Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. NMR Spectroscopy
2.3. IR Spectroscopy
2.4. Elemental Analysis
2.5. Melting Point Determination
2.6. Moisture Content Determination
2.7. Sorption Properties Determination
2.8. Synthesis Procedure
3. Results and Discussion
3.1. Spectral Characterization
3.2. Sorption Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bahadori, A. Natural Gas Processing: Technology and Engineering Design; Gulf Professional Publishing: Houston, TX, USA, 2014; pp. 1–872. [Google Scholar] [CrossRef]
- Mazyan, W.; Ahmadi, A.; Ahmed, H.; Hoorfar, M. Market and technology assessment of natural gas processing: A review. J. Nat. Gas Sci. Eng. 2016, 30, 487–514. [Google Scholar] [CrossRef]
- Baker, R.W. Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Memb. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Anselmi, H.; Mirgaux, O.; Bounaceur, R.; Patisson, F. Simulation of Post-Combustion CO2 Capture, a Comparison among Absorption, Adsorption and Membranes. Chem. Eng. Technol. 2019, 42, 797–804. [Google Scholar] [CrossRef]
- Mumford, K.A.; Wu, Y.; Smith, K.H.; Stevens, G.W. Review of solvent based carbon-dioxide capture technologies. Front. Chem. Sci. Eng. 2015, 9, 125–141. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: Prospects for new materials. Angew. Chemie-Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halder, P.; Kundu, S.; Patel, S.; Setiawan, A.; Atkin, R.; Parthasarthy, R.; Paz-Ferreiro, J.; Surapaneni, A.; Shah, K. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renew. Sustain. Energy Rev. 2019, 105, 268–292. [Google Scholar] [CrossRef]
- Minea, A.A.; Murshed, S.M.S. A review on development of ionic liquid based nanofluids and their heat transfer behavior. Renew. Sustain. Energy Rev. 2018, 91, 584–599. [Google Scholar] [CrossRef]
- Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629. [Google Scholar] [CrossRef]
- Galiński, M.; Lewandowski, A.; Stepniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567–5580. [Google Scholar] [CrossRef]
- Guldhe, A.; Singh, B.; Mutanda, T.; Permaul, K.; Bux, F. Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renew. Sustain. Energy Rev. 2015, 41, 1447–1464. [Google Scholar] [CrossRef]
- Atlaskina, M.E.; Kazarina, O.V.; Mochalova, A.E.; Vorotyntsev, I.V. Synthesis of Monomeric Ionic Liquids Based on 4-Vinylbenzyl Chloride as Precursors of a Material for the Selective Layer of Gas Separation Membranes. Membr. Membr. Technol. 2021, 3, 36–42. [Google Scholar] [CrossRef]
- Atlaskina, M.E.; Markov, A.N.; Kazarina, O.V. Calorimetric Study of Ionic Liquids Based on 4-Vinylbenzyl Triethylammonium with Chloride and Tetrafluoroborate Anion. IOP Conf. Ser. Earth Environ. Sci. 2021, 666, 062146. [Google Scholar] [CrossRef]
- Aghaie, M.; Rezaei, N.; Zendehboudi, S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew. Sustain. Energy Rev. 2018, 96, 502–525. [Google Scholar] [CrossRef]
- Vorotyntsev, V.M.; Drozdov, P.N.; Vorotyntsev, I.V.; Belyaev, E.S. Deep gas cleaning of highly permeating impurities using a membrane module with a feed tank. Pet. Chem. 2011, 51, 595–600. [Google Scholar] [CrossRef]
- Vorotyntsev, V.M.; Drozdov, P.N.; Vorotyntsev, I.V.; Murav’ev, D.V. Fine gas purification to remove slightly penetrating impurities using a membrane module with a feed reservoir. Dokl. Chem. 2006, 411, 243–245. [Google Scholar] [CrossRef]
- Petukhov, A.N.; Atlaskin, A.A.; Kryuchkov, S.S.; Smorodin, K.A.; Zarubin, D.M.; Petukhova, A.N.; Atlaskina, M.E.; Nyuchev, A.V.; Vorotyntsev, A.V.; Trubyanov, M.M.; et al. A highly-efficient hybrid technique–Membrane-assisted gas absorption for ammonia recovery after the Haber-Bosch process. Chem. Eng. J. 2020, 421, 127726. [Google Scholar] [CrossRef]
- Kryuchkov, S.S.; Petukhov, A.N.; Atlaskin, A.A. Experimental Evaluation of the Membrane-Assisted Gas Absorption Technique Efficiency Using an Aqueous Solution Of PEG-400 for the Ammonia Capture. IOP Conf. Ser. Earth Environ. Sci. 2021, 666, 052071. [Google Scholar] [CrossRef]
- Atlaskin, A.A.; Kryuchkov, S.S.; Yanbikov, N.R.; Smorodin, K.A.; Petukhov, A.N.; Trubyanov, M.M.; Vorotyntsev, V.M.; Vorotyntsev, I.V. Comprehensive experimental study of acid gases removal process by membrane-assisted gas absorption using imidazolium ionic liquids solutions absorbent. Sep. Purif. Technol. 2020, 239, 116578. [Google Scholar] [CrossRef]
- Vorotyntsev, I.V.; Atlaskin, A.A.; Trubyanov, M.M.; Petukhov, A.N.; Gumerova, O.R.; Akhmetshina, A.I.; Vorotyntsev, V.M. Towards the potential of absorbing pervaporation based on ionic liquids for gas mixture separation. Desalin. Water Treat. 2017, 75, 305–313. [Google Scholar] [CrossRef]
- Belov, N.A.; Safronov, A.P.; Yampolskii, Y.P. Inverse-gas chromatography and the thermodynamics of sorption in polymers. Polym. Sci.-Ser. A 2012, 54, 859–873. [Google Scholar] [CrossRef]
- Kawakami, M.; Kagawa, S. Measurements of the Solubility Coefficients of Gases and Vapors in Natural Rubber by Gas Chromatographic Technique. Bull. Chem. Soc. Jpn. 1978, 51, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.M.W.; Handan Tezel, F. Adsorption separation of CF4, O2, CO2, and COF2 from an excimer gas mixture. Sep. Purif. Technol. 2021, 258, 117659. [Google Scholar] [CrossRef]
- Kazarina, O.V.; Agieienko, V.N.; Nagrimanov, R.N.; Atlaskina, M.E.; Petukhov, A.N.; Moskvichev, A.A.; Nyuchev, A.V.; Barykin, A.V.; Vorotyntsev, I.V. A rational synthetic approach for producing quaternary ammonium halides and physical properties of the room temperature ionic liquids obtained by this way. J. Mol. Liq. 2021, 344, 117925. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Ganguly, S.; Swamy, H.R.; Oxton, I.A. Infrared studies of the phase transitions of alkylammonium halides, RNH3X, and bis-(alkylammonium) tetrahalogenometallates(II), (RNH3)2MX4, (R = alkyl, M = metal, X = Cl or Br). J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1981, 77, 1825–1836. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds. In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1872–1892. [Google Scholar] [CrossRef]
- Snavely, D.L.; Dubsky, J. Near-IR spectra of polyethylene, polyethylene glycol, and polyvinylethyl ether. J. Polym. Sci. Part A Polym. Chem. 1996, 34, 2575–2579. [Google Scholar] [CrossRef]
- Miyazawa, T.; Fukushima, K.; Ideguchi, Y. Molecular vibrations and structure of high polymers. III. Polarized infrared spectra, normal vibrations, and helical conformation of polyethylene glycol. J. Chem. Phys. 1962, 37, 2764–2776. [Google Scholar] [CrossRef]
- Goodarzi, A.; Khanmohammadi, M.; Ebrahimi-Barough, S.; Azami, M.; Amani, A.; Baradaran-Rafii, A.; Bakhshaiesh, N.L.; Ai, A.; Farzin, A.; Ai, J. Alginate-Based Hydrogel Containing Taurine-Loaded Chitosan Nanoparticles in Biomedical Application. Arch. Neurosci. 2019, 6, e86349. [Google Scholar] [CrossRef]
- Song, J.; Birbach, N.L.; Hinestroza, J.P. Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 2012, 19, 411–424. [Google Scholar] [CrossRef]
- Shahkhatuni, A.A.; Shahkhatuni, A.G.; Mamyan, S.S.; Ananikov, V.P.; Harutyunyan, A.S. Proton–deuterium exchange of acetone catalyzed in imidazolium-based ionic liquid–D2O mixtures. RSC Adv. 2020, 10, 32485–32489. [Google Scholar] [CrossRef]
- Jalili, A.H.; Rahmati-Rostami, M.; Ghotbi, C.; Hosseini-Jenab, M.; Ahmadi, A.N. Solubility of H2S in Ionic Liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N]. J. Chem. Eng. Data 2009, 54, 1844–1849. [Google Scholar] [CrossRef]
- Zhou, X.; Yi, H.; Tang, X.; Deng, H.; Liu, H. Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chem. Eng. J. 2012, 200, 399–404. [Google Scholar] [CrossRef]
- Song, X.; Wang, L.; Ma, X.; Zeng, Y. Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves. Appl. Surf. Sci. 2017, 396, 870–878. [Google Scholar] [CrossRef]
- Lee, B.-C.; Outcalt, S.L. Solubilities of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 2006, 51, 892–897. [Google Scholar] [CrossRef]
- Anthony, J.L.; Anderson, J.L.; Maginn, E.J.; Brennecke, J.F. Anion Effects on Gas Solubility in Ionic Liquids. J. Phys. Chem. B 2005, 109, 6366–6374. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Sensenich, B.; Scurto, A.M. High-pressure phase equilibria of {carbon dioxide (CO2) + n-alkyl-imidazolium bis(trifluoromethylsulfonyl)amide} ionic liquids. J. Chem. Thermodyn. 2010, 42, 305–311. [Google Scholar] [CrossRef]
- Yunus, N.M.; Mutalib, M.I.A.; Man, Z.; Bustam, M.A.; Murugesan, T. Solubility of CO2 in pyridinium based ionic liquids. Chem. Eng. J. 2012, 189, 94–100. [Google Scholar] [CrossRef]
- Ying, H.; Baltus, R.E. Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method. Ind. Eng. Chem. Res. 2007, 46, 8166–8175. [Google Scholar] [CrossRef]
- Ramdin, M.; Amplianitis, A.; Bazhenov, S.; Volkov, A.; Volkov, V.; Vlugt, T.J.H.; de Loos, T.W. Solubility of CO2 and CH4 in Ionic Liquids: Ideal CO2 /CH4 Selectivity. Ind. Eng. Chem. Res. 2014, 53, 15427–15435. [Google Scholar] [CrossRef]
- Camper, D.; Scovazzo, P.; Koval, C.; Noble, R. Gas solubilities in room-temperature ionic liquids. Ind. Eng. Chem. Res. 2004, 43, 3049–3054. [Google Scholar] [CrossRef]
- Kumełan, J.; Pe, Ä. Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6]. Engineering 2006, 51, 1802–1807. [Google Scholar] [CrossRef]
- Muldoon, M.J.; Aki, S.N.V.K.; Anderson, J.L.; Dixon, J.K.; Brennecke, J.F. Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B 2007, 111, 9001–9009. [Google Scholar] [CrossRef] [PubMed]
- Harlick, P.J.E.; Sayari, A. Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance. Ind. Eng. Chem. Res. 2007, 46, 446–458. [Google Scholar] [CrossRef]
- Xu, X.; Song, C.; Andresen, J.M.; Miller, B.G.; Scaroni, A.W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 2002, 16, 1463–1469. [Google Scholar] [CrossRef]
- Ghosh, A.; Subrahmanyam, K.S.; Krishna, K.S.; Datta, S.; Govindaraj, A.; Pati, S.K.; Rao, C.N.R. Uptake of H2 and CO2 by graphene. J. Phys. Chem. C 2008, 112, 15704–15707. [Google Scholar] [CrossRef]
- Lu, C.; Bai, H.; Wu, B.; Su, F.; Hwang, J.F. Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons, and Zeolites. Energy Fuels 2008, 22, 3050–3056. [Google Scholar] [CrossRef]
- Arstad, B.; Fjellvåg, H.; Kongshaug, K.O.; Swang, O.; Blom, R. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 2008, 14, 755–762. [Google Scholar] [CrossRef]
- Jadhav, P.D.; Chatti, R.V.; Biniwale, R.B.; Labhsetwar, N.K.; Devotta, S.; Rayalu, S.S. Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures. Energy Fuels 2007, 21, 3555–3559. [Google Scholar] [CrossRef]
- Katoh, M.; Yoshikawa, T.; Tomonari, T.; Katayama, K.; Tomida, T. Adsorption Characteristics of Ion-Exchanged ZSM-5 Zeolites for CO2/N2 Mixtures. J. Colloid Interface Sci. 2000, 226, 145–150. [Google Scholar] [CrossRef] [PubMed]
Component of the GC | Characteristic |
---|---|
Detector | TCD, 393.15 K |
Chromatographic column | 1 m × 3 mm i.d. stainless steel tube |
Sample loop | 0.5 mL, 303.15–333.15 K |
Carrier gas | He 99.9999 vol%, 15 cm3 min−1 |
T, K | KH, MPa | J·mol·K−1 | ||
---|---|---|---|---|
[BHEDMA][Tau] | ||||
303.15 | 4.76 ± 0.24 | 9.73 ± 0.49 | −13.8 ± 0.69 | −77.8 ± 3.89 |
313.15 | 5.69 ± 0.29 | 10.52 ± 0.53 | −77.8 ± 3.89 | |
323.15 | 6.70 ± 0.33 | 11.29 ± 0.56 | −77.8 ± 3.89 | |
333.15 | 7.80 ± 0.39 | 12.07 ± 0.60 | −77.8 ± 3.89 | |
[BHEDMA][OAc] | ||||
303.15 | 11.55 ± 0.77 | 11.97 ± 0.60 | −24.2 ± 1.21 | −119.4 ± 5.97 |
313.15 | 15.61 ± 0.79 | 13.15 ± 0.66 | −119.4 ± 5.97 | |
323.15 | 20.97 ± 1.06 | 14.36 ± 0.72 | −119.4 ± 5.97 | |
333.15 | 27.38 ± 1.37 | 15.55 ± 0.78 | −119.4 ± 5.97 |
Compounds | KH, bar | Ref. |
---|---|---|
[BHEDMA][Tau] | 47 | This work |
[BHEDMA][OAc] | 115 | |
[C4py][TfAc] | 57 | [39] |
[C4py][Dca] | 64 | |
[Bmim][Tf2N] | 42 | [40] |
[Bmim][BF4] | 63 | |
[Bmpip][Tf2N] | 40 | [41] |
[Tes][Tf2N] | 40 | |
[Bmim][PF6] | 59 | [42] |
[Emim][TF2N] | 39 |
Sorbent | Temperature, K | Pressure CO2, atm | Adsorption Capacity, mmol·g−1 | Ref. |
---|---|---|---|---|
[BHEDMA][Tau] | 303.15 | 1.42 | 0.58 | This work |
[BHEDMA][OAc] | 303.15 | 1.32 | 0.30 | |
silica solid sorbents | ||||
Silica gel | 295 | 1 | 0.41 | [45] |
MCM-41 1 | 348 | 1 | 0.195 | [46] |
carbonaceous solid sorbents | ||||
Graphene | 195 | 1 | 0.80 | [47] |
AC 2 | 298 | 0.1 | 0.57 | [48] |
MOFs | ||||
Al(OH)(2-amino-BDC) 3 | 298 | 0.15 | 0.70 | [49] |
USO-2-Ni 4 | 298 | 0.15 | 0.27 | |
zeolites | ||||
MEA-modified 13X 5 | 303 | 0.15 | 0.63 | [50] |
Na-ZSM-5 6 | 303 | 0.15 | 0.75 | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atlaskina, M.E.; Atlaskin, A.A.; Kazarina, O.V.; Petukhov, A.N.; Zarubin, D.M.; Nyuchev, A.V.; Vorotyntsev, A.V.; Vorotyntsev, I.V. Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening. Environments 2021, 8, 134. https://doi.org/10.3390/environments8120134
Atlaskina ME, Atlaskin AA, Kazarina OV, Petukhov AN, Zarubin DM, Nyuchev AV, Vorotyntsev AV, Vorotyntsev IV. Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening. Environments. 2021; 8(12):134. https://doi.org/10.3390/environments8120134
Chicago/Turabian StyleAtlaskina, Maria E., Artem A. Atlaskin, Olga V. Kazarina, Anton N. Petukhov, Dmitriy M. Zarubin, Alexander V. Nyuchev, Andrey V. Vorotyntsev, and Ilya V. Vorotyntsev. 2021. "Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening" Environments 8, no. 12: 134. https://doi.org/10.3390/environments8120134
APA StyleAtlaskina, M. E., Atlaskin, A. A., Kazarina, O. V., Petukhov, A. N., Zarubin, D. M., Nyuchev, A. V., Vorotyntsev, A. V., & Vorotyntsev, I. V. (2021). Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening. Environments, 8(12), 134. https://doi.org/10.3390/environments8120134