Next Issue
Volume 9, January
Previous Issue
Volume 8, November
 
 

Environments, Volume 8, Issue 12 (December 2021) – 9 articles

Cover Story (view full-size image): Sand trapping fences are a widely used nature-based solution to initiate dune toe growth along sandy shorelines for coastal protection. At present, the construction of sand trapping fences is based on empirical knowledge, since only a few scientific studies investigating their efficiency exist. However, the restoration and maintenance of beach–dune systems along the coast requires knowledge of the interaction between the beach–dune system and the sand trapping fences to provide guidance for coastal managers on how and where to install the fences. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 15553 KiB  
Article
Multitemporal Analysis as a Non-Invasive Technology Indicates a Rapid Change in Land Use in the Amazon: The Case of the ITT Oil Block
by Marco Heredia-R, Jhenny Cayambe, Clint Schorsch, Theofilos Toulkeridis, Deniz Barreto, Paulina Poma and Gladys Villegas
Environments 2021, 8(12), 139; https://doi.org/10.3390/environments8120139 - 17 Dec 2021
Cited by 9 | Viewed by 3794
Abstract
The Amazon Region of Ecuador (ARE) hosts a great variety of biodiversity and ecosystems. These hotspots are internationally recognized for presenting unique fauna and flora found nowhere else in the world. Within the ARE, there is the Yasuní National Park (YNP), a recognized [...] Read more.
The Amazon Region of Ecuador (ARE) hosts a great variety of biodiversity and ecosystems. These hotspots are internationally recognized for presenting unique fauna and flora found nowhere else in the world. Within the ARE, there is the Yasuní National Park (YNP), a recognized Biosphere Reserve located in the sub-basins of various rivers. The study area is the “ITT Oil Block” (Ishpingo, Tambococha, and Tiputini), situated in the Province of Orellana and superimposed on the YNP. The block has an area of 179,449.53 ha. The main objective of the current study was to analyze the multi-temporality of land-use change in the ITT Oil Block of the ARE. In the methodological process, the PCI Geomatic and ARCGIS programs were used for the processing and classification of satellite images (Landsat 7 and 8). The changes in land use in the ITT Oil Block over the three periods (2001, 2014, and 2017) indicated that forest cover decreased by 24.23% in soils, while infrastructure and cultivation increased throughout the time period by 0.27% and 0.23%, respectively. The most significant land-use change rate in the ITT Oil Block in the period 2001–2017 are the categories of bare soil with 9.01% (10,640.82 ha) and cultivation with 7.27% (591.29 ha). Full article
(This article belongs to the Special Issue Geospatial Technology for Land Restoration and Planning)
Show Figures

Figure 1

9 pages, 597 KiB  
Article
Microplastic Contamination in Human Stools, Foods, and Drinking Water Associated with Indonesian Coastal Population
by Arif Luqman, Husna Nugrahapraja, Ruri Agung Wahyuono, Izzatul Islami, Muhammad Husain Haekal, Yasri Fardiansyah, Balqis Qonita Putri, Fahmi Ikhlasul Amalludin, Elsalisa Ainur Rofiqa, Friedrich Götz and Anjar Tri Wibowo
Environments 2021, 8(12), 138; https://doi.org/10.3390/environments8120138 - 16 Dec 2021
Cited by 50 | Viewed by 9048
Abstract
Approximately 381 million tons of plastic are produced globally every year, and the majority of it ends up as pollutants. In the environment, plastic waste is fragmented into microplastic particles less than 5 mm in size; owing to their small size, durability, and [...] Read more.
Approximately 381 million tons of plastic are produced globally every year, and the majority of it ends up as pollutants. In the environment, plastic waste is fragmented into microplastic particles less than 5 mm in size; owing to their small size, durability, and abundance, they can easily be dispersed, incorporated into the food chains, and enter the human body. The extent of microplastic exposure in the human body has become a major concern in many countries, including in Indonesia, the second largest plastic waste contributor in the world. Here, we report the detection of microplastics in human stools collected from a fisherman community in the coastal area of Surabaya, Indonesia. Microplastics were found in more than 50% of samples analyzed with a concentration ranging from 3.33 to 13.99 µg of microplastic per gram of feces (µg/g). HDPE was observed as the most prevalent type of microplastic, with an average concentration of 9.195 µg/g in positive samples. Different types of microplastics were also detected in seafood, staple foods, drinking water, table salts, and toothpaste, which were regularly used and consumed by the study participants. Results from this preliminary study indicate widespread contamination of microplastic in the human body and in consumables associated with the coastal populations of Indonesia. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Graphical abstract

12 pages, 9431 KiB  
Article
NOx and CO Fluctuations in a Busy Street Canyon
by Peter Brimblecombe, Meng-Yuan Chu, Chun-Ho Liu and Zhi Ning
Environments 2021, 8(12), 137; https://doi.org/10.3390/environments8120137 - 15 Dec 2021
Cited by 11 | Viewed by 3803
Abstract
Busy street canyons can have a large flow of vehicles and reduced air exchange and wind speeds at street level, exposing pedestrians to high pollutant concentrations. The airflow tended to move with vehicles along the canyon and the 1-s concentrations of NO, NO [...] Read more.
Busy street canyons can have a large flow of vehicles and reduced air exchange and wind speeds at street level, exposing pedestrians to high pollutant concentrations. The airflow tended to move with vehicles along the canyon and the 1-s concentrations of NO, NO2 and CO were highly skewed close to the road and more normally distributed at sensors some metres above the road. The pollutants were more autocorrelated at these elevated sensors, suggesting a less variable concentration away from traffic in the areas of low turbulence. The kerbside concentrations also showed cyclic changes approximating nearby traffic signal timing. The cross-correlation between the concentration measurements suggested that the variation moved at vehicle speed along the canyon, but slower vertically. The concentrations of NOx and CO were slightly higher at wind speeds of under a metre per second. The local ozone concentrations had little effect on the proportion of NOx present as NO2. Pedestrians on the roadside would be unlikely to exceed the USEPA hourly guideline value for NO2 of 100 ppb. Across the campaign period, 100 individual minutes exceeded the guidelines, though the effect of short-term, high-concentration exposures is not well understood. Tram stops at the carriageway divider are places where longer exposures to higher levels of traffic-associated pollutants are possible. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

24 pages, 1328 KiB  
Review
A Review about Microalgae Wastewater Treatment for Bioremediation and Biomass Production—A New Challenge for Europe
by Eugenio Geremia, Maddalena Ripa, Claudio Marcello Catone and Sergio Ulgiati
Environments 2021, 8(12), 136; https://doi.org/10.3390/environments8120136 - 09 Dec 2021
Cited by 20 | Viewed by 9438
Abstract
Microalgae have received much attention in the last few years. Their use is being extended to different fields of application and technologies, such as food, animal feed, and production of valuable polymers. Additionally, there is interest in using microalgae for removal of nutrients [...] Read more.
Microalgae have received much attention in the last few years. Their use is being extended to different fields of application and technologies, such as food, animal feed, and production of valuable polymers. Additionally, there is interest in using microalgae for removal of nutrients from wastewater. Wastewater treatment with microalgae allows for a reduction in the main chemicals responsible for eutrophication (nitrogen and phosphate), the reduction of organic substrates (by decreasing parameters such as BOD and COD) and the removal of other substances such as heavy metals and pharmaceuticals. By selecting and reviewing 202 articles published in Scopus between 1992 and 2020, some aspects such as the feasibility of microalgae cultivation on wastewater and potential bioremediation have been investigated and evaluated. In this review, particular emphasis was placed on the different types of wastewaters on which the growth of microalgae is possible, the achievable bioremediation and the factors that make large-scale microalgae treatment feasible. The results indicated that the microalgae are able to grow on wastewater and carry out effective bioremediation. Furthermore, single-step treatment with mixotrophic microalgae could represent a valid alternative to conventional processes. The main bottlenecks are the large-scale feasibility and costs associated with biomass harvesting. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Graphical abstract

23 pages, 10281 KiB  
Review
Sand Trapping Fences as a Nature-Based Solution for Coastal Protection: An International Review with a Focus on Installations in Germany
by Christiane Eichmanns, Simone Lechthaler, Wiebke Zander, Mariana Vélez Pérez, Holger Blum, Frank Thorenz and Holger Schüttrumpf
Environments 2021, 8(12), 135; https://doi.org/10.3390/environments8120135 - 08 Dec 2021
Cited by 8 | Viewed by 6033
Abstract
Sand trapping fences are a widely used nature-based solution to initiate dune toe growth along sandy shorelines for coastal protection. At present, the construction of sand trapping fences is based on empirical knowledge, since only a few scientific studies investigating their efficiency exist. [...] Read more.
Sand trapping fences are a widely used nature-based solution to initiate dune toe growth along sandy shorelines for coastal protection. At present, the construction of sand trapping fences is based on empirical knowledge, since only a few scientific studies investigating their efficiency exist. However, the restoration and maintenance of beach-dune systems along the coast requires knowledge of the interaction between the beach-dune system and the sand trapping fences to provide guidance for coastal managers on how and where to install the fences. First, this review gives an overview of the typical aerodynamic and morphodynamic conditions around a single porous fence and the influence of various fence height and porosity values to understand the physical processes during dune establishment. Second, different approaches for evaluating the efficiency of sand trapping fences to trap sediment are described. This review then highlights significant differences between sand trapping fence configurations, nationally as well as internationally, regarding the arrangement, the materials used, and the height and porosity. In summary, it is crucial to enable an intensive exchange among the respective coastal authorities in order to create uniform or transferable guidelines taking local conditions into account, and thus work collaboratively on the idea of sand trapping fences as a nature-based solution in coastal areas worldwide. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

15 pages, 2338 KiB  
Article
Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening
by Maria E. Atlaskina, Artem A. Atlaskin, Olga V. Kazarina, Anton N. Petukhov, Dmitriy M. Zarubin, Alexander V. Nyuchev, Andrey V. Vorotyntsev and Ilya V. Vorotyntsev
Environments 2021, 8(12), 134; https://doi.org/10.3390/environments8120134 - 27 Nov 2021
Cited by 7 | Viewed by 3848
Abstract
The present study provides a solvent-free organic synthesis of quaternary ammonium salts: bis(2-hydroxyethyl)dimethylammonium taurate ([BHEDMA][Tau]) and bis(2-hydroxyethyl)dimethylammonium acetate ([BHEDMA][OAc]). These ionic compounds are promising materials for carbon dioxide capture processes, as mono sorbents, supplemental components in the conventional process of chemical absorption, and [...] Read more.
The present study provides a solvent-free organic synthesis of quaternary ammonium salts: bis(2-hydroxyethyl)dimethylammonium taurate ([BHEDMA][Tau]) and bis(2-hydroxyethyl)dimethylammonium acetate ([BHEDMA][OAc]). These ionic compounds are promising materials for carbon dioxide capture processes, as mono sorbents, supplemental components in the conventional process of chemical absorption, and in the combined membrane approach for improving sorption efficiency. The synthesized compounds were characterized by 1H NMR and FT-IR spectroscopies and elemental analysis. Afterward, the sorption properties of the compounds were evaluated using the inverse gas chromatography (IGC) method, and their thermodynamic parameters were calculated in the temperature range of 303.15–333.15 K. The enthalpy change (∆sH) was less than 80 kJ·mol−1, indicated by the physical nature of sorption and also proved by FT-IR. Henry’s law constant in regard to carbon dioxide at 303.15 K was equal to 4.76 MPa for [BHEDMA][Tau], being almost 2.5 lower than for [BHEDMA][OAc] (11.55 MPa). The calculated carbon dioxide sorption capacity for [BHEDMA][Tau] and [BHEDMA][OAc] amounted to 0.58 and 0.30 mmol·g−1, respectively. The obtained parameters are comparable with the known solid sorbents and ionic liquids used for CO2 capture. However, the synthesized compounds, combining the advantages of both alkanolamines and ionic liquids, contain no fluorine in their structure and thus match the principles of environmental care. Full article
(This article belongs to the Topic Advances in Separation and Purification Techniques)
Show Figures

Figure 1

14 pages, 1989 KiB  
Article
Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study
by Berta Riaño, Beatriz Molinuevo-Salces, Matías B. Vanotti and María Cruz García-González
Environments 2021, 8(12), 133; https://doi.org/10.3390/environments8120133 - 25 Nov 2021
Cited by 8 | Viewed by 3358
Abstract
The reduction and recovery of nitrogen (N) from anaerobically digested manure (digestate) is desirable to mitigate N-related emissions, mainly ammonia and nitrate, derived from digestate land application in nutrient-saturated zones. This work reports the results of a gas-permeable membrane (GPM) pilot-scale plant to [...] Read more.
The reduction and recovery of nitrogen (N) from anaerobically digested manure (digestate) is desirable to mitigate N-related emissions, mainly ammonia and nitrate, derived from digestate land application in nutrient-saturated zones. This work reports the results of a gas-permeable membrane (GPM) pilot-scale plant to recover ammonia from digestate in the framework of the EU project Ammonia Trapping. The total ammonia nitrogen (TAN) concentration in digestate was reduced by 34.2% on average (range 9.4–57.4%). The recovery of TAN in the trapping solution in the form of a (NH4)2SO4 solution averaged 55.3% of the removed TAN, with a TAN recovery rate of 16.2 g N m−2 d−1 (range between 14.5 and 21.0 g N m−2 d−1). The TAN concentration in the trapping solution achieved a value of up to 35,000 mg N L−1. The frequent change of the trapping solution has been proven as an efficient strategy to improve the overall performance of the GPM technology. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

18 pages, 3231 KiB  
Article
Occurrence of P. aeruginosa in Water Intended for Human Consumption and in Swimming Pool Water
by Darija Vukić Lušić, Nerma Maestro, Arijana Cenov, Dražen Lušić, Katarina Smolčić, Sonja Tolić, Daniel Maestro, Damir Kapetanović, Sandra Marinac-Pupavac, Dijana Tomić Linšak, Željko Linšak and Marin Glad
Environments 2021, 8(12), 132; https://doi.org/10.3390/environments8120132 - 24 Nov 2021
Cited by 8 | Viewed by 4638
Abstract
Considering the fact that water is a basic need of every living being, it is important to ensure its safety. In this work, the data on the presence of the opportunistic pathogen P. aeruginosa in drinking water (n = 4171) as well [...] Read more.
Considering the fact that water is a basic need of every living being, it is important to ensure its safety. In this work, the data on the presence of the opportunistic pathogen P. aeruginosa in drinking water (n = 4171) as well as in pool water (n = 5059) in Primorje-Gorski Kotar County in Croatia in the five-year period (2016–2020) were analysed. In addition, the national criteria were compared with those of neighboring countries and worldwide. The proportion of P. aeruginosa-positive samples was similar for drinking water (3.9%) and pool water (4.6%). The prevalence of this bacterium was most pronounced in the warmer season. P. aeruginosa-positive drinking water samples were mostly collected during building commissioning, while pool samples were from entertainment and spa/hydromassage pools. Outdoor pools showed a higher percentage of positive samples than indoor pools, as well as the pools filled with freshwater rather than seawater. The highest P. aeruginosa load was found in rehabilitation pools. Croatia, Serbia and Montenegro are countries that have included P. aeruginosa in their national regulations as an indicator of the safety of water for human consumption as well as for bottled water, while Slovenia and Bosnia and Herzegovina have limited this requirement to bottled water only. In the case of swimming pool water, this parameter is mandatory in all countries considered in this study. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

21 pages, 2162 KiB  
Article
Long-Term Changes in Cork Oak and Holm Oak Patches Connectivity. The Algarve, Portugal, a Mediterranean Landscape Case Study
by Nuno de Santos Loureiro and Maria Jacinta Fernandes
Environments 2021, 8(12), 131; https://doi.org/10.3390/environments8120131 - 23 Nov 2021
Cited by 1 | Viewed by 3041
Abstract
Structural connectivity can be inferred by several landscape metrics that appear to be relevant for characterizing how landscapes constrain or favor the presence and movement of animal species at the level of the regional landscape. Trends of change can be estimated trough spatial [...] Read more.
Structural connectivity can be inferred by several landscape metrics that appear to be relevant for characterizing how landscapes constrain or favor the presence and movement of animal species at the level of the regional landscape. Trends of change can be estimated trough spatial time-series analysis. The use of historical maps increases the time span of analysis of the landscape dynamic, relative to the use of remote sensing-related information. Supported by GIS, in this study, a framework for the analyses of the long-term trends of change in the connectivity of the Algarve regional landscape was used to seize the possibility of expanding the span of the spatial time series by integrating an unpublished agricultural and forest map from the turn of the 19th to the 20th century with another historical map and two recent maps. The total area covered by cork and holm oak-related community patches and their connectivity increased over the 20th century and stabilized in the 21st century. A reflection on Portuguese contemporary land-cover policies is urged, to face the sustainable planning and management challenges concerning biodiversity. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop