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Abstract: In this study, a stable, sensitive electrochemical sensor was fabricated by the electrochemical
codeposition of reduced graphene oxide (rGO) and gold nanoparticles on a glassy carbon electrode
(rGO-Aunano/GCE) using cyclic voltammetry (CV), which enabled a simple and controllable
electrode modification strategy for the determination of trace As(III) by square wave anodic
stripping voltammetry (SWASV). SWASV, CV, electrochemical impedance spectroscopy (EIS),
X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the
electrochemical properties and morphology of the proposed sensing platform. The number of sweep
segments, the deposition potential and the deposition time were optimized to obtain ideal sensitivity.
The presence of rGO from the electroreduction of graphene oxide on the sensing interface effectively
enlarged the specific surface area and consequently improved the preconcentration capacity for As(III).
The rGO-Aunano/GCE sensor exhibited outstanding detection performance for As(III) due to the
combined effect of Aunano and rGO formed during the electroreduction process. Under the optimized
conditions, a linear range from 13.375 × 10−9 to 668.75 × 10−9 mol/L (1.0 to 50.0 µg/L) was obtained
with a detection limit of 1.07 × 10−9 mol/L (0.08 µg/L) (S/N = 3). The reproducibility and reliability
of the rGO-Aunano/GCE sensor were also verified by performing 8 repetitive measurements. Finally,
the rGO-Aunano/GCE sensor was used for the analysis of real samples with satisfactory results.

Keywords: reduced graphene oxide; gold nanoparticle; square wave anodic stripping voltammetry;
arsenic detection; soil

1. Introduction

While As(III) is one of the most toxic forms of arsenic, even at low concentrations, it is widespread
in natural environments [1,2]. As(III) contamination in agricultural soil is a serious problem because
the presence of As in the food chain can cause many health problems [3,4], such as bladder cancer,
lung cancer, keratosis and skin lesions. Therefore, the development of a simple, fast and sensitive
method for the determination of As(III) in soil is urgently needed. Generally, there are two types
of analytical strategies for the detection of As(III): spectroscopic and electrochemical methods.
Spectroscopic methods, such as inductively coupled plasma mass spectrometry [5], atomic absorption
spectroscopy [6] and hydride generation atomic fluorescence spectrometry [7], have very high detection
accuracy. However, these methods require expensive instruments, long analysis times, and laboratory
conditions. They are not suitable for on-site analyses and routine monitoring, especially for large
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numbers of samples. In contrast, one electrochemical method, anodic stripping voltammetry (ASV),
has been widely used for trace analyses of metal ions in different environments and industry samples
due to its outstanding analytical performance, low cost, convenient operation and high sensitivity. ASV
mainly consists of two steps [8]: preconcentration and stripping. The target metals are electrodeposited
on the working electrode surface under a reduction potential in the preconcentration step. Then,
the metals preconcentrated on the electrode surface are oxidized into their cationic forms under a
scanning potential, and the concentration of the target heavy metal is proportional to the stripping
response current. Therefore, the working electrode substrate plays a key role in improving the detection
sensitivity of this technique.

Dropping mercury electrodes have frequently been used with stripping voltammetry for the
analysis of heavy metals due to their high sensitivity and reproducibility. However, because of their
operational limitations and potential toxicity, electrochemical sensors that use dropping mercury
electrodes as the working electrode have been gradually replaced by sensors with solid electrodes.
ASV with gold nanomaterial-modified electrodes has been widely applied for the determination of
As(III) [9,10], and gold has already been verified to improve the sensitivity of a bare electrode by the
electrogeneration of H2 [11]. Gold nanoparticles can be made by chemical synthesis [12,13], ultraviolet
(UV) light [14], electron-beam irradiation [15] or electrochemical methods [16,17].

Some reports have indicated the cathodic formation of a single As(0) monolayer on an Au surface,
possibly due to the nonconducting nature of As(0) deposits. Because As(0) deposits are nonconductive,
increasing the specific surface area is very important to improve the ASV analysis sensitivity for As(III).
Li et al. reported a facile and green approach for fabricating Au-reduced graphene oxide (Au-rGO)
nanocomposites by UV irradiation to detect As(III) [14]. The mixture of GO and HAuCl4 was irradiated
with a high-intensity UV spot lamp, while nitrogen was bubbled through the solution to activate
the reduction reaction. After 20 min of irradiation, the product was separated by centrifugation and
washed with water. Next, the sample was redispersed in water and used to modify an electrode surface
for the detection of As(III). Electrodeposition is a cost-effective approach to rapidly and directly grow
Au nanoparticles in an aqueous solution. The interplay between the crystal growth rate and the mass
transport rate in the electrocrystallization can be readily manipulated via the control of deposition
potential without changing the reactant concentration [18–20]. Recently, an electrochemical reduction
strategy was developed and further applied to the modification of graphene using graphene oxide
(GO). The results demonstrated that GO can be reduced on the surface of an electrode to form one
or several graphene layers with a controllable potential, such as those used in cyclic voltammetry
(CV) and potentiostatic methods [21]. Hence, based on the discussion above, the preparation and
modification of reduced GO (rGO) and Aunano by a one-step coelectrodeposition process to form
a rGO-Aunano sensing interface is possible because under cathodic conditions, both metal ions and
GO have the ability to obtain electrons and activate reduction reactions, as reported in reference [22].
Additionally, the thickness of the Au-rGO nanocomposite film formed on the electrode surface can be
controlled by the deposition time. After the optimization of the deposition time, the total time needed
for the preparation of nanocomposite and modification of the electrode is 120 s, which is far less than
the time for the ultraviolet irradiation method. Clearly, compared to the ultraviolet irradiation method
electrochemical deposition is a fast, easy, convenient and effective method that does not require special
instruments for the preparation of Au-rGO nanocomposite films [23].

In this study, we attempted to develop a rGO-Aunano nanocomposite with a high specific surface
area and excellent catalytic performance using solution-dispersed GO and HAuCl4 with CV, which
is a controllable technique that produces sensitive, homogeneous and stable sensing interfaces.
The proposed rGO-Aunano-modified glassy carbon electrode (GCE) exhibited high sensitivity and stability
due to the combined effect of the rGO and Aunano formed via electrochemical reduction, outstanding
catalytic ability for As(III) and good electrical conductivity. The electrochemical analysis parameters, i.e.,
the number of sweep segments, deposition potential and deposition time, were optimized. Interference
from nontarget heavy metals and the repeatability of the developed electrochemical platform were
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also investigated. Finally, the fabricated rGO-Aunano/GCE was applied for the analysis of trace As(III)
in real soil samples by SWASV with satisfactory results.

2. Materials and Methods

2.1. Materials

HAuCl4 was purchased from Sinopharm Chemical Reagent Co., Ltd. (c). Arsenic trioxide (As2O3)
was purchased from Aldrich (Sigma-Aldrich, Saint Louis, MO, USA) and then dissolved in 1.0 M
aqueous NaOH to create a 1000 mg/L solution. GO was obtained from Nanjing JCNANO Materials
Tech Co., Ltd. (Nanjing, China). A nitric acid solution (1.0 M) was used as the supporting electrolyte
during the stripping voltammetry analysis of As(III). Millipore-Q (18.2 MΩ) water was used for
all experiments.

2.2. Instrument

Scanning electron microscopy (SEM) was performed on a NovaNanoSEM 450 scanning electron
microscope. X-ray diffraction (XRD) patterns of Aunano were obtained with a PANalytical Empyrean
Series 2 X-ray diffractometer in the 2θ range from 30◦ to 90◦. The electrochemical measurements
and analyses, such as electrochemical impedance spectroscopy (EIS), CV and SWASV, were carried
out using a CHI660D electrochemical workstation (Shanghai CH Instruments, Shanghai, China).
A Pt wire electrode, Ag/AgCl electrode and GCE (ø3 mm) were used as the counter, reference and
working electrodes, respectively, to construct a three-electrode system. A 25 mL beaker was used as
the electrolytic cell for all electrochemical measurements. A magnetic stirrer was used to stir the test
solution during the deposition step.

2.3. Synthesis and Modification of the rGO-Aunano Nanocomposite

Prior to modification, the GCE surface was polished using 0.05 mm alumina powder, and the
electrode was then sonicated in 1:1 HNO3, absolute ethanol and water in sequence to remove alumina
residue. GO was dispersed in a PBS solution (0.1 M, pH 9.0) by ultrasonication to form a GO dispersion
with a concentration of 0.1 mg/mL. HAuCl4 was added to the GO suspension to form 0.1 mM Au3+,
and then nitrogen purging was performed for 1 h to deoxygenate the solution and exfoliate the stacked
GO. CV electrodeposition was carried out at a scan rate of 50 mV/s in the potential range from −1.4
to 0.6 V for 10 sweep segments (i.e., 5 cycles). After electrodeposition, the rGO-Aunano/GCE was
gently washed with ultrapure water. The same procedures described above were used to prepare the
other electrodes.

2.4. Electrochemical Detection of As(III)

The SWASV measurements for As(III) detection were carried out based on a three-electrode
system that used the rGO-Aunano/GCE as the working electrode under the optimized conditions.
A deposition potential of −0.3 V vs. Ag/AgCl was applied to the as-prepared rGO-Aunano/GCE for
250 s in a nitric acid solution (0.1 M) with stirring during the deposition step. After equilibration for
10 s, the stripping voltammogram was recorded from −0.2 to 0.4 V vs. Ag/AgCl with a step potential
of 5 mV, a pulse amplitude of 25 mV and a frequency of 25 Hz. An activation process was initiated in
the nitric acid solution (0.1 M) to clean the electrode surface and remove previous residual As(0) using
a constant positive potential of 0.6 V for 120 s. For comparison, the same process and conditions were
used for the other modified electrodes.

2.5. Soil Sample Preparation

The soil samples were obtained from farmland in China. The detailed process is as follows: first,
40 mL of 0.1 M nitric acid was mixed with a 10 g soil sample using strong shaking. Then, a portable
ultrasonic extractor was used to sonicate the above mixture for 10 min. After that, the obtained mixed
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solution was centrifuged (2000 rpm) using a portable centrifuge, and then, 20 mL of supernatant
was loaded into a 30 mL electrolyte cell for the SWASV measurements. Krasnodêbska-Ostrêga and
Kowalska [24] verified that there is no significant difference between the ultrasonic-assisted extraction
method and the method proposed by the European Communities Bureau of Reference.

3. Results and Discussion

3.1. Electrochemical Deposition of the rGO-Aunano Composite

The CV electroanalysis curves of GO on a GCE can be seen in Figure 1A, and one oxidation peak (a)
and two reduction peaks (b and c) can be observed. The peak currents increased with successive
potential scans, demonstrating that GO was successfully electrochemically reduced on the electrode
surface. The current peak (c) was due to the reduction of the oxygen-containing groups on GO [25–27].
The peak currents that appeared at positions “a” and “b” were due to the redox reaction of some redox
pairs on the graphene plane, and peak “c” was attributed to the irreversible electrochemical reduction
of GO [28].

The CV curve for the electroanalysis of 0.1 mM HAuCl4 is shown in Figure 1B. A significant
reduction peak is present at approximately 0.18 V, indicating that the gold salt was reduced from Au3+

to Au0. The electrochemical reduction of Aunano on the electrode surface would be an outstanding
active site for the reduction of Au3+ to Au0. The CV electroanalysis results for the mixture of GO and
HAuCl4 are shown in Figure 1C, and these results were completely different from those observed
for the GO electroanalysis. One significant difference is that the currents from scanning at a positive
potential to scanning at a negative potential in the range of −1.2 V to −1.4 V for the mixture of GO and
HAuCl4 were dramatically larger than those obtained the GO electroanalysis, indicating the continuous
electrodeposition of Aunano, which is more conductive than rGO, onto the electrode surface.
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Figure 1. CV curves for the electroanalysis of (A) 0.1 mg/mL GO, (B) 0.1 mM HAuCl4 and
(C) 0.1 mg/mL GO + 0.1 mM HAuCl4 in pH 9.0 PBS buffer solution at a scan rate of 50 mV/s. The black
dash arrow and blue arrow indicate the scan direction and current changes direction, respectively.

3.2. Characteristics of the Modified Electrodes

As shown in Figure 2, SEM was used to characterize the morphology of the rGO-Aunano sensing
interface formed by electrochemical reduction. SEM imaging of the rGO-Aunano deposited on a GCE
showed a large amount of Aunano evenly distributed on the substrate, which had a wrinkled texture
associated with the presence of rGO sheets. The uniform distribution of Aunano with an average
diameter of ~30 nm indicated that rGO was formed with Aunano by the electrochemical deposition,
which effectively promoted the specific surface area of the sensing interface and allowed a large
amount of Aunano to be deposited on the electrode surface.
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Figure 2. SEM image of rGO-Aunano/GCE.

As shown in Figure 3, XRD analysis was carried out, and the XRD pattern was analyzed to
investigate the monocrystalline nature of the nanoparticles formed by the electrochemical reduction
of the gold salt. Four diffraction peaks appeared at 2θ = 38.2◦, 44.5◦, 65.6◦ and 78.6◦ in the XRD
pattern, which were consistent with the (111), (200), (220) and (311) planes, respectively, of gold
metal (International Center for Diffraction Data, ICDD No. 4-0783), suggesting that the product
synthesized by electrodeposition contains pure crystalline gold. The Bragg reflection peaks of Aunano

clearly indicate a face-centered cubic monocrystalline structure, which is consistent with the crystalline
structure of gold. The XRD pattern shows a very high Bragg reflection peak corresponding to the (111)
lattice plane, indicating that Aunano related to the (111) lattice plane was flat [29] on the planar surface.
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Figure 3. Representative XRD pattern of Aunano synthesized by electrodeposition in a 0.1 mM
HAuCl4 solution.

The electron transfer characteristics of the surfaces of different electrodes were studied by CV
using [Fe(CN)6]3−/4− redox probes, as shown in Figure 4A. The [Fe(CN)6]3−/4− redox currents on
rGO/GCE were larger than those on the bare GCE. Additionally, the potential difference between the
oxidation peak and reduction peak of the [Fe(CN)6]3−/4− redox probe decreased because of the good
electron transfer capability of rGO. The redox currents of the redox probes were further enhanced on
rGO-Aunano/GCE compared with those on bare GCE and rGO/GCE, which demonstrated that the
presence of Aunano in the rGO-Aunano composite effectively improves the electron transfer capability.Nanomaterials 2019, 9, x FOR PEER REVIEW  7 of 14 
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5 mM [Fe(CN)6]3−/4− containing 0.1 M KCl.

In this study, EIS, a common electrochemical characterization method that consists of low- and
high-frequency regions corresponding to semicircular and linear portions, respectively, was also used
to further investigate the electron transfer kinetics of the different electrodes, as shown in Figure 4B.
Additionally, an equivalent circuit was used to fit the EIS data, as shown in Figure 4B, where Rct, Rs
and CDL represent the charge transfer resistance, resistance of solution and double layer capacitance,
respectively. Among the three parameters, Rct is the most important key factor and is widely used for
the characterization of electron transfer kinetics on the electrode surface. The semicircular and linear
portions represent the Rct and the surface diffusion process, respectively, which reflects the electron
transfer kinetics of [Fe(CN)6]3−/4− at the electrode interface [30]. A smaller, well-defined semicircle
was observed in the high-frequency region with rGO/GCE than in the region of bare GCE, which
suggested that the presence of rGO reduced the impedance of the electrode interface [31]. The smallest
Rct value was observed with rGO-Aunano/GCE because the corresponding diameter of the semicircle
was the smallest, which suggested that the presence of Aunano in the rGO layer can effectively improve
the electron transfer kinetics of the electrode surface. The first EIS point of all the electrodes in the
low-frequency region was almost the same, which indicated that Rs was the same for all the electrodes.
These results were in good agreement with the CV results.



Nanomaterials 2019, 9, 41 7 of 13

3.3. Optimization of the Experimental Conditions

In this study, the number of sweep segments, deposition time and deposition potential were
investigated to determine the optimal experimental conditions for rGO-Aunano/GCE that result in
the highest detection sensitivity of As(III). The effect of deposition time on the stripping response
was investigated in a nitric acid solution (0.1 M). The thickness of the rGO-Aunano sensing composite,
which could have a significant effect on the sensitivity, can be controlled by changing the number of
electrodeposition cycles, i.e., the number of sweep segments. In this work, 4 to 18 sweep segments were
tested to optimize the thickness of the sensing film, and the results can be seen in Figure 5A, which
shows the As(III) stripping response with respect to the number of electrodeposition sweep segments.
The stripping response of As(III) significantly increased with the number of sweep segments in the
range from 4 to 10. This increase may be because the GCE surface was not saturated with rGO-Aunano

until the number of sweep segments reached 10. As the number of sweep segments was increased
above 10, the stripping response of As(III) remained nearly constant. Thus, 10 sweep segments were
used for further experiments.
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Figure 5. The effects of (A) the number of sweep segments, (B) the deposition potential and (C) the
deposition time on the As(III) stripping peak currents on rGO-Aunano/GCE in a 0.1 M HNO3 solution
containing 15 µg/L As(III).

As shown in Figure 5B, the deposition potential was optimized for the As(III) stripping response
in the potential range from −0.1 to −0.6 V with a deposition time of 250 s. At a deposition potential of
−0.3 V, the highest peak currents were obtained; thus, a deposition potential of −0.3 V was used for
further analyses.

Additionally, the effect of the deposition time on the stripping response was investigated in the
range from 10 to 450 s, as shown in Figure 5C. The stripping signals of As(III) sharply increased
as the deposition time increased. Finally, a deposition time of 250 s was chosen for the following
measurements as a compromise between sensitivity and analysis time.

3.4. Stripping Responses of Different Electrodes

The stripping responses of different electrodes, i.e., a bare GCE, rGO/GCE, Aunano/GCE and
rGO-Aunano/GCE, were investigated under the optimum conditions. As shown in Figure 6, As(III)
produced no obvious response on bare GCE and rGO/GCE. However, a significant As(III) response
can be observed on Aunano/GCE. A higher and sharper As(III) stripping response was obtained on
rGO-Aunano/GCE. The enhanced stripping response of rGO-Aunano/GCE can be attributed to the
following: (1) the electrodeposition of solution-state As(III) was enhanced due to the electrogeneration
of H2 near Aunano by chemical reduction [11]; (2) rGO increased the specific surface area and
conductivity of the sensing interface; and (3) the combined effect of Aunano and rGO synthesized
by electrochemical reduction imparted a very high sensitivity for As(III) detection [14]. The results
show that the rGO-Aunano sensing interface-modified GCE has outstanding sensitivity and is highly
promising for application.
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Figure 6. Comparison of SWASV curves for different modified electrodes used for the detection of
20 µg/L As(III) at a deposition potential of −0.3 V with a deposition time of 250 s in a 0.1 M nitric
acid solution.

3.5. Analytical Performance of rGO-Aunano/GCE

Under the optimal conditions, calibration curves for the stripping response of As(III) at both
common and trace level concentrations were established. A series of SWASV As(III) responses and the
corresponding calibration plots in the concentration range from 1 to 50 µg/L are shown in Figure 7A,B,
respectively. The calibration curve and correlation coefficient were y = 1.521x + 7.89 (x: µg/L, y: µA) and
0.992, respectively. A significant and good linear relationship between the stripping peak current and
the concentration of As(III) was obtained between 1.0 and 50.0 µg/L with a sensitivity of 1.521 µAµg/L.
The SWASV As(III) responses in a lower concentration range, i.e., 0.1–1.2 µg/L, are shown in Figure 8A.
The calibration curve and correlation coefficient were y = 10.597x − 0.401 (x: µg/L, y: µA) and 0.985,
respectively. A detection limit of 0.08 µg/L was obtained according to the formula LOD = 3 σ/S, where
σ is the standard deviation of a blank sample tested 10 times and S is the slope of the corresponding
linear calibration equation of y = 1.521x + 7.89. The responses indicate that a higher sensitivity
and lower LOD can be obtained by increasing the deposition time from 250 s to 800 s (Figure 8B).
The specific stripping potential of As(III) changed as the As concentration changed from low to high.
The peak shifting may be explained by the oxidation of additional As deposited on the electrode
surface at a low positive potential with a high concentration of As(III). With a low concentration of
As(III), only a trace amount of As was deposited on the electrode surface and was difficult to oxidize
at a low positive potential; thus, the peak appeared at a more positive potential [32]. A comparison
of the major analytical properties obtained in this work and those from previous work is shown in
Table 1. Table 1 shows that the analytical performance of rGO-Aunano/GCE is comparable and even
better than that in previous reports, and this electrode is more controllable and easier to prepare and
use and offers a lower limit of detection than other previously reported electrodes.
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Table 1. Comparison of different modified electrodes for the determination of As(III).

Electrodes Technique Linear Range
(µg/L)

Detection Limit
(µg/L) Reference

Au-RGO/GCE ASLSV 0.3–20 0.1 [14]
AuNP/BDD-modified electrode SWASV 100–1500 20 [33]
nanoPt-Fe(III)/MWCNT/GCE ASV 0–225 0.75 [34]

rGO-Fe3O4/SPCE SWASV 2–20 0.3 [35]
Gold nanoparticle/GCE ASV 0–15 0.25 [36]

AuNP-PCWEs SWASV 2–50 2.2 [37]
rGO/Fe3O4/GCE SWASV 0.1–20 0.12 [38]

Gold disk SWASV 225–1800 3.7 [39]
Sub-BT/Au DPASV 0–11.25 0.28 [40]

Nano-Au/GCE LSV 3.675–87.075 1.8 [41]
I−-nano-Au/PANI/GCE SWV 610–3050 0.4 [42]

rGO-Aunano/GCE SWASV 1–60 0.08 This work

ASLSV: anodic stripping linear sweep voltammetry, AuNP/BDD: gold nanoparticles on boron-doped diamond,
MWCNT: multiwalled carbon nanotube, AuNP-PCWEs: gold nanoparticle-modified paper-based carbon working
electrodes, rGO: reduced graphene oxide, BT: butanethiol, PANI: polyaniline.

3.6. Stability Measurements

As shown in Figure 9, to verify the suitability and reproducibility of rGO-Aunano/GCE for As(III)
determination, eight SWASV responses to 5 µg/L As(III) were obtained as continuous repetitive
measurements. The times for each step were 250 s, 10 s, 4.8 s and 120 s for the deposition, standing,
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stripping and cleaning steps, respectively. Thus, the total working time of the electrode in the solution
for each measurement should be 384.8 s. The relative standard deviation of the eight repetitive
measurements of As(III) was 1.178%, which is less than 20%, demonstrating the good reusability and
stability of rGO-Aunano/GCE for repeated SWASV measurements of As(III) under optimal conditions.
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3.7. Interference Studies

The influence of other ions, such as Na+, K+, Fe2+, Mn2+, Zn2+, Mg2+, Ca2+, Pb2+ and Cd2+,
was also investigated in a synthetic solution containing 100-fold higher concentrations of the above
nontarget ions than of As to estimate the possible influence of interference on the stripping response
of trace As(III) under optimal conditions, as shown in Figure 10. The results demonstrated that the
addition of nontarget ions had no significant effect on the As(III) stripping responses of the proposed
electrode because the current mean values obtained in the presence of nontarget ions were within the
±2 × standard deviation range of the current measured in the absence of nontarget ions.Nanomaterials 2019, 9, x FOR PEER REVIEW  11 of 14 
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3.8. Application to Real Sample Analysis

To investigate the practical application of the proposed sensor for the determination of As(III),
several soil samples were analyzed under optimal conditions. Hydride generation atomic fluorescence
spectrometry (HG-AFS) was used to verify the accuracy of the prepared electrochemical platform.
The pretreatment process for the soil samples is described in Section 2.4, and the analysis was carried
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out based on a standard addition method. The average recovery of As(III) was 98.97%, which
demonstrated that the detection results obtained using the proposed platform were consistent with
those obtained by HG-AFS (Table 2). To further verify the significant difference in accuracy between
the proposed platform and HG-AFS, a paired t-test at the 95% confidence level was performed, and the
results are presented in Table 2. Based on the statistical analysis results, we easily concluded that there
was no significant difference between the two techniques because the tcalculated of As(III) was below
tcritical (4.30 at 2 degrees of freedom). Therefore, the proposed modified electrode can be used for the
analysis of As(III) at trace levels in real samples.

Table 2. Results of the detection of As(III) in soil sample extracts.

Sample No. Added (µg/L) Detected by
SWASV a (µg/L)

Detected by
HG-AFS a (µg/L) tcalculated Recovery (%)

1
- 13.57 ± 0.58 b 13.69 ± 0.22 b 1.95 -

5.00 18.63 ± 0.74 101.20
10.00 23.42 ± 0.60 98.50

2
- 18.62 ± 0.52 18.73 ± 0.23 1.73 -

10.00 28.43 ± 0.49 98.10
15.00 33.49 ± 0.62 99.13

3
- 15.38 ± 0.63 15.44 ± 0.41 1.62 -

15.00 30.13 ± 0.41 98.33
20.00 35.09 ± 0.73 98.55

a SWASV and HG-AFS measurements were repeated five times (n = 5). b Mean value ± standard deviation.

4. Conclusions

In this study, rGO-Aunano/GCE was created by a one-step electrodeposition process with
CV and used for the sensitive detection of As(III). The rGO-Aunano/GCE sensor exhibits a better
limit of detection than other Aunano-based modified electrodes and is more controllable and stable.
Additionally, the morphology, physical and chemical properties of the fabricated rGO-Aunano/GCE
were characterized by SEM, XRD, SWASV, EIS and CV. Parameters such as the deposition time, number
of sweep cycles and deposition potential were optimized. The proposed rGO-Aunano/GCE sensor
shows very high sensitivity for the determination of As(III) based on the combined effects of rGO
and Aunano. The rGO produced during electrodeposition effectively increases the specific surface
area and electron transfer capability of the electrode. Additionally, rGO prevents the agglomeration
of Aunano, allowing good dispersal of Aunano on the electrode surface and further improving the
catalytic performance. A satisfactory recovery of As(III) in a soil sample analysis was obtained, which
demonstrated that the rGO-Aunano/GCE sensor may have potential promising applications for As(III)
monitoring of environmental and food samples.
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