An Intelligent Ensemble-Based Detection of In-Vehicle Network Intrusion
Abstract
1. Introduction
- We develop and test three supervised models that include hyperparameter tuning, balancing of data, and feature selection. The models are RF, DT, and XGBoost.
- With three different ensemble methods, we combine the three supervised models to enhance our scheme’s ability to detect DoS, fuzzing, replay, and spoofing attacks. These ensemble methods are stacking, voting, and bagging.
- We evaluate our scheme’s performance using accuracy, precision, recall, F1-score, and area-under-the-curve receiver operator characteristic (ROC-AUC). Our scheme detected DoS, fuzzing, replay, and spoofing attacks with a higher detection accuracy score of 0.986 compared to the most recent study proposed for detecting attacks in the CAN bus.
2. CAN’s Background and Types of Attacks
2.1. Background of CAN Bus
2.2. Attack Types
3. Related Work
4. Proposed Scheme
4.1. CAN Bus Dataset
4.2. Data Preprocessing
4.3. Supervised ML
4.4. Ensemble Classifiers Learning
4.4.1. Attacks Classification
4.4.2. Scheme Evaluation
4.5. Environment Tools
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, F.; Mao, B.; Kato, N.; Gui, G. Comprehensive survey on machine learning in vehicular network: Technology, applications and challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2027–2057. [Google Scholar] [CrossRef]
- He, J.; Ni, Y.; Cai, L.; Pan, J.; Chen, C. Optimal dropbox deployment algorithm for data dissemination in vehicular networks. IEEE Trans. Mob. Comput. 2017, 17, 632–645. [Google Scholar] [CrossRef]
- Han, R.; Guan, Q.; Yu, F.R.; Shi, J.; Ji, F. Congestion and position aware dynamic routing for the internet of vehicles. IEEE Trans. Veh. Technol. 2020, 69, 16082–16094. [Google Scholar] [CrossRef]
- Zhao, L.; Bi, Z.; Hawbani, A.; Yu, K.; Zhang, Y.; Guizani, M. ELITE: An intelligent digital twin-based hierarchical routing scheme for softwarized vehicular networks. IEEE Trans. Mob. Comput. 2022, 22, 5231–5247. [Google Scholar] [CrossRef]
- Slavik, M.; Mahgoub, I. Spatial distribution and channel quality adaptive protocol for multihop wireless broadcast routing in VANET. IEEE Trans. Mob. Comput. 2012, 12, 722–734. [Google Scholar] [CrossRef]
- Hasan, M.; Mohan, S.; Shimizu, T.; Lu, H. Securing vehicle-to-everything (V2X) communication platforms. IEEE Trans. Intell. Veh. 2020, 5, 693–713. [Google Scholar] [CrossRef]
- Ahmad, U.; Han, M.; Mahmood, S. Enhancing security in connected and autonomous vehicles: A pairing approach and machine learning integration. Appl. Sci. 2024, 14, 5648. [Google Scholar] [CrossRef]
- Lee, S.; Son, S.; Kwon, D.; Park, Y.; Park, Y. A Secure and Efficient Authentication Scheme for Fog-Based Vehicular Ad Hoc Networks. Appl. Sci. 2025, 15, 1229. [Google Scholar] [CrossRef]
- Kimm, H.; Ham, H.S. Integrated fault tolerant system for automotive bus networks. In Proceedings of the 2010 Second International Conference on Computer Engineering and Applications, Bali, Indonesia, 19–21 March 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 1, pp. 486–490. [Google Scholar]
- Nilsson, D.K.; Phung, P.H.; Larson, U.E. Vehicle ECU classification based on safety-security characteristics. In Proceedings of the IET Road Transport Information and Control-RTIC 2008 and ITS United Kingdom Members’ Conference, Manchester, UK, 20–22 May 2008; IET: Stevenage, UK, 2008; pp. 1–7. [Google Scholar]
- Kelarestaghi, K.B.; Foruhandeh, M.; Heaslip, K.; Gerdes, R. Intelligent transportation system security: Impact-oriented risk assessment of in-vehicle networks. IEEE Intell. Transp. Syst. Mag. 2019, 13, 91–104. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Sun, W.; Shi, Y. In-vehicle network attacks and countermeasures: Challenges and future directions. IEEE Netw. 2017, 31, 50–58. [Google Scholar] [CrossRef]
- Li, R.; Wu, J.; Wang, H.; Li, G. Design method of CAN BUS network communication structure for electric vehicle. In Proceedings of the International Forum on Strategic Technology 2010, Ulsan, Republic of Korea, 13–15 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 326–329. [Google Scholar]
- Caviglia, R.; Gaggero, G.B.; Vincis, N.; Morando, O.; Aceti, A.; Marchese, M. SPAT: A Testbed for Automotive Cybersecurity Training. In Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience (CSR), Venice, Italy, 31 July–2 August 2023; pp. 381–386. [Google Scholar] [CrossRef]
- Pan, L.; Zheng, X.; Chen, H.; Luan, T.; Bootwala, H.; Batten, L. Cyber security attacks to modern vehicular systems. J. Inf. Secur. Appl. 2017, 36, 90–100. [Google Scholar] [CrossRef]
- Avatefipour, O.; Malik, H. State-of-the-art survey on in-vehicle network communication (CAN-Bus) security and vulnerabilities. arXiv 2018, arXiv:1802.01725. [Google Scholar]
- Alsolami, T.; Alsharif, B.; Ilyas, M. Enhancing Cybersecurity in Healthcare: Evaluating Ensemble Learning Models for Intrusion Detection in the Internet of Medical Things. Sensors 2024, 24, 5937. [Google Scholar] [CrossRef] [PubMed]
- Aliwa, E.; Rana, O.; Perera, C.; Burnap, P. Cyberattacks and countermeasures for in-vehicle networks. ACM Comput. Surv. 2021, 54, 21. [Google Scholar] [CrossRef]
- Rajapaksha, S.; Kalutarage, H.; Al-Kadri, M.O.; Petrovski, A.; Madzudzo, G.; Cheah, M. AI-based intrusion detection systems for in-vehicle networks: A survey. ACM Comput. Surv. 2023, 55, 237. [Google Scholar] [CrossRef]
- Miller, C.; Valasek, C. Remote Exploitation of an Unaltered Passenger Vehicle; Black Hat: San Francisco, CA, USA, 2015; Volume 2015, pp. 1–91. [Google Scholar]
- Wang, Q.; Qian, Y.; Lu, Z.; Shoukry, Y.; Qu, G. A delay based plug-in-monitor for intrusion detection in controller area network. In Proceedings of the 2018 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Hong Kong, China, 17–18 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 86–91. [Google Scholar]
- Bozdal, M.; Samie, M.; Aslam, S.; Jennions, I. Evaluation of can bus security challenges. Sensors 2020, 20, 2364. [Google Scholar] [CrossRef]
- Fakhfakh, F.; Tounsi, M.; Mosbah, M. Cybersecurity attacks on CAN bus based vehicles: A review and open challenges. Libr. Hi Tech 2022, 40, 1179–1203. [Google Scholar] [CrossRef]
- Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.H. Intrusion detection system for automotive Controller Area Network (CAN) bus system: A review. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 184. [Google Scholar] [CrossRef]
- Wu, W.; Li, R.; Xie, G.; An, J.; Bai, Y.; Zhou, J.; Li, K. A survey of intrusion detection for in-vehicle networks. IEEE Trans. Intell. Transp. Syst. 2019, 21, 919–933. [Google Scholar] [CrossRef]
- Lampe, B.; Meng, W. Intrusion detection in the automotive domain: A comprehensive review. IEEE Commun. Surv. Tutor. 2023, 25, 2356–2426. [Google Scholar] [CrossRef]
- Gaggero, G.B.; Fausto, A.; Patrone, F.; Marchese, M. A Framework for Network Security Verification of Automated Vehicles in the Agricultural Domain. In Proceedings of the 2022 26th International Conference Electronics, Palanga, Lithuania, 13–15 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Alalwany, E.; Alsharif, B.; Alotaibi, Y.; Alfahaid, A.; Mahgoub, I.; Ilyas, M. Stacking Ensemble Deep Learning for Real-Time Intrusion Detection in IoMT Environments. Sensors 2025, 25, 624. [Google Scholar] [CrossRef] [PubMed]
- Alalwany, E.; Mahgoub, I. Classification of Normal and Malicious Traffic Based on an Ensemble of Machine Learning for a Vehicle CAN-Network. Sensors 2022, 22, 9195. [Google Scholar] [CrossRef] [PubMed]
- Alhowaide, A.; Alsmadi, I.; Tang, J. Ensemble detection model for IoT IDS. Internet Things 2021, 16, 100435. [Google Scholar] [CrossRef]
- Pham, N.T.; Foo, E.; Suriadi, S.; Jeffrey, H.; Lahza, H.F.M. Improving performance of intrusion detection system using ensemble methods and feature selection. In Proceedings of the Australasian Computer Science Week Multiconference, Brisband, Australia, 29 January–2 February 2018; pp. 1–6. [Google Scholar]
- Bosch, C. Specification Version 2.0; Robert Bosch GmbH: Gerlingen, Germany, 1991; Volume 1. [Google Scholar]
- Mehedi, S.T.; Anwar, A.; Rahman, Z.; Ahmed, K. Deep transfer learning based intrusion detection system for electric vehicular networks. Sensors 2021, 21, 4736. [Google Scholar] [CrossRef]
- Mathur, R.; Saraswat, R.; Mathur, G. An Analytical Study of Communication Protocols Used in Automotive Industry. Int. J. Eng. Res. Technol. 2018, 2, 287–292. [Google Scholar]
- Bozdal, M.; Samie, M.; Jennions, I. A survey on can bus protocol: Attacks, challenges, and potential solutions. In Proceedings of the 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16–17 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 201–205. [Google Scholar]
- Song, H.M.; Kim, H.R.; Kim, H.K. Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network. In Proceedings of the 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu, Malaysia, 13–15 January 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 63–68. [Google Scholar]
- Lee, H.; Jeong, S.H.; Kim, H.K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame. In Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, AB, Canada, 28–30 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 57–5709. [Google Scholar]
- Groza, B.; Murvay, P.S. Efficient intrusion detection with bloom filtering in controller area networks. IEEE Trans. Inf. Forensics Secur. 2018, 14, 1037–1051. [Google Scholar] [CrossRef]
- Alsulaiman, L.; Al-Ahmadi, S. Performance evaluation of machine learning techniques for DOS detection in wireless sensor network. arXiv 2021, arXiv:2104.01963. [Google Scholar] [CrossRef]
- Rahal, R.; Amara Korba, A.; Ghoualmi-Zine, N. Towards the development of realistic dos dataset for intelligent transportation systems. Wirel. Pers. Commun. 2020, 115, 1415–1444. [Google Scholar] [CrossRef]
- Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based intrusion detection system for in-vehicle network. In Proceedings of the 2018 16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A. Car hacking identification through fuzzy logic algorithms. In Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 9–12 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7. [Google Scholar]
- Alshammari, A.; Zohdy, M.A.; Debnath, D.; Corser, G. Classification approach for intrusion detection in vehicle systems. Wirel. Eng. Technol. 2018, 9, 79–94. [Google Scholar] [CrossRef]
- Zaidi, K.; Milojevic, M.B.; Rakocevic, V.; Nallanathan, A.; Rajarajan, M. Host-based intrusion detection for VANETs: A statistical approach to rogue node detection. IEEE Trans. Veh. Technol. 2015, 65, 6703–6714. [Google Scholar] [CrossRef]
- Alalwany, E.; Mahgoub, I. Security and Trust Management in the Internet of Vehicles (IoV): Challenges and Machine Learning Solutions. Sensors 2024, 24, 368. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Zhou, J.; Bytes, A. ATG: An attack traffic generation tool for security testing of in-vehicle CAN bus. In Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August 2018; pp. 1–6. [Google Scholar]
- Nandy, T.; Noor, R.M.; Kolandaisamy, R.; Idris, M.Y.I.; Bhattacharyya, S. A review of security attacks and intrusion detection in the vehicular networks. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 101945. [Google Scholar] [CrossRef]
- Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun. 2020, 21, 100198. [Google Scholar] [CrossRef]
- Xiao, J.; Wu, H.; Li, X. Internet of things meets vehicles: Sheltering in-vehicle network through lightweight machine learning. Symmetry 2019, 11, 1388. [Google Scholar] [CrossRef]
- Hossain, M.D.; Inoue, H.; Ochiai, H.; Fall, D.; Kadobayashi, Y. LSTM-based intrusion detection system for in-vehicle can bus communications. IEEE Access 2020, 8, 185489–185502. [Google Scholar] [CrossRef]
- Yang, Y.; Duan, Z.; Tehranipoor, M. Identify a spoofing attack on an in-vehicle CAN bus based on the deep features of an ECU fingerprint signal. Smart Cities 2020, 3, 17–30. [Google Scholar] [CrossRef]
- Javed, A.R.; Ur Rehman, S.; Khan, M.U.; Alazab, M.; Reddy, T. CANintelliIDS: Detecting in-vehicle intrusion attacks on a controller area network using CNN and attention-based GRU. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1456–1466. [Google Scholar] [CrossRef]
- Baldini, G. Detection of cybersecurity spoofing attacks in vehicular networks with recurrence quantification analysis. Comput. Commun. 2022, 191, 486–499. [Google Scholar] [CrossRef]
- Aldhyani, T.H.; Alkahtani, H. Attacks to automatous vehicles: A deep learning algorithm for cybersecurity. Sensors 2022, 22, 360. [Google Scholar] [CrossRef]
- Refat, R.U.D.; Elkhail, A.A.; Hafeez, A.; Malik, H. Detecting CAN bus intrusion by applying machine learning method to graph based features. In Intelligent Systems and Applications, Proceedings of the 2021 Intelligent Systems Conference (IntelliSys), Virtual, 2–3 September 2021; Springer: Cham, Switzerland, 2022; Volume 3, pp. 730–748. [Google Scholar]
- Al-Saud, M.; Eltamaly, A.M.; Mohamed, M.A.; Kavousi-Fard, A. An intelligent data-driven model to secure intravehicle communications based on machine learning. IEEE Trans. Ind. Electron. 2019, 67, 5112–5119. [Google Scholar] [CrossRef]
- Kang, H.; Kwak, B.; Lee, Y.H.; Lee, H.; Lee, H.; Kim, H. Car Hacking: Attack and Defense Challenge 2020 Dataset; IEEE DataPort; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [Google Scholar] [CrossRef]
- Bao, L.; Juan, C.; Li, J.; Zhang, Y. Boosted near-miss under-sampling on SVM ensembles for concept detection in large-scale imbalanced datasets. Neurocomputing 2016, 172, 198–206. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Song, Y.Y.; Ying, L. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. XGBoost: Extreme Gradient Boosting, R Package Version 0.4–2; R Foundation for Statistical Computing: Vienna, Austria, 2015; Volume 1, pp. 1–4. [Google Scholar]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Hothorn, T.; Lausen, B. Double-bagging: Combining classifiers by bootstrap aggregation. Pattern Recognit. 2003, 36, 1303–1309. [Google Scholar] [CrossRef]
- Quinlan, J.R. Bagging, boosting, and C4.5. In Proceedings of the AAAI/IAAI, Portland, OR, USA, 4–8 August 1996; Volume 1, pp. 725–730. [Google Scholar]
- Dietterich, T.G. Ensemble learning. In The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 2002; Volume 2, pp. 110–125. [Google Scholar]
- Purohit, S.; Govindarasu, M. ML-based anomaly detection for intra-vehicular CAN-bus networks. In Proceedings of the 2022 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 27–29 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 233–238. [Google Scholar]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Bari, B.S.; Yelamarthi, K.; Ghafoor, S. Intrusion detection in vehicle controller area network (can) bus using machine learning: A comparative performance study. Sensors 2023, 23, 3610. [Google Scholar] [CrossRef]
Attack | Availability | Integrity | Authenticity | Non-Repudiation | Confidentiality |
---|---|---|---|---|---|
DoS [40] | + | ||||
Fuzzing [41,42] | + | + | |||
Replay [43] | + | + | + | + | |
Spoofing [44] | + | + |
Citation | Model | Feature Selection | Balanced | Hyperparameters | Ensemble Methods | Type of Attacks |
---|---|---|---|---|---|---|
[48] | DCNN | Not reported | − | + | − | DoS, fuzzing, and spoofing |
[49] | RNN | Not reported | Not reported | + | − | DoS, fuzzing, and impersonation |
[50] | LSTM | − | − | + | − | DoS, fuzzing, and spoofing |
[51] | RNN | Manual feature extraction | − | − | − | spoofing |
[52] | CNN and GRU | deep feature selection via CNN | − | + | − | DoS, fuzzing, and impersonation |
[53] | ML | RQA | − | + | − | spoofing |
[54] | CNN-LSTM | Implicit via CNN layers | − | + | − | DoS and fuzzing |
[55] | SVM KNN | Heuristic Feature Selection | − | − | − | DoS, fuzzing, and spoofing |
Ours | Stacking | Extra Trees | + | + | + | DoS, fuzzing, spoofing, and replay |
Message Type | Count | Percentage (%) |
---|---|---|
Normal | 3,372,743 | 91.846523 |
DoS | 154,180 | 4.198629 |
Fuzzing | 89,879 | 2.447585 |
Replay | 47,593 | 1.296052 |
Spoofing | 7756 | 0.211211 |
Total | 3,672,151 | 100 |
Model | Accuracy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean | |
RF | 0.993 | 0.997 | 0.993 | 0.992 | 0.994 | 0.996 | 0.983 | 0.992 | 0.975 | 0.819 | 0.973 |
DT | 0.987 | 0.993 | 0.990 | 0.994 | 0.993 | 0.993 | 0.981 | 0.988 | 0.974 | 0.820 | 0.971 |
XGBoost | 1.00 | 1.00 | 1.00 | 0.998 | 0.998 | 0.998 | 0.998 | 1.00 | 0.997 | 0.833 | 0.982 |
Stacking | 1.00 | 1.00 | 1.00 | 1.00 | 0.998 | 1.00 | 0.998 | 0.998 | 0.996 | 0.876 | 0.986 |
voting | 0.988 | 0.998 | 0.998 | 0.996 | 0.994 | 0.993 | 0.990 | 0.990 | 0.979 | 0.821 | 0.975 |
Bagging | 0.993 | 1.00 | 0.994 | 0.993 | 0.993 | 0.996 | 0.984 | 0.998 | 0.981 | 0.823 | 0.976 |
Model | Accuracy | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean | |
RF | 0.993 | 0.997 | 0.997 | 0.990 | 0.987 | 0.996 | 0.990 | 0.990 | 0.987 | 0.856 | 0.978 |
DT | 0.967 | 0.992 | 0.990 | 0.987 | 0.992 | 0.993 | 0.984 | 0.985 | 0.966 | 0.858 | 0.971 |
XGBoost | 1.00 | 1.00 | 1.00 | 0.997 | 0.997 | 1.00 | 1.00 | 0.997 | 1.00 | 0.858 | 0.985 |
Stacking | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.998 | 1.00 | 1.00 | 0.868 | 0.986 |
voting | 0.987 | 0.994 | 0.996 | 0.992 | 0.994 | 0.996 | 0.996 | 0.996 | 0.981 | 0.855 | 0.979 |
Bagging | 1.00 | 1.00 | 1.00 | 0.997 | 0.998 | 1.00 | 0.998 | 0.997 | 0.998 | 0.865 | 0.985 |
Model | Attacks | Precision | Recall | F1-Score |
---|---|---|---|---|
RF | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 0.99 | 1.00 | 1.00 | |
Normal | 1.00 | 0.92 | 0.96 | |
Replay | 0.92 | 0.99 | 0.96 | |
Spoofing | 1.00 | 1.00 | 1.00 | |
DT | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 1.00 | 0.99 | 0.99 | |
Normal | 1.00 | 0.92 | 0.96 | |
Replay | 0.92 | 0.99 | 0.95 | |
Spoofing | 0.99 | 1.00 | 0.99 | |
XGBoost | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 1.00 | 1.00 | 1.00 | |
Normal | 1.00 | 0.92 | 0.96 | |
Replay | 0.93 | 1.00 | 0.96 | |
Spoofing | 1.00 | 1.00 | 1.00 | |
Stacking | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 1.00 | 1.00 | 1.00 | |
Normal | 1.00 | 0.93 | 0.97 | |
Replay | 0.94 | 1.00 | 0.97 | |
Spoofing | 1.00 | 1.00 | 1.00 | |
Bagging | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 0.99 | 1.00 | 0.99 | |
Normal | 0.99 | 0.92 | 0.96 | |
Replay | 0.92 | 0.98 | 0.95 | |
Spoofing | 1.00 | 1.00 | 1.00 | |
Voting | Flooding | 0.99 | 1.00 | 0.99 |
Fuzzing | 1.00 | 0.99 | 0.99 | |
Normal | 1.00 | 0.89 | 0.94 | |
Replay | 0.90 | 0.99 | 0.95 | |
Spoofing | 1.00 | 1.00 | 1.00 |
Model | Attacks | Precision | Recall | F1-Score |
---|---|---|---|---|
RF | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 0.99 | 1.00 | 1.00 | |
Normal | 1.00 | 0.93 | 0.96 | |
Replay | 0.93 | 1.00 | 0.96 | |
Spoofing | 1.00 | 1.00 | 1.00 | |
DT | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 1.00 | 0.99 | 0.99 | |
Normal | 1.00 | 0.93 | 0.96 | |
Replay | 0.99 | 1.00 | 0.99 | |
Spoofing | 0.93 | 1.00 | 0.96 | |
XGBoost | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 1.00 | 1.00 | 1.00 | |
Normal | 1.00 | 0.94 | 0.97 | |
Replay | 0.94 | 1.00 | 0.97 | |
Spoofing | 1.00 | 1.00 | 1.00 | |
Stacking | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 1.00 | 1.00 | 1.00 | |
Normal | 1.00 | 0.97 | 0.98 | |
Replay | 0.97 | 1.00 | 0.99 | |
Spoofing | 1.00 | 1.00 | 1.00 | |
Bagging | Flooding | 1.00 | 1.00 | 1.00 |
Fuzzing | 0.99 | 1.00 | 0.99 | |
Normal | 0.99 | 0.92 | 0.95 | |
Replay | 0.93 | 0.98 | 0.95 | |
Spoofing | 1.00 | 1.00 | 1.00 | |
Voting | Flooding | 0.99 | 1.00 | 0.99 |
Fuzzing | 1.00 | 1.00 | 1.00 | |
Normal | 1.00 | 0.92 | 0.96 | |
Replay | 0.93 | 0.99 | 0.96 | |
Spoofing | 1.00 | 1.00 | 1.00 |
Model | Hyperparameter | Value |
---|---|---|
Random Forest | max_features | ‘auto’ |
n_estimators | 100 | |
max_depth | 20 | |
min_samples_leaf | 2 | |
min_samples_split | 5 | |
XGBoost | n_jobs | −1 |
max_depth | 3 | |
n_estimators | 300 | |
objective | ‘multi:softprob’ | |
Decision Tree | max_depth | 20 |
max_features | ‘log2’ |
Citation | Attacks | Model | Precision | Recall | F1-Score | ROC |
---|---|---|---|---|---|---|
[69] | Flood | KNN | 0.99 | 0.99 | 0.99 | - |
Accuracy | 0.96 | |||||
SVM | 0.99 | 0.99 | 0.99 | - | ||
Accuracy | 0.97 | |||||
Fuzzing | SVM | 1.00 | 0.96 | 0.97 | - | |
Accuracy | 0.97 | |||||
KNN | 0.99 | 0.96 | 0.97 | - | ||
Accuracy | 0.96 | |||||
[53] | Spoofing | KNN-based RQA, K = 8 | 0.959 | |||
Accuracy | 0.914 | |||||
DT-based RQA | 0.85 | |||||
Accuracy | 0.853 | |||||
KNN-based RQA, K = 7 | 0.950 | |||||
Accuracy | 0.927 | |||||
[54] | Benign | CNN-LSTM | 0.99 | 1.00 | 99 | 1.00 |
Flood | 0.66 | 11 | 18 | 0.77 | ||
Fuzzing | 97 | 1.00 | 0.99 | 0.91 | ||
Accuracy | 0.9730 | |||||
[55] | DoS | SVM | 0.99 | 0.99 | 0.99 | 0.99 |
KNN | 0.99 | 0.99 | 0.99 | 0.99 | ||
Fuzzing | SVM | 0.99 | 0.99 | 0.99 | 0.99 | |
KNN | 0.99 | 0.98 | 0.99 | 0.98 | ||
Spoofing | SVM | 0.97 | 0.93 | 0.95 | 0.93 | |
KNN | 0.97 | 0.93 | 0.95 | 0.93 | ||
Mix attack | KNN | 0.98 | 0.96 | 0.97 | 0.96 | |
Accuracy | 0.9792 | |||||
SVM | 0.98 | 0.96 | 0.97 | 0.96 | ||
Accuracy | 0.9799 | |||||
Our | Flood | Stacking | 1.00 | 1.00 | 1.00 | 1.00 |
Fuzzing | 1.00 | 1.00 | 1.00 | 1.00 | ||
Normal | 1.00 | 0.97 | 0.98 | 1.00 | ||
Replay | 0.97 | 1.00 | 0.99 | 1.00 | ||
Spoofing | 1.00 | 1.00 | 1.00 | 1.00 | ||
Accuracy | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alalwany, E.; Mahgoub, I.; Alsharif, B.; Alfahaid, A. An Intelligent Ensemble-Based Detection of In-Vehicle Network Intrusion. Appl. Sci. 2025, 15, 6869. https://doi.org/10.3390/app15126869
Alalwany E, Mahgoub I, Alsharif B, Alfahaid A. An Intelligent Ensemble-Based Detection of In-Vehicle Network Intrusion. Applied Sciences. 2025; 15(12):6869. https://doi.org/10.3390/app15126869
Chicago/Turabian StyleAlalwany, Easa, Imad Mahgoub, Bader Alsharif, and Abdullah Alfahaid. 2025. "An Intelligent Ensemble-Based Detection of In-Vehicle Network Intrusion" Applied Sciences 15, no. 12: 6869. https://doi.org/10.3390/app15126869
APA StyleAlalwany, E., Mahgoub, I., Alsharif, B., & Alfahaid, A. (2025). An Intelligent Ensemble-Based Detection of In-Vehicle Network Intrusion. Applied Sciences, 15(12), 6869. https://doi.org/10.3390/app15126869