Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrument
2.3. Synthesis and Modification of the rGO-Aunano Nanocomposite
2.4. Electrochemical Detection of As(III)
2.5. Soil Sample Preparation
3. Results and Discussion
3.1. Electrochemical Deposition of the rGO-Aunano Composite
3.2. Characteristics of the Modified Electrodes
3.3. Optimization of the Experimental Conditions
3.4. Stripping Responses of Different Electrodes
3.5. Analytical Performance of rGO-Aunano/GCE
3.6. Stability Measurements
3.7. Interference Studies
3.8. Application to Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ning, Z.; Lobdell, D.T.; Kwok, R.K.; Liu, Z.; Zhang, S.; Ma, C.; Riediker, M.; Mumford, J.L. Residential exposure to drinking water arsenic in Inner Mongolia, China. Toxicol. Appl. Pharmacol. 2007, 222, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Lopipero, P.; Chung, J.; Haque, R.; Hernandez, A.; Moore, L.; Steinmaus, C. Arsenic in drinking water and cancer risks estimated from epidemiological studies in Argentina, Chile, Taiwan and Japan. Epidemiology 2000, 11, 93. [Google Scholar]
- Rodriguez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Yin, X.B.; Yan, X.P.; Jiang, Y.; He, X.W. On-line coupling of capillary electrophoresis to hydride generation atomic fluorescence spectrometry for arsenic speciation analysis. Anal. Chem. 2002, 74, 3720–3725. [Google Scholar] [CrossRef] [PubMed]
- Aggett, J.; Aspell, A.C. The determination of arsenic(III) and total arsenic by atomic-absorption spectroscopy. Analyst 1976, 101, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.P.; Kerrich, R.; Hendry, M.J. Determination of (ultra) trace amounts of arsenic(III) and arsenic(V) in water by inductively coupled plasma mass spectrometry coupled with flow injection on-line sorption preconcentration and separation in a knotted reactor. Anal. Chem. 1998, 70, 4736–4742. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G.; Wang, Z. Optimization of stripping voltammetric sensor by a back propagation artificial neural network for the accurate determination of Pb(II) in the presence of Cd(II). Sensors 2016, 16, 1540. [Google Scholar] [CrossRef]
- Etesami, M.; Karoonian, F.S.; Mohamed, N. Electrochemical deposition of gold nanoparticles on pencil graphite by fast scan cyclic voltammetry. J. Chin. Chem. Soc. 2011, 58, 688–693. [Google Scholar] [CrossRef]
- Xiao, L.; Wildgoose, G.G.; Compton, R.G. Sensitive electrochemical detection of arsenic(III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal. Chim. Acta 2008, 620, 44–49. [Google Scholar] [CrossRef]
- Bu, L.; Gu, T.; Ma, Y.; Chen, C.; Tan, Y.; Xie, Q.; Yao, S. Enhanced cathodic preconcentration of As(0) at Au and Pt electrodes for anodic stripping voltammetry analysis of As(III) and As(V). J. Phys. Chem. C 2015, 119, 11400–11409. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Y.; Zhu, D. Fabrication of gold nanoparticles using a trithiol (thiocyanuric acid) as the capping agent. Langmuir 2002, 18, 3392–3395. [Google Scholar] [CrossRef]
- Zhang, J.; Oyama, M. Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: Characterization and electroanalytical application. Anal. Chim. Acta 2005, 540, 299–306. [Google Scholar] [CrossRef]
- Li, W.W.; Kong, F.Y.; Wang, J.Y. Facile one-pot and rapid synthesis of surfactant-free Au-reduced graphene oxide nanocomposite for trace arsenic(III) detection. Electrochim. Acta 2015, 157, 183–190. [Google Scholar] [CrossRef]
- Fukushima, M.; Yanagi, H.; Hayashi, S.; Suganuma, N. Fabrication of gold nanoparticles and their influence on optical properties of dye-doped sol-gel films. Thin Solid Films 2003, 438, 39–43. [Google Scholar] [CrossRef]
- Dai, X.; Nekrassova, O.; Hyde, M.E.; Compton, R.G. Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal. Chem. 2004, 76, 5924–5929. [Google Scholar] [CrossRef] [PubMed]
- El-Deab, M.S.; Okajima, T.; Ohsaka, T. Electrochemical reduction of oxygen on gold nanoparticle-electrodeposited glassy carbon electrodes. J. Electrochem. Soc. 2003, 150, 851–857. [Google Scholar] [CrossRef]
- Hau, N.Y.; Chang, Y.H.; Huang, Y.T.; Wei, T.C.; Feng, S.P. Direct electroplated metallization on indium tin oxide plastic substrate. Langmuir 2013, 30, 132–139. [Google Scholar] [CrossRef]
- Hau, N.Y.; Chang, Y.H.; Feng, S.P. Kinetics study of silver electrocrystallization on (3-mercaptopropyl) trimethoxysilane-grafted indium tin oxide plastic substrate. Electrochim. Acta 2015, 158, 121–128. [Google Scholar] [CrossRef]
- Feng, H.P.; Paudel, T.; Yu, B.; Chen, S.; Ren, Z.F.; Chen, G. Nanoparticle-Enabled Selective Electrodeposition. Adv. Mater. 2011, 23, 2454–2459. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G.; Wang, Z.; Cheng, J. Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition. Ionics 2016, 23, 767–777. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Luo, S. Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene–Metal Nanocomposite Films. Small 2011, 7, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Compton, R.G. Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III). Anal. Sci. 2006, 22, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Krasnodêbska-Ostrêga, B.; Kowalska, J. Ultrasound-assisted acetic acid extraction of metals from soils. J. Chem. Anal. 2003, 48, 967–974. [Google Scholar]
- Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 2009, 15, 6116–6120. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. C 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef]
- Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun. 2011, 13, 133–137. [Google Scholar] [CrossRef]
- Jin, R.; Cao, Y.C.; Hao, E.; Métraux, G.S.; Schatz, G.C.; Mirkin, C.A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425, 487–490. [Google Scholar] [CrossRef]
- Wei, Y.; Kong, L.T.; Yang, R.; Wang, L.; Liu, J.H.; Huang, X.J. Electrochemical impedance determination of polychlorinated biphenyl using a pyrenecyclodextrin-decorated single-walled carbon nanotube hybrid. Chem. Commun. 2011, 47, 5340–5342. [Google Scholar] [CrossRef]
- Chen, D.M.; Gao, Z.F.; Jia, J.; Li, N.B.; Luo, H.Q. A sensitive and selective electrochemical biosensor for detection of mercury(II) ions based on nicking endonuclease-assisted signal amplification. Sens. Actuators B 2015, 210, 290–296. [Google Scholar] [CrossRef]
- Li, S.S.; Zhou, W.Y.; Jiang, M.; Guo, Z.; Liu, J.H.; Zhang, L.; Huang, X.J. Surface Fe(II)/Fe(III) Cycle Promoted Ultra-Highly Sensitive Electrochemical Sensing of Arsenic(III) with Dumbbell-Like Au/Fe3O4 Nanoparticles. Anal. Chem. 2018, 90, 4569–4577. [Google Scholar] [CrossRef] [PubMed]
- Pungjunun, K.; Chaiyo, S.; Jantrahong, I.; Nantaphol, S.; Siangproh, W.; Chailapakul, O. Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim. Acta 2018, 185, 324. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Hong, H.G. Anodic stripping voltammetric detection of arsenic(III) at platinum-iron(III) nanoparticle modified carbon nanotube on glassy carbon electrode. Bull. Korean Chem. Soc. 2010, 31, 3077–3083. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, J.; Xie, F.; Xiong, S. Electrochemical Detection of As(III) by a rGO/Fe3O4-modified Screen-Printed Carbon Electrode. Anal. Sci. 2016, 32, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Majid, E.; Hrapovic, S.; Liu, Y.; Male, K.B.; Luong, J.H.T. Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem. 2006, 78, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Bajo, E.; Blanco-López, M.C.; Costa-García, A.; Fernández-Abedul, M.T. Electrogeneration of Gold Nanoparticles on Porous-Carbon Paper-Based Electrodes and Application to Inorganic Arsenic Analysis in White Wines by Chronoamperometric Stripping. Anal. Chem. 2017, 89, 6415–6423. [Google Scholar] [CrossRef]
- Devi, P.; Sharma, C.; Kumar, P.; Kumar, M.; Bansod, B.K.S.; Nayak, M.K.; Singla, M.L. Selective electrochemical sensing for arsenite using rGO/Fe3O4 nanocomposites. J. Hazard. Mater. 2017, 322, 85–94. [Google Scholar] [CrossRef]
- Simm, A.O.; Banks, C.E.; Compton, R.G. Sonoelectroanalytical detection of ultra-trace arsenic. Electroanalysis 2005, 17, 335–342. [Google Scholar] [CrossRef]
- Rahman, M.R.; Okajima, T.; Ohsaka, T. Selective detection of As(III) at the Au(111)-like polycrystalline gold electrode. Anal. Chem. 2010, 82, 9169–9176. [Google Scholar] [CrossRef]
- Hossain, M.M.; Islam, M.M.; Ferdousi, S.; Okajima, T.; Ohsaka, T. Anodic Stripping Voltammetric detection of arsenic(III) at gold nanoparticle-modified glassy carbon electrodes prepared by electrodeposition in the presence of various additives. Electroanalysis 2008, 20, 2435–2441. [Google Scholar] [CrossRef]
- Chowdhury, A.N.; Ferdousi, S.; Islam, M.M.; Okajima, T.; Ohsaka, T. Arsenic detection by nanogold/conducting-polymer-modified glassy carbon electrodes. J. Appl. Polym. Sci. 2007, 104, 1306–1311. [Google Scholar] [CrossRef]
Electrodes | Technique | Linear Range (μg/L) | Detection Limit (μg/L) | Reference |
---|---|---|---|---|
Au-RGO/GCE | ASLSV | 0.3–20 | 0.1 | [14] |
AuNP/BDD-modified electrode | SWASV | 100–1500 | 20 | [33] |
nanoPt-Fe(III)/MWCNT/GCE | ASV | 0–225 | 0.75 | [34] |
rGO-Fe3O4/SPCE | SWASV | 2–20 | 0.3 | [35] |
Gold nanoparticle/GCE | ASV | 0–15 | 0.25 | [36] |
AuNP-PCWEs | SWASV | 2–50 | 2.2 | [37] |
rGO/Fe3O4/GCE | SWASV | 0.1–20 | 0.12 | [38] |
Gold disk | SWASV | 225–1800 | 3.7 | [39] |
Sub-BT/Au | DPASV | 0–11.25 | 0.28 | [40] |
Nano-Au/GCE | LSV | 3.675–87.075 | 1.8 | [41] |
I−-nano-Au/PANI/GCE | SWV | 610–3050 | 0.4 | [42] |
rGO-Aunano/GCE | SWASV | 1–60 | 0.08 | This work |
Sample No. | Added (μg/L) | Detected by SWASV a (μg/L) | Detected by HG-AFS a (μg/L) | tcalculated | Recovery (%) |
---|---|---|---|---|---|
1 | - | 13.57 ± 0.58 b | 13.69 ± 0.22 b | 1.95 | - |
5.00 | 18.63 ± 0.74 | 101.20 | |||
10.00 | 23.42 ± 0.60 | 98.50 | |||
2 | - | 18.62 ± 0.52 | 18.73 ± 0.23 | 1.73 | - |
10.00 | 28.43 ± 0.49 | 98.10 | |||
15.00 | 33.49 ± 0.62 | 99.13 | |||
3 | - | 15.38 ± 0.63 | 15.44 ± 0.41 | 1.62 | - |
15.00 | 30.13 ± 0.41 | 98.33 | |||
20.00 | 35.09 ± 0.73 | 98.55 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Liu, G. Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III). Nanomaterials 2019, 9, 41. https://doi.org/10.3390/nano9010041
Zhao G, Liu G. Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III). Nanomaterials. 2019; 9(1):41. https://doi.org/10.3390/nano9010041
Chicago/Turabian StyleZhao, Guo, and Gang Liu. 2019. "Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III)" Nanomaterials 9, no. 1: 41. https://doi.org/10.3390/nano9010041
APA StyleZhao, G., & Liu, G. (2019). Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III). Nanomaterials, 9(1), 41. https://doi.org/10.3390/nano9010041