social incubator. R&D Manag. 2022, 47, 368–384. [Google Scholar] [CrossRef]
- Krasachat, W.; Yaisawarng, S. Directional Distance Function Technical Efficiency of Chili Production in Thailand. Sustainability 2021, 13, 741. [Google Scholar] [CrossRef]
- Saptana; Sayekti, A.L.; Perwita, A.D.; Sayaka, B.; Gunawan, E.; Sukmaya, S.G.; Hayati, N.Q.; Yusuf; Sumaryanto; Yufdy, M.P.; et al. Analysis of competitive and comparative advantages of potato production in Indonesia. PLoS ONE 2023, 17, e0263633. [Google Scholar] [CrossRef] [PubMed]
Raw Material | Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | Carbon Organic (%) | Total Nitrogen | Total Phosphorus | Available Phos Phorus | Total Potassium | Available Potassium | CEC | ||
Carbon Content | OM Content | (%) | ppm | ppm | ppm | ppm | cmol/kg | ||
Original Rawapening Lake sediment | 6.16 | 56.14 | 96.79 | 2.12 | 512.43 | 101.09 | 2.32 | 0.73 | 46.9 |
Cocopeat | 7.11 | 46.72 | 80.55 | 0.82 | 455.33 | 37.35 | 35.34 | - | - |
Poultry manure | 7.8 | 20.84 | 35.94 | 3.13 | 1987.99 | 244.34 | 186.21 | - | - |
Variables Dimension | Attributes |
---|---|
Environment | Reduction in pollution from plastic polybags |
Reduction in sedimentation damage | |
The potential of agricultural biomass waste utilization | |
Mineral soil exploitation decreases | |
Water irrigation used efficiency | |
The potential of pesticide reduction. | |
Technology | Media mixture access and availability |
Sediment media access and availability | |
Soil block formulation preparation is easy | |
Effect of soil block media on seed germination and growth | |
Time and cost savings from soil block technology | |
Production increases from soil block technology | |
Product quality improvement from soil block technology | |
Production stability opportunity with soil block technology across seasons | |
Economics | Production and labor cost reduction |
Potential market of seedling media | |
Price of seedling media | |
Capital access | |
Input production access | |
Income increases opportunities | |
Social | Acceptance of soil block technology among business actors |
Labor absorption increases in Rawapening | |
Labor absorption boosts in vegetable seedling centers | |
Women’s Involvement Enhancement | |
Family welfare improvement opportunities | |
New business creation prospects | |
Community resilience augmentation potential | |
Growth in community awareness | |
Institutional | Institutional support enhances marketing of soil block seedling media |
Institutions facilitate capital access for soil block seedling media development | |
Institutional support for the sustainability of the soil block seedling media business | |
Government support fosters soil block seedling media development | |
Private sector involvement supports soil block seedling media development | |
Existing institutions enhance production input accessibility |
Data Inventory | Unit | Value | |
---|---|---|---|
Polybag | Soil Block | ||
Size | cm3 | 30 | 27 |
Fuel (Diesel) | L | 0.000025 | - |
Fuel (Petrol, unleaded) | L | - | 0.0000135 |
Fertilizer (Super Phosphate 36TM) * | g | 0.064 | - |
Cocopeat | g | - | 5.91 |
Dolomite | g | - | 0.985 |
Rock Phosphate | g | 0.985 | |
Water | L | - | 0.0122 |
Plastic Polybag | g | 0.065 | - |
Pesticides | g | 0.0015 | 0.00068 |
Insecticides | g | 0.00135 | 0.00061 |
Manure | g | 8.856 | 5.91 |
Sediment | g | 2.952 | 5.91 |
No | Media Type | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | C Organic (%) | Total Nitrogen | Total Phosphorus | Available Phosphorus | Total Potassium | Available Potassium | CEC | |||
Carbon Content | OM Content | (%) | ppm | ppm | ppm | ppm | cmol/kg | |||
1 | Wonosobo soil block media * | 7.15 | 34.97 | 60.30 | 1.11 | 1580.07 | 155.39 | 85.34 | 522.91 | 38.50 |
2 | Magelang soil block media ** | 6.67 | 9.84 | 16.97 | 0.31 | 393.90 | 18.91 | 43.79 | 10.11 | 12.00 |
3 | Mineral soil media | 7.14 | 3.65 | 6.29 | 0.20 | 142.83 | 23.47 | 48.45 | 34.90 | 11.45 |
No | Description | The Media of Polybag | The Media of Soil Block | Efficiency |
---|---|---|---|---|
1. | Production capacity of 1 person working day in 8 h (tray/man-day) | 8.00 | 82.00 | (+) 90.24% |
2. | Production cost (IDR/tray) | 14,550.00 | 10,961.00 | (−) 24.67% |
a. Raw material (IDR/tray) | 9450.00 | 8961.00 | (−) 5.17% | |
b. Labor wages (IDR/tray) | 5100.00 | 2000.00 | (−) 60.78% | |
3. | Total cost (IDR) | 116,400.00 | 898,802.00 | |
4. | Price (IDR/tray) | 25,000.00 | 25,000.00 | |
5. | Revenue (IDR) (1 × 4) | 200,000.00 | 2,050,000.00 | (+) 90.24% |
6. | Benefit (IDR) (5–3) | 83,600.00 | 1,151,198.00 | (+) 92.74% |
7. | R/C (5/3) | 1.72 | 2.28 | (+) 24.56% |
8. | MBCR | 1.36 |
Dimension | Sustainability Indeks | Stres Value | R2 | Monte Carlo Indeks | Diferences | Category of Sustainability |
---|---|---|---|---|---|---|
Environment | 73.22 | 0.15 | 0.94 | 73.32 | 0.10 | Enough (moderately sustainable) |
Technology | 65.11 | 0.15 | 0.95 | 64.95 | 0.16 | Enough (moderately sustainable) |
Economics | 62.62 | 0.16 | 0.94 | 63.14 | 0.52 | Enough (moderately sustainable) |
Social | 60.60 | 0.15 | 0.95 | 60.41 | 0.19 | Enough (moderately sustainable) |
Institution | 36.96 | 0.15 | 0.94 | 37.27 | 0.31 | Less (less sustainable) |
Mean | 59.70 | 0.15 | 0.94 | 59.82 | Enough (moderately sustainable) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pertiwi, M.D.; Chanifah, C.; Romdon, A.S.; Minarsih, S.; Paminto, A.K.; Komalawati, K.; Isharyadi, F.; Bahua, H.; Arianti, F.D.; Triastono, J.; et al. Sustainability Assessment of Lake Sediment-Based Soil Blocks for Agricultural Seedling Media. Resources 2025, 14, 129. https://doi.org/10.3390/resources14080129
Pertiwi MD, Chanifah C, Romdon AS, Minarsih S, Paminto AK, Komalawati K, Isharyadi F, Bahua H, Arianti FD, Triastono J, et al. Sustainability Assessment of Lake Sediment-Based Soil Blocks for Agricultural Seedling Media. Resources. 2025; 14(8):129. https://doi.org/10.3390/resources14080129
Chicago/Turabian StylePertiwi, Miranti Dian, Chanifah Chanifah, Anggi Sahru Romdon, Sri Minarsih, Ari Kabul Paminto, Komalawati Komalawati, Febrian Isharyadi, Hismiaty Bahua, Forita Dyah Arianti, Joko Triastono, and et al. 2025. "Sustainability Assessment of Lake Sediment-Based Soil Blocks for Agricultural Seedling Media" Resources 14, no. 8: 129. https://doi.org/10.3390/resources14080129
APA StylePertiwi, M. D., Chanifah, C., Romdon, A. S., Minarsih, S., Paminto, A. K., Komalawati, K., Isharyadi, F., Bahua, H., Arianti, F. D., Triastono, J., Wibawa, W., Djarot, I. N., Setyahadi, S., Nuryanto, B., Wasil, A. A., Gayatri, S., Rahadian, R., Darwis, V., Syukur, M., & Praptana, R. H. (2025). Sustainability Assessment of Lake Sediment-Based Soil Blocks for Agricultural Seedling Media. Resources, 14(8), 129. https://doi.org/10.3390/resources14080129