Short-Term Effects of Rock Steady Boxing Exercise on the Balance Ability of People with Parkinson’s Disease: An Interventional Experimental Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Rock Steady Boxing (RSB) Course
2.3. Test of Balance Ability
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PD | Parkinson’s disease |
| RSB | Rock steady boxing |
| PG | Parkinson’s disease group |
| CG | Control group |
| CoP | Center of pressure |
| EO | Eyes open |
| EC | Eyes closed |
| PL | CoP path length |
| CEA | 95% confidence ellipse area |
| MV | Mean velocity |
| X-RMS | Medial–lateral mean square root |
| Y-RMS | Anterior–posterior mean square root |
References
- Kalina, R.M. BUDO & INNOAGON—Historical Complexity but Similar Missions. Arch. Budo J. Inn. Agon. 2024, 20, 1–15. [Google Scholar]
- Dobosz, W.; Gąsienica-Walczak, B.; Kalina, A.; Kalina, R.M.; Kruszewski, M.; Waszkiewicz, E.; Wicher, P. The ‘Physiotherapist in Every School’ Project: A Perspective to Improve Public Health and Safety in a Rational Community. Arch. Budo J. Inn. Agon. 2024, 20, 287–303. [Google Scholar]
- Kruszewski, A. From Ancient Patterns of Hand-to-Hand Combat to a Unique Therapy of the Future. Int. J. Environ. Res. Public Health 2023, 20, 3553. [Google Scholar] [CrossRef] [PubMed]
- Kruszewski, A. Wrestling Fight—Between Tradition, Sport, and Spectacle. Arch. Budo 2023, 19, 21–27. [Google Scholar]
- Rodrigues, F.; Domingos, C.; Monteiro, D.; Morouço, P. A Review on Aging, Sarcopenia, Falls, and Resistance Training in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 874. [Google Scholar] [CrossRef]
- Van Bladel, A.; Herssens, N.; Bouche, K.; Cambier, D.; Maes, L.; Lefeber, N. Proportion of Falls Reported in Persons with Parkinson’s Disease: A Meta-Analysis. Clin. Rehabil. 2023, 37, 1260–1277. [Google Scholar] [CrossRef]
- Venhovens, J.M.J.; Bloem, B.R.; Verhagen, W.I.M. Neurovestibular Dysfunction and Falls in Parkinson’s Disease and Atypical Parkinsonism: A Prospective 1-Year Follow-Up Study. Front. Neurol. 2020, 11, 580285. [Google Scholar] [CrossRef]
- Mackintosh, S.F.H.; Goldie, P.; Hill, K. Falls Incidence and Factors Associated with Falling in Older, Community-Dwelling, Chronic Stroke Survivors (>1 Year after Stroke) and Matched Controls. Aging Clin. Exp. Res. 2005, 17, 74–81. [Google Scholar] [CrossRef]
- Rajalingam, R.; Sorrento, G.; Fasano, A. Risk of Fall with Device-Based Advanced Treatments in Parkinson’s Disease: A Systematic Review and Network Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2025, 96, 470–479. [Google Scholar] [CrossRef]
- Rudzińska, M.; Bukowczan, S.; Stozek, J.; Zajdel, K.; Mirek, E.; Chwała, W.; Wójcik-Pędziwiatr, M.; Banaszkiewicz, K.; Szczudlik, A. The Incidence and Risk Factors of Falls in Parkinson Disease: Prospective Study. Neurol. Neurochir. Pol. 2013, 47, 431–437. [Google Scholar] [CrossRef]
- Lauritzen, J.B. Hip Fractures: Incidence, Risk Factors, Energy Absorption, and Prevention. Bone 1996, 18, 65S–75S. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.W.; Chaplin, A.; Hancock, R.L.; Rutherford, R.; Gray, W.K. Hip Fractures in People with Idiopathic Parkinson’s Disease: Incidence and Outcomes. Mov. Disord. 2013, 28, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Fong, S.S.M.; Chan, J.S.M.; Bae, Y.; Yam, T.T.T.; Chung, L.M.Y.; Kuisma, R. Musculoskeletal Profile of Middle-Aged Ving Tsun Chinese Martial Art Practitioners: A Cross-Sectional Study. Medicine 2017, 96, e5961. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.L.; Huang, J.P.; Wang, T.T.; Tan, Y.C.; Chen, Y.; Zhao, Z.Q.; Qu, C.-H.; Qu, Y. Effects and Parameters of Community-Based Exercise on Motor Symptoms in Parkinson’s Disease: A Meta-Analysis. BMC Neurol. 2022, 22, 505. [Google Scholar] [CrossRef]
- Gómez-Redondo, P.; Valenzuela, P.L.; Morales, J.S.; Ara, I.; Mañas, A. Supervised Versus Unsupervised Exercise for the Improvement of Physical Function and Well-Being Outcomes in Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med. 2024, 54, 1877–1906. [Google Scholar] [CrossRef]
- Chiaramonte, R.; D’Amico, S.; Caramma, S.; Grasso, G.; Pirrone, S.; Ronsisvalle, M.G.; Bonfiglio, M. The Effectiveness of Goal-Oriented Dual Task Proprioceptive Training in Subacute Stroke: A Retrospective Observational Study. Ann. Rehabil. Med. 2024, 48, 31–41. [Google Scholar] [CrossRef]
- Ciaccioni, S.; Guidotti, F.; Palumbo, F.; Forte, R.; Galea, E.; Sacripanti, A.; Lampe, N.; Lampe, Š.; Jelušić, T.; Bradić, S.; et al. Development of a Sustainable Educational Programme for Judo Coaches of Older Practitioners: A Transnational European Partnership Endeavor. Sustainability 2024, 16, 1115. [Google Scholar] [CrossRef]
- Kalina, A.; Kalina, R.M.; Kruszewski, A.; Kruszewski, M. Universal Test of Possibility of Action Based on Motor Potential (UTPA-MP)—Health and Survival Applications. Phys. Educ. Stud. 2024, 28, 346–361. [Google Scholar] [CrossRef]
- Dawson, R.A.; Sayadi, J.; Kapust, L.; Anderson, L.; Lee, S.; Latulippe, A.; Simon, D.K. Boxing Exercises as Therapy for Parkinson Disease. Top. Geriatr. Rehabil. 2020, 36, 160–165. [Google Scholar] [CrossRef]
- Moore, A.; Yee, E.; Willis, B.W.; Prost, E.L.; Gray, A.D.; Mann, J.B. A Community-Based Boxing Program Is Associated with Improved Balance in Individuals with Parkinson’s Disease. Int. J. Exerc. Sci. 2021, 14, 876–884. [Google Scholar] [CrossRef]
- Regan, E.W.; Burnitz, O.; Hightower, J.; Dobner, L.; Flach, A. Rock Steady Boxing: A Qualitative Evaluation of a Community Exercise Program for People with Parkinson’s Disease. PLoS ONE 2024, 19, e0309522. [Google Scholar] [CrossRef]
- Sonne, J.W.H.; Joslyn, K.; Reus, K.; Angulo, M.; Guettler, S.; Beato, M.C. A Retrospective Analysis of Group-Based Boxing Exercise on Measures of Physical Mobility in Patients with Parkinson Disease. Am. J. Lifestyle Med. 2021, 18, 558–566. [Google Scholar] [CrossRef]
- Hoime, K.; Klein, R.; Maciejewski, J.; Nienhuis, M. Impact of a Community-Based Rock Steady Boxing Program for People with Parkinson’s Disease: A Pilot Study. Phys. Ther. Sch. Proj. 2018, 650, 11–22. Available online: https://commons.und.edu/pt-grad/650 (accessed on 28 March 2025).
- Larson, D.; Yeh, C.; Rafferty, M.; Bega, D. Rock Steady Boxing (RSB) Participants with Parkinson’s Disease Have Better Quality of Life and Lower Burden of Non-Motor Symptoms Than Non-Participants. Neurology 2020, 94 (Suppl. 15), 1210. [Google Scholar] [CrossRef]
- Hall, H.; Walker, J.; Smith-Goodwin, E. Effects of Rock Steady Boxing on Parkinson’s Patients. J. Sports Med. Allied Health Sci. 2022, 8, 15. [Google Scholar] [CrossRef]
- Szlachta, G.; Dębski, P.; Kublin, K.; Woźniak, P.; Marek, M. Myofascial and Balance Tests after Anterior Cruciate Ligament Reconstruction in Adolescent Patients. Biomed. Hum. Kinet. 2023, 15, 172–180. [Google Scholar] [CrossRef]
- Kruszewski, A.; Litwiniuk, A.; Waszkiewicz, E. Reliability and Objectivity of the New Version of the ‘Susceptibility Test for Body Injuries During a Fall’ (STBIDF-M) in Physiotherapy Students. Phys. Educ. Stud. 2024, 28, 303–312. [Google Scholar] [CrossRef]
- Staniszewski, M.; Zybko, P.; Wiszomirska, I. Influence of a Nine-Day Alpine Ski Training Programme on the Postural Stability of People with Different Levels of Skills. Biomed. Hum. Kinet. 2016, 8, 24–31. [Google Scholar] [CrossRef]
- Reuter, I. ELSEVIER ESSENTIALS Parkinson: Das Wichtigste für Ärzte aller Fachrichtungen; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Coombs, S.A.; Diehl, M.D.; Staples, W.H.; Conn, L.; Davis, K.; Lewis, N.; Schaneman, K. Boxing Training for Patients with Parkinson Disease: A Case Series. Phys. Ther. 2011, 91, 132–142. [Google Scholar] [CrossRef]
- Coombs, S.A.; Diehl, M.D.; Chrzastowski, C.; Didrick, N.; McCoin, B.; Mox, N.; Staples, W.H.; Wayman, J. Community-Based Group Exercise for Persons with Parkinson Disease: A Randomized Controlled Trial. Neurorehabilitation 2013, 32, 117–125. [Google Scholar] [CrossRef]
- Merlo, A.; Cavazzuti, L.; Bò, M.C.; Cavallieri, F.; Bassi, M.C.; Damiano, B.; Scaltriti, S.; Fioravanti, V.; Di Rauso, G.; Portaro, G.; et al. Instrumental Balance Assessment in Parkinson’s Disease and Parkinsonism: A Systematic Review with Critical Appraisal of Clinical Applications and Quality of Reporting. Front. Neurol. 2025, 16, 1528191. [Google Scholar] [CrossRef] [PubMed]
- Sangarapillai, K.; Norman, B.M.; Almeida, Q.J. Boxing vs Sensory Exercise for Parkinson’s Disease: A Double-Blinded Randomized Controlled Trial. Neurorehabil. Neural Repair 2021, 35, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.E.; Ellis, T.D.; Jazayeri, D.; Heng, H.; Thomson, A.; Balasundaram, A.P.; Slade, S.C. Boxing for Parkinson’s Disease: Has Implementation Accelerated beyond Current Evidence? Front. Neurol. 2019, 10, 1222. [Google Scholar] [CrossRef] [PubMed]
- Hobson, R. The Physiological and Psychological Benefits of Rock Steady Boxing and Their Implications for the Management of Parkinson’s Disease. Ph.D. Thesis, Western Michigan University, Michigan, MI, USA, 2023; p. 3632. Available online: https://scholarworks.wmich.edu/honors_theses/3632 (accessed on 28 March 2025).
- Larson, D.; Yeh, C.; Rafferty, M.; Bega, D. High Satisfaction and Improved Quality of Life with Rock Steady Boxing in Parkinson’s Disease: Results of a Large-Scale Survey. Disabil. Rehabil. 2022, 44, 6034–6041. [Google Scholar] [CrossRef]
- Yusuf, N.M.A.; Bekke, P.; Wehner, S.K. Can Boxing Relieve Symptoms of Parkinson’s Disease and Improve Quality of Life? A Qualitative Study of the Experiences of Participants Attending the Danish Parkinson Boxing Concept. Disabil. Rehabil. 2024, 47, 357–364. [Google Scholar] [CrossRef]
- Paolucci, T.; Iosa, M.; Morone, G.; Fratte, M.D.; Paolucci, S.; Saraceni, V.M.; Villani, C. Romberg Ratio Coefficient in Quiet Stance and Postural Control in Parkinson’s Disease. Neurol. Sci. 2018, 39, 1355–1360. [Google Scholar] [CrossRef]
- Tsukita, K.; Sakamaki-Tsukita, H.; Takahashi, R. Long-Term Effect of Regular Physical Activity and Exercise Habits in Patients with Early Parkinson Disease. Neurology 2022, 98, e859–e871. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.Y.; Chae, Y.; Kim, M.Y.; Yin, C.; Jung, W.S.; Cho, K.-H.; Kim, S.-N.; Park, H.-J.; Lee, H. Turo (Qi Dance) Program for Parkinson’s Disease Patients: Randomized, Assessor-Blind, Waiting-List Control, Partial Crossover Study. Explore 2018, 14, 216–223. [Google Scholar] [CrossRef]
- Gollan, R.; Ernst, M.; Lieker, E.; Caro-Valenzuela, J.; Monsef, I.; Dresen, A.; Roheger, M.; Skoetz, N.; Kalbe, E.; Folkerts, A.-K. Effects of Resistance Training on Motor- and Non-Motor Symptoms in Patients with Parkinson’s Disease: A Systematic Review and Meta-Analysis. J. Park. Dis. 2022, 12, 1783–1806. [Google Scholar] [CrossRef]
- Ahlskog, J.E. Does Vigorous Exercise Have a Neuroprotective Effect in Parkinson Disease? Neurology 2011, 77, 288–294. [Google Scholar] [CrossRef]
- Hou, L.; Chen, W.; Liu, X.; Qiao, D.; Zhou, F.M. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson’s Disease. Front. Aging Neurosci. 2017, 9, 358. [Google Scholar] [CrossRef]
- Shen, X.; Mak, M.K.Y. Technology-Assisted Balance and Gait Training Reduces Falls in Patients with Parkinson’s Disease: A Randomized Controlled Trial with 12-Month Follow-Up. Neurorehabil. Neural Repair 2015, 29, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Wallén, M.B.; Hagströmer, M.; Conradsson, D.; Sorjonen, K.; Franzén, E. Long-Term Effects of Highly Challenging Balance Training in Parkinson’s Disease: A Randomized Controlled Trial. Clin. Rehabil. 2018, 32, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Papa, E.V.; Sawyer, K.E.; Smoliga, J.M. Feasibility of a Community-Based Boxing Program with Tailored Balance Training in Parkinson’s Disease: A Preliminary Study. Brain Sci. 2025, 15, 858. [Google Scholar] [CrossRef] [PubMed]
- Sebastia-Amat, S.; Tortosa-Martínez, J.; Pueo, B. The Use of Static Posturography to Assess Balance Performance in a Parkinson’s Disease Population. Int. J. Environ. Res. Public Health 2023, 20, 981. [Google Scholar] [CrossRef]
- Mitchell, S.L.; Collin, J.J.; De Luca, C.J.; Burrows, A.; Lipsitz, L.A. Open-Loop and Closed-Loop Postural Control Mechanisms in Parkinson’s Disease: Increased Mediolateral Activity during Quiet Standing. Neurosci. Lett. 1995, 197, 133–136. [Google Scholar] [CrossRef]
- Chastan, N.; Debono, B.; Maltête, D.; Weber, J. Discordance between Measured Postural Instability and Absence of Clinical Symptoms in Parkinson’s Disease Patients in the Early Stages of the Disease. Mov. Disord. 2008, 23, 366–372. [Google Scholar] [CrossRef]
| Group | n | Age [years] | Mass [kg] | Height [cm] | Length of Disease [years] | Training Experience [years] |
|---|---|---|---|---|---|---|
| PG | 18 | 72 ± 6 | 67 ± 10 | 168 ± 8 | 7.2 ± 4.8 | 2.4 ± 1.8 |
| CG | 15 | 72 ± 5 | 66 ± 11 | 159 ± 4 | n/a | n/a |
| Stabilometric Variables | PG (n = 18) | CG (n = 15) | PG vs. CG (Post-Hoc) |
|---|---|---|---|
| PL (mm) | |||
| EO | 266 ± 105 | 172 ± 32 | p = 0.007 |
| EC | 328 ± 199 | 211 ± 40 | p = 0.023 |
| EO vs EC (post-hoc) | p = 0.062 | p = 0.003 | |
| CEA (mm2) | |||
| EO | 314 ± 380 | 64 ± 104 | p < 0.001 |
| EC | 305 ± 391 | 121 ± 128 | p = 0.041 |
| EO vs EC (post-hoc) | p = 0.806 | p = 0.017 | |
| MV (mm/s) | |||
| EO | 9.1 ± 3.5 | 5.8 ± 1.1 | p = 0.004 |
| EC | 10.8 ± 6.5 | 6.9 ± 1.4 | p = 0.012 |
| EO vs EC (post-hoc) | p = 0.088 | p = 0.019 | |
| X-RMS (mm) | |||
| EO | 0.35 ± 0.15 | 0.23 ± 0.05 | p = 0.009 |
| EC | 0.57 ± 0.30 | 0.30 ± 0.07 | p < 0.001 |
| EO vs EC (post-hoc) | p < 0.001 | p = 0.019 | |
| Y-RMS (mm) | |||
| EO | 0.27 ± 0.12 | 0.17 ± 0.05 | p = 0.024 |
| EC | 0.47 ± 0.25 | 0.36 ± 0.22 | p = 0.047 |
| EO vs EC (post-hoc) | p < 0.001 | p = 0.001 | |
| Stabilometric Variables | Pre (n = 18) | Post (n = 18) | Pre vs. Post (Post-Hoc) |
|---|---|---|---|
| PL (mm) | |||
| EO | 266 ± 105 | 290 ± 142 | p = 0.586 |
| EC | 328 ± 199 | 337 ± 172 | p = 0.722 |
| EO vs EC (post-hoc) | p = 0.065 | p = 0.085 | |
| CEA (mm2) | |||
| EO | 314 ± 380 | 399 ± 584 | p = 0.952 |
| EC | 305 ± 391 | 402 ± 747 | p = 0.934 |
| EO vs EC (post-hoc) | p = 0.629 | p = 0.670 | |
| MV (mm/s) | |||
| EO | 9.1 ± 3.5 | 9.9 ± 4.7 | p = 0.553 |
| EC | 10.8 ± 6.5 | 11.2 ± 5.6 | p = 0.653 |
| EO vs EC (post-hoc) | p = 0. 097 | p = 0.136 | |
| X-RMS (mm) | |||
| EO | 0.35 ± 0.15 | 0.39 ± 0.19 | p = 0.560 |
| EC | 0.57 ± 0.30 | 0.59 ± 0.27 | p = 0.940 |
| EO vs EC (post-hoc) | p < 0.001 | p < 0.001 | |
| Y-RMS (mm) | |||
| EO | 0.27 ± 0.12 | 0.29 ± 0.17 | p = 0.993 |
| EC | 0.47 ± 0.25 | 0.48 ± 0.26 | p = 0.999 |
| EO vs EC (post-hoc) | p = 0.001 | p = 0.001 | |
| Pre EO | Pre EC | Post EO | Post EC | |
|---|---|---|---|---|
| Body height | r = −0.220 CI (−0.620, 0.290) | r = −0.266 CI (−0.650, 0.230) | r = −0.171 CI (−0.588, 0.325) | r = −0.248 CI (−0.637, 0.253) |
| Body mass | r = −0.238 CI (−0.631, 0.263) | r = −0.239 CI (−0.634, 0.259) | r = −0.420 CI (−0.738, 0.067) | r = −0.363 CI (−0.707, 0.130) |
| Age | r = 0.471 CI (−0.036, 0.782) | r = 0.399 CI (−0.101, 0.738) | r = 0.195 CI (−0.316, 0.617) | r = 0.353 CI (−0.153, 0.713) |
| Training period | r = −0.161 CI (−0.601, 0.329) | r = −0.180 CI (−0.608, 0.329) | r = 0.174 CI (−0.335, 0.604) | r = −0.023 CI (−0.499, 0.462) |
| Length of disease | r = 0.309 CI (−0.201, 0.688) | r = 0.329 CI (−0.180, 0.699) | r = 0.637 a CI (0.225, 0.856) | r = 0.492 b CI (0.014, 0.786) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staniszewski, M.; Kruszewski, A.; Lopuszanska-Dawid, M. Short-Term Effects of Rock Steady Boxing Exercise on the Balance Ability of People with Parkinson’s Disease: An Interventional Experimental Study. Appl. Sci. 2025, 15, 12107. https://doi.org/10.3390/app152212107
Staniszewski M, Kruszewski A, Lopuszanska-Dawid M. Short-Term Effects of Rock Steady Boxing Exercise on the Balance Ability of People with Parkinson’s Disease: An Interventional Experimental Study. Applied Sciences. 2025; 15(22):12107. https://doi.org/10.3390/app152212107
Chicago/Turabian StyleStaniszewski, Michał, Artur Kruszewski, and Monika Lopuszanska-Dawid. 2025. "Short-Term Effects of Rock Steady Boxing Exercise on the Balance Ability of People with Parkinson’s Disease: An Interventional Experimental Study" Applied Sciences 15, no. 22: 12107. https://doi.org/10.3390/app152212107
APA StyleStaniszewski, M., Kruszewski, A., & Lopuszanska-Dawid, M. (2025). Short-Term Effects of Rock Steady Boxing Exercise on the Balance Ability of People with Parkinson’s Disease: An Interventional Experimental Study. Applied Sciences, 15(22), 12107. https://doi.org/10.3390/app152212107

