Previous Issue
Volume 16, January
 
 

Minerals, Volume 16, Issue 2 (February 2026) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 1995 KB  
Article
Enhanced Settlement Thickening of Tailings Slurry by Ultrasonic Treatment: Optimization of Application Timing and Power and Insight into the Underlying Mechanism
by Liyi Zhu, Zhao Wei, Peng Yang, Xiaofei Qiao, Penglin Lang, Zhengbin Li, Kun Wang, Wensheng Lyu and Jialu Zeng
Minerals 2026, 16(2), 124; https://doi.org/10.3390/min16020124 - 23 Jan 2026
Abstract
Efficient thickening of unclassified tailings slurry (UTS) is critical for enhancing mine backfill efficiency and reducing operational costs. Ultrasonic technology has emerged as a promising approach to facilitating the solid–liquid separation process in such slurries. In this study, systematic experiments were conducted using [...] Read more.
Efficient thickening of unclassified tailings slurry (UTS) is critical for enhancing mine backfill efficiency and reducing operational costs. Ultrasonic technology has emerged as a promising approach to facilitating the solid–liquid separation process in such slurries. In this study, systematic experiments were conducted using a 20 kHz ultrasonic concentrator. The effects of ultrasonic treatment timing (applied at 0, 5, 10, 15, 20, 25, 30, and 35 min during free settling) and power (50 to 400 W in eight levels) were investigated by monitoring the solid–liquid interface settling velocity and underflow concentration. The key findings are as follows: Ultrasonic application at the 5 min mark yielded the optimal thickening performance, increasing the final mass concentration by 1.3% compared to free settling alone. The average settling velocity generally increased with ultrasonic power (with the exception of 50 W), and the final underflow concentration exhibited a steady rise. Notably, the 400 W treatment induced a significant settlement acceleration, attributed to the formation of drainage channels. Mechanistic analysis revealed that these drainage channels undergo a dynamic process of formation, expansion, contraction, and closure, driven by ultrasonically induced directional water migration, particle compaction, and energy boundary effects. This research not only enriches the theoretical framework of ultrasonic-assisted thickening but also provides practical insights for optimizing mine backfill operations. Full article
(This article belongs to the Special Issue Advances in Mine Backfilling Technology and Materials, 2nd Edition)
18 pages, 2455 KB  
Article
Chronology and Geochemistry of Intrusive Magmatic Rocks in the Shiquanhe Ophiolitic Mélange, Tibet: Constraints on the Tectonic Evolution of the Meso-Tethys Ocean
by Kegang Dai, Xu Zhang, Ru-Xin Ding, Harald Furnes, Wei-Liang Liu, Xiaobo Kang, Hongfei Zhao, Jing Li, Qin Wang, Yun Bai, Chi Yan and Yutong Shi
Minerals 2026, 16(2), 123; https://doi.org/10.3390/min16020123 - 23 Jan 2026
Abstract
Magmatic activity is crucial for identification of the tectonic framework of the ancient oceanic crust. In this study, systematic investigation, including a field survey, zircon LA-ICP-MS U-Pb dating, and whole-rock geochemical analysis, has been carried out on the intrusive quartz- and granodiorites within [...] Read more.
Magmatic activity is crucial for identification of the tectonic framework of the ancient oceanic crust. In this study, systematic investigation, including a field survey, zircon LA-ICP-MS U-Pb dating, and whole-rock geochemical analysis, has been carried out on the intrusive quartz- and granodiorites within the Meso-Tethyan Shiquanhe Ophiolitic Mélange (SQM), Tibet. Zircon U-Pb dating yields the weighted mean ages of 174.7 ± 1.4 Ma (quartz diorite) and 178.9 ± 1.2 Ma (granodiorite), respectively, demonstrating the Early Jurassic formation age. The quartz diorite samples are metaluminous (A/NKC = 0.77–0.95) (molar/Al2O3/(CaO + Na2O + K2O)), while the granodiorite samples are weakly peraluminous (A/NKC = 0.95–1.21), and both of them exhibit tholeiitic to calc-alkaline geochemical characteristics and can be classified as I-type granites. The right-dipping rare-earth element (REE) patterns, enrichment in large ion lithophile elements (LILEs: Rb, Ba, Th), and depletion in high-field-strength elements (HFSEs: Nb, Ta, Ti), as well as relatively high (La/Yb)N ratios, are features compatible with an island arc setting. Combined with previous works, we suggest that the Shiquanhe ophiolitic mélange not only preserves records of mid-late Jurassic island arc magmatic activity but also contains evidence of island arc magmatism from the late Early Jurassic. Full article
11 pages, 5970 KB  
Article
Polyarsite, Na7CaMgCu2(AsO4)4F2Cl, a New Mineral with Unique Complex Layers in the Novel-Type Crystal Structure
by Igor V. Pekov, Natalia V. Zubkova, Atali A. Agakhanov, Dmitry I. Belakovskiy, Marina F. Vigasina, Vasiliy O. Yapaskurt, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Elena S. Zhitova and Dmitry Yu. Pushcharovsky
Minerals 2026, 16(2), 122; https://doi.org/10.3390/min16020122 - 23 Jan 2026
Abstract
The new mineral polyarsite, ideally Na7CaMgCu2(AsO4)4F2Cl, was discovered in high-temperature incrustations of the active Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, [...] Read more.
The new mineral polyarsite, ideally Na7CaMgCu2(AsO4)4F2Cl, was discovered in high-temperature incrustations of the active Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aegirine, sanidine, ferrisanidine, hematite, halite, sylvite, cassiterite, evseevite, axelite, badalovite, johillerite, arsmirandite, aphthitalite, tridymite, potassic-magnesio-fluoro-arfvedsonite and litidionite. Polyarsite forms short-prismatic, equant or tabular crystals up to 0.15 mm across, their clusters up to 0.3 mm in size or crusts up to 0.5 mm across and up to 0.03 mm thick. Polyarsite is transparent, sky-blue to light blue, with vitreous lustre. It is brittle, no cleavage is observed and the fracture is uneven. Dcalc. = 3.592 g cm−3. Polyarsite is optically biaxial (+), α = 1.624 (4), β = 1.645 (4), γ = 1.682 (4) (589 nm), 2Vmeas. = 70 (10)°. The empirical chemical formula calculated based on 19 O+F+Cl apfu is Na7.04Ca1.00Mg0.92Cu2.06Fe3+0.06(As3.96S0.05)Σ4.01O16.28F1.66Cl1.06. Polyarsite is monoclinic, space group I2/m, a = 8.4323(4), b = 10.0974(4), c = 10.7099(6) Å, β = 90.822(4)°, V = 911.79(8) Å3 and Z = 2. The crystal structure was determined based on SCXRD data, R = 0.0391. Polyarsite demonstrates a novel structure type. The structure is based on the (1 0 1) heteropolyhedral layers formed by Cu2O8Cl dimers built by CuO4Cl tetragonal pyramids sharing common Cl vertex, AsO4 tetrahedra and MgO4F2 octahedra. Adjacent layers are linked via CaO8 cubes to form a pseudo-framework which hosts octahedrally coordinated Na cations. Polyarsite was named based on the Greek words πολύς, poly, “many” and due to belonging to arsenates: this arsenate contains many chemical components ordered between different positions in crystal structure. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

1 pages, 128 KB  
Retraction
RETRACTED: Rudayni et al. Insight into the Potential Antioxidant and Antidiabetic Activities of Scrolled Kaolinite Single Sheet (KNs) and Its Composite with ZnO Nanoparticles: Synergetic Studies. Minerals 2023, 13, 567
by Hassan Ahmed Rudayni, Malak Aladwani, Lina M. Alneghery, Ahmed A. Allam, Mostafa R. Abukhadra and Stefano Bellucci
Minerals 2026, 16(2), 121; https://doi.org/10.3390/min16020121 - 23 Jan 2026
Abstract
The Journal retracts the article “Insight into the Potential Antioxidant and Antidiabetic Activities of Scrolled Kaolinite Single Sheet (KNs) and Its Composite with ZnO Nanoparticles: Synergetic Studies” [...] Full article
29 pages, 3504 KB  
Article
Depositional Environments and Carbonaceous Sources of the Cheng-Gang Crystalline Graphite Deposit Revealed by Elemental and Isotopic Evidence
by Feng Liu, Wenbo Rao, Yangyang Zhang, Jianjun Cui and Weijun Yao
Minerals 2026, 16(2), 120; https://doi.org/10.3390/min16020120 - 23 Jan 2026
Abstract
The Cheng-gang crystalline graphite deposit is a recently discovered medium-to-large-sized deposit within the Tan-Lu Fault Zone (TLFZ), East China. However, the knowledge on this deposit remains limited, resulting in a poor understanding of its genesis. In this study, this deposit is chosen to [...] Read more.
The Cheng-gang crystalline graphite deposit is a recently discovered medium-to-large-sized deposit within the Tan-Lu Fault Zone (TLFZ), East China. However, the knowledge on this deposit remains limited, resulting in a poor understanding of its genesis. In this study, this deposit is chosen to elucidate the degree of graphite mineralization, the nature and depositional environments of the protoliths, and the carbon source of graphite through geochemical and stable isotope investigations, and mineralogical analysis. The fixed carbon contents in the graphite-ore-bearing layers range from 2% to 3%. X-ray diffraction analyses reveal a high degree of graphitization. Analyses of elemental ratios indicate that the protoliths of metamorphic rocks predominantly consist of felsic rocks derived from the upper crust and deposited in brackish-water and reducing environments (anoxic to dysoxic). Stable carbon isotope analyses show that CH4 with lighter carbon isotopes released from the decomposition of pristine organic matter was trapped into adjacent inorganic reservoirs and the residual fraction with heavy carbon isotopes evolved to become graphite under metamorphism. Assuming the existence of isotope exchange between carbonate minerals and graphite, the temperature of peak metamorphism is estimated to be 580–860 °C, corresponding to amphibolite–granulite facies during regional metamorphism. The direct mixing of organic fluids and adjacent inorganic reservoirs may have contributed to graphite ore formation and needs to be further explored in future studies. The findings shed light on the genesis of the TLFZ graphite deposits, providing practical implications for local mineral exploration. Full article
18 pages, 5682 KB  
Article
Geophysical Exploration Technology Supports Optimal Selection of Boron Iron Ore Target Areas
by Weitian Liang, Diquan Li, Chao Liu, Peng Li and Fu Li
Minerals 2026, 16(2), 119; https://doi.org/10.3390/min16020119 - 23 Jan 2026
Abstract
Boron is a critical strategic mineral resource. Boron deposits in the Liaodong region currently supply more than 35% of China’s domestic demand. To advance exploration efforts in this area, detailed physical property measurements were carried out on various rock formations within the Yingkou–Anshan [...] Read more.
Boron is a critical strategic mineral resource. Boron deposits in the Liaodong region currently supply more than 35% of China’s domestic demand. To advance exploration efforts in this area, detailed physical property measurements were carried out on various rock formations within the Yingkou–Anshan district. Utilizing integrated geophysical approaches, including gravity, magnetic, and electrical surveys, this study introduced—for the first time—the wide field electromagnetic method (WFEM) for deep exploration testing. Measured parameters included density, magnetic susceptibility, and resistivity. The electromagnetic methods proved effective in boron mineral exploration due to their pronounced response over the Lieryu Formation, which is enriched in boron minerals. We refined inversion parameters to improve the consistency between geophysical models and actual geological characteristics by correlating physical property parameters with drilled core lithology. Comprehensive analysis indicates that boron mineralization in the Houxianyu mining area is not restricted to the Lieryu Formation. Significant boron enrichment also occurs in deeper structures, including thick granite bodies, large-scale folds, and various unconformity contacts. These deep mineralized bodies share similar physical properties with known ore deposits but exhibit distinct geochemical signatures. Through integrated interpretation of gravity, magnetic, and electrical profiles—combined with geological, mineralogical, and structural data from the Houxianyu area—it is evident that ore bodies in the study area occupy structurally complex positions, influenced by regional tectonic evolution and magmatic activity. Geophysical results further reveal a notable deep extension of mineralization, indicating promising potential for deep prospecting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

Previous Issue
Back to TopTop