Interfacial Mechanical Properties and Reinforcement Mechanism of Polyester Yarn Bundled Geogrid for Retaining Structure
Abstract
1. Introduction
2. Pull-Out Test
2.1. Geogrid Pull-Out Test Device
2.2. Test Materials
2.3. Test Filling Soil
2.4. Experimental Scheme
3. Analysis of Pull-Out Test Results
3.1. Effects of Different Pull-Out Rates
3.2. Effects of Different Moisture Contents
3.3. Friction Characteristics Model for Geogrid Interface
4. Pull-Out Test Numerical Simulation
4.1. Model Structure
4.2. Model Parameter Calibration
4.3. Analysis of Numerical Simulation Results
4.3.1. Geogrid Displacement and Deformation Results
4.3.2. Stress Analysis of Soil–Reinforcement Interface
5. Theoretical Analysis of the Bearing Characteristics of Geogrids
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Zhang, Z.; Long, Z.; He, B.; Chen, F.; Chen, Z.; Lin, Y. Mechanical model of tensile loading of geotechnical reinforcement materials. Materials 2025, 18, 214. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhan, Z.; Hong, Y.; Guo, P.; He, M.; Chen, R. Experimental study on mechanical and deformation characteristics of geogrid-reinforced soil retaining walls. Int. J. Geosynth. Ground Eng. 2024, 10, 74. [Google Scholar] [CrossRef]
- Lin, Y.; Hou, K.; Zhou, Y.; Zhu, P. Seismic displacement of a three-stage anchored slope: 3D limit analysis with dynamic yield acceleration. Soil Dyn. Earthq. Eng. 2026, 201, 110005. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, Z.; Zhou, Y.; Duan, J.; Yang, G. Investigation on lateral pressure on a sheet-pile wall with EPS layer supporting an expansive soil slope. Case Stud. Constr. Mater. 2024, 21, e03945. [Google Scholar] [CrossRef]
- Fox, P.J. Analytical Solutions for Internal Stability of a Geosynthetic-Reinforced Soil Retaining Wall at the Limit State. J. Geotech. Geoenviron. Eng. 2022, 148, 04022076. [Google Scholar] [CrossRef]
- Bilgin, O. Failure mechanisms governing reinforcement length of geogrid reinforced soil retaining walls. Eng. Struct. 2009, 31, 1967–1975. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, L.; He, D.; Chen, X.; Duan, J. Prediction on the seismic response of a multi-stage anchored slope by a time-dependent displacement analysis. Eur. J. Environ. Civ. Eng. 2025, 29, 2740–2765. [Google Scholar] [CrossRef]
- Altay, G.; Kayadelen, C.; Taşkıran, T.; Kaya, Y.Z. A laboratory study on pull-out resistance of geogrid in clay soil. Measurement 2019, 139, 301–307. [Google Scholar] [CrossRef]
- Bai, Q.; Liu, J.; Wang, Y.; Du, H.; Wang, B. Experimental investigation of interface characteristics between geogrid and coarse-grained soil in a seasonally frozen area. Appl. Sci. 2022, 12, 10187. [Google Scholar] [CrossRef]
- Makkar, F.M.; Chandrakaran, S.; Sankar, N. Experimental investigation of response of different granular soil–3d geogrid interfaces using large-scale direct shear tests. J. Mater. Civ. Eng. 2019, 31, 04019012. [Google Scholar] [CrossRef]
- Safa, M.; Maleka, A.M.; Arjomand, M.; Khorami, M.; Shariati, M. Strain rate effects on soil-geosynthetic interaction in fine-grained soil. Geomech. Eng. 2019, 19, 533–542. [Google Scholar]
- Liu, J.; Pan, J.; Liu, Q.; Xu, Y. Experimental study on the interface characteristics of geogrid-reinforced gravelly soil based on pull-out tests. Sci. Rep. 2024, 14, 8669. [Google Scholar] [CrossRef]
- Du, W.; Nie, R.; Tan, Y.; Zhang, J.; Qi, Y.; Zhao, C.Y. Influence of strengthened nodes on the mechanical performance of aeolian sand–geogrid interface. Materials 2023, 16, 4665. [Google Scholar] [CrossRef]
- Lakirouhani, A.; Abbasian, M.; Medzvieckas, J.; Kliukas, R. The effect of relative density, granularity and size of geogrid apertures on the shear strength of the soil/geogrid interface. J. Civ. Eng. Manag. 2024, 30, 691–707. [Google Scholar] [CrossRef]
- Abdi, M.R.; Mirzaeifar, H.; Asgardun, Y. Novel soil-pegged geogrid (PG) interactions in pull-out loading conditions. Geotext. Geomembr. 2022, 50, 764–778. [Google Scholar] [CrossRef]
- Gao, W.; Lin, Y.; Wang, X.; Zhou, T.; Zheng, C. Interface mechanics of double-twisted hexagonal gabion mesh with coarse-grained filler based on pullout test. Materials 2024, 17, 164. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lu, L.; Duan, J. Estimation on the earthquake-induced displacement of an inhomogeneous and anisotropic anchored slope considering a time-dependent yield acceleration. Soil Dyn. Earthq. Eng. 2025, 191, 109220. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, J.; Jiang, Z.; Liu, W.; Liu, H.; Li, R.; Liu, X. Seismic response of combined retaining structure with inclined rock slope. Struct. Eng. Mech. 2022, 84, 591–604. [Google Scholar]
- Li, J.; Jia, Y.F.; Miao, C.X.; Xie, M.X. Discrete element analysis of the load transfer mechanism of geogrid-ballast interface under pull-out load. Adv. Civ. Eng. 2020, 2020, 8892922. [Google Scholar] [CrossRef]
- Attache, S.; Mellas, M. Numerical study of large-scale pull-out test of horizontal corrugated strips. Int. J. Geotech. Eng. 2020, 14, 62–70. [Google Scholar] [CrossRef]
- Fu, J.; Li, J.; Chen, C.; Rui, R. Dem-fdm coupled numerical study on the reinforcement of biaxial and triaxial geogrid using pullout test. Appl. Sci. 2021, 11, 9001. [Google Scholar] [CrossRef]
- Liang, X.; Jin, J.; Yang, G.; Wang, X.; Zhou, Y. Pullout characteristics and damage softening model of the geogrid-soil interface. Adv. Mater. Sci. Eng. 2022, 2022, 8047519. [Google Scholar] [CrossRef]
- Pant, A.; Datta, M.; Ramana, G.V.; Bansal, D. Measurement of role of transverse and longitudinal members on pullout resistance of PET geogrid. Measurement 2019, 148, 106944. [Google Scholar] [CrossRef]
- Moraci, N.; Gioffrè, D.A. Simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil. Geotext. Geomembr. 2006, 24, 116–128. [Google Scholar] [CrossRef]
- Cardile, G.; Gioffre, D.; Moraci, N.; Calvarano, L.S. Modelling interference between the geogrid bearing members under pullout loading conditions. Geotext. Geomembr. 2017, 45, 169–177. [Google Scholar] [CrossRef]
- Bathurst, R.J.; Ezzein, F.M. Geogrid and soil displacement observations during pullout using a transparent granular soil. Geotech. Test. J. 2015, 38, 673–685. [Google Scholar] [CrossRef]
- Malicki, K.; Górszczyk, J.; Dimitrovová, Z. Recycled Polyester Geosynthetic Influence on Improvement of Road and Railway Subgrade Bearing Capacity—Laboratory Investigations. Materials 2021, 14, 7264. [Google Scholar] [CrossRef]
- Baadiga, R.; Balunaini, U.; Saride, S. Influence of geogrid properties on rutting and stress distribution in reinforced flexible pavements under repetitive wheel loading. J. Mater. Civ. Eng. 2021, 33, 04021338. [Google Scholar] [CrossRef]
- Baadiga, R.; Balunaini, U.; Saride, S.; Madhav, M. Effect of geogrid type and subgrade strength on the traffic benefit ratio of flexible pavements. Transp. Infrastruct. Geotechnol. 2021, 10, 180–210. [Google Scholar] [CrossRef]
- Al-Barqawi, M.; Aqel, R.; Wayne, M.; Titi, H.; Elhajjar, R. Polymer Geogrids: A Review of Material, Design and Structure Relationships. Materials 2021, 14, 4745. [Google Scholar] [CrossRef]
- Ma, X.; Bai, F. The role of geogrid aperture shape and size in strengthening aeolian sands: Insights from a coupled dem-fdm approach. Comput. Geotech. 2025, 180, 107067. [Google Scholar] [CrossRef]
- Liu, L.; Shu, Z.; Gao, J.; Chen, C.; Pan, L.; Ren, P.W. Experimental research on the influence of geogrid morphological parameters on the mechanical characteristics and deformation rules of reinforced foundations. Constr. Build. Mater. 2025, 500, 144100. [Google Scholar] [CrossRef]
- Buragadda, V.; Orekanti, E.R.; Garu, V.Y.; Edagotti, P.K. Influence of reinforcement geometrical parameters on plate anchor uplift capacity. Transp. Infrastruct. Geotechnol. 2024, 11, 1828–1859. [Google Scholar] [CrossRef]
- Nielsen, M. Pullout Resistance of Welded Wire Mats Embedded in Soil. Master’s Thesis, Utah State University, Logan City, UT, USA, 1984. [Google Scholar]
- Jewell, R.A.; Milligan, G.W.E.; Sarsby, R.W.; Dubois, D. Interaction between Soil and Geogrids. In Proceedings of the Symposium on Polymer Grid Reinforcement in Civil Engineering, London, UK, 22–23 March 1984. [Google Scholar]



















| Thickness /(mm) | Width /(mm) | Length /(mm) | Long-Term Tensile Strength/(kN·m) | Tensile Strength at 5% Elongation/(kN·m) | Longitudinal Nominal Elongation/(%) |
|---|---|---|---|---|---|
| 2 | 20 | 22 | 106.8 | 89.3 | 7.2 |
| Maximum Dry Density/ (g·cm−3) | Optimum Moisture Content/(%) | Internal Friction Angle/(°) | Cohesion/ (kPa) | Degree of Compaction/(%) |
|---|---|---|---|---|
| 1.73 | 10.6 | 36.2 | 13.6 | 90 |
| Serial Number | With or Without Transverse Rib | Moisture Content/(%) | Pull-Out Rate /(mm·min−1) | Normal Stress /(kPa) |
|---|---|---|---|---|
| 1 | with | 5 | 0.5 | 100/150/200/250 |
| 2 | 1 | 100/150/200/250 | ||
| 3 | 2 | 100/150/200/250 | ||
| 4 | 3 | 100/150/200/250 | ||
| 5 | with | 10 | 2 | 100/150/200/250 |
| 6 | with | 15 | 2 | 100/150/200/250 |
| 7 | without | 5 | 2 | 100/150/200/250 |
| (kPa) | Fitting Model | ||
|---|---|---|---|
| Bilinear Model | Ideal Elastoplastic Model | Hyperbolic Model | |
| 100 | 0.9707 | 0.9656 | 0.9474 |
| 150 | 0.9649 | 0.9648 | 0.8777 |
| 200 | 0.9906 | 0.9890 | 0.9522 |
| 250 | 0.9848 | 0.9847 | 0.9337 |
| (a) | |||||||
| Ball Structure | Model | Poro | /(g·cm−3) | Zone Structure | Model | E/(Pa) | Possion |
| Linear | 0.36 | 50 | Elastic | 7 × 108 | 0.25 | ||
| (b) | |||||||
| Ball–Ball Contact | Model | damp | E*/(N·m−3) | K* | Ball-Ball Contact | Model | |
| Linear | 0.12 | 1.5 | 106.8 | 89.3 | Linear | ||
| (c) | |||||||
| Wall–Ball Contact | Model | dp_nratio | E*/(N·m−3) | K* | pb_ten/N | pb_coh/N | |
| Linearpbond | 0.12 | 0.2 | 1 × 106 | 0.5 | 10 | 10 |
| (kPa) | (kN) | |||
|---|---|---|---|---|
| 100 | 6.32 | 6.20 | 5.06 | 0.29 |
| 150 | 9.30 | 9.29 | 7.59 | 0.19 |
| 200 | 11.61 | 12.43 | 10.12 | 0.21 |
| 250 | 12.97 | 15.56 | 12.65 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tu, J.; Zhao, W.; Zhu, P.; Lin, Y. Interfacial Mechanical Properties and Reinforcement Mechanism of Polyester Yarn Bundled Geogrid for Retaining Structure. Buildings 2026, 16, 565. https://doi.org/10.3390/buildings16030565
Tu J, Zhao W, Zhu P, Lin Y. Interfacial Mechanical Properties and Reinforcement Mechanism of Polyester Yarn Bundled Geogrid for Retaining Structure. Buildings. 2026; 16(3):565. https://doi.org/10.3390/buildings16030565
Chicago/Turabian StyleTu, Jiahong, Wei Zhao, Pengyu Zhu, and Yuliang Lin. 2026. "Interfacial Mechanical Properties and Reinforcement Mechanism of Polyester Yarn Bundled Geogrid for Retaining Structure" Buildings 16, no. 3: 565. https://doi.org/10.3390/buildings16030565
APA StyleTu, J., Zhao, W., Zhu, P., & Lin, Y. (2026). Interfacial Mechanical Properties and Reinforcement Mechanism of Polyester Yarn Bundled Geogrid for Retaining Structure. Buildings, 16(3), 565. https://doi.org/10.3390/buildings16030565

