Previous Issue
Volume 10, June

Table of Contents

Minerals, Volume 10, Issue 7 (July 2020) – 47 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Crystallinity and Play-of-Colour in Gem Opal with Digit Patterns from Wegel Tena, Ethiopia
Minerals 2020, 10(7), 625; https://doi.org/10.3390/min10070625 (registering DOI) - 13 Jul 2020
Abstract
A typical feature of Wegel Tena opal is the "digit pattern". This pattern consists of two parts, columns and matrix, with different colours, transparency or play-of-colour effect, which is still unexplained. This study aims at investigating the various parts of the digit pattern [...] Read more.
A typical feature of Wegel Tena opal is the "digit pattern". This pattern consists of two parts, columns and matrix, with different colours, transparency or play-of-colour effect, which is still unexplained. This study aims at investigating the various parts of the digit pattern using different spectroscopic methods, and scanning and transmission electron microscopy (SEM and TEM). The band at 780 cm−1 on the Fourier transform infrared (FTIR) spectrum is correlated to the symmetric stretching vibration of Si–O. The bands at 1085, 895, 785 and 3600 cm−1 on Raman spectra indicate that Wegel Tena opal is opal-CT. Comparison of the relative intensity of the Raman signals around 360 cm−1 indicates that the microcrystalline opal on the top of the sample contains a higher amount of tridymite-like structural units, and the tridymite-type regions in the matrix contain a higher degree of structural defects. Silica spheres in the columns tend to be smaller and better ordered than in the matrix. The diameter of the silica spheres (d = 80–500 nm) or agglomerates (d = 200–580 nm) in Wegel Tena opal satisfies the conditions of diffraction of visible light, and the thickness of the silica layer (h = 120–200 nm) satisfies the conditions for film interference. Full article
(This article belongs to the Section Crystallography and Physical Chemistry of Minerals)
Open AccessArticle
An Input-Output Analysis of the Economic Role and Effects of the Mining Industry in South Korea
Minerals 2020, 10(7), 624; https://doi.org/10.3390/min10070624 (registering DOI) - 12 Jul 2020
Viewed by 175
Abstract
The mining industry (MI) has played a role in proving a stable supply of minerals for industrial production and human survival. The South Korean government is implementing various policies to promote the MI and needs quantitative information on the economic role and effects [...] Read more.
The mining industry (MI) has played a role in proving a stable supply of minerals for industrial production and human survival. The South Korean government is implementing various policies to promote the MI and needs quantitative information on the economic role and effects of the MI. Thus, this article aims to derive the information through an input-output (IO) analysis using the recently published 2015 IO table, subdividing the MI into four sectors, namely coal, crude petroleum and natural gas, metal ores, and non-metallic mineral mining, and treating the MI as exogenous rather than endogenous. To this end, three models are employed. First, the production-inducing effects, value-added creation effects, and wage-inducing effects of 1 dollar of production in the MI sector are analyzed using a demand-driven model. One dollar of production or investment in the sector causes 1.81 of production, 0.85 dollar of value-added, and 0.33 dollar of wage, respectively. Second, by applying a supply-driven model, it is found that one dollar of supply shortage in the MI causes 2.24 dollars of production failure throughout the national economy. Third, by utilizing a price-side model, it is discovered that a 10% increase in the price of output of the MI raises the overall price level by 0.025%. Full article
Open AccessArticle
Tellurium Minerals: Structural and Chemical Diversity and Complexity
Minerals 2020, 10(7), 623; https://doi.org/10.3390/min10070623 (registering DOI) - 12 Jul 2020
Viewed by 151
Abstract
The chemical diversity and complexity of tellurium minerals were analyzed using the concept of mineral systems and Shannon informational entropy. The study employed data for 176 Te mineral species known today. Tellurium minerals belong to six mineral systems in the range of one-to-six [...] Read more.
The chemical diversity and complexity of tellurium minerals were analyzed using the concept of mineral systems and Shannon informational entropy. The study employed data for 176 Te mineral species known today. Tellurium minerals belong to six mineral systems in the range of one-to-six species-defining elements. For 176 tellurium minerals, only 36 chemical elements act as essential species-defining constituents. The numbers of minerals of main elements are calculated as follows (the number of mineral species is given in parentheses): O (89), H (48), Cu (48), Pb (43), Bi (31), S (29), Ag (20), Fe (20), Pd (16), Cl (13), and Zn (11). In accordance with their chemistry, all Te minerals are classified into five types of mineral systems: tellurium, oxides, tellurides and intermetalides, tellurites, and tellurates. A statistical analysis showed positive relationships between the chemical, structural, and crystallochemical complexities and the number of essential species-defining elements in a mineral. A positive statistically significant relationship between chemical and structural complexities was established. It is shown that oxygen-free and oxygen-bearing Te minerals differ sharply from each other in terms of chemical and structural complexity, with the first group of minerals being simpler than the second group. The oxygen-free Te minerals (tellurium, tellurides, and intermetallides) are formed under reducing conditions with the participation of hydrothermal solutions. The most structurally complex oxygen-bearing Te minerals originate either from chemical weathering and the oxidation of ore deposits or from volcanic exhalations (Nabokoite). Full article
(This article belongs to the Section Crystallography and Physical Chemistry of Minerals)
Open AccessArticle
Pyrite Varieties at Pobeda Hydrothermal Fields, Mid-Atlantic Ridge 17°07′–17°08′ N: LA-ICP-MS Data Deciphering
Minerals 2020, 10(7), 622; https://doi.org/10.3390/min10070622 (registering DOI) - 12 Jul 2020
Viewed by 159
Abstract
The massive sulfide ores of the Pobeda hydrothermal fields are grouped into five main mineral microfacies: (1) isocubanite-pyrite, (2) pyrite-wurtzite-isocubanite, (3) pyrite with minor isocubanite and wurtzite-sphalerite microinclusions, (4) pyrite-rich with framboidal pyrite, and (5) marcasite-pyrite. This sequence reflects the transition from feeder [...] Read more.
The massive sulfide ores of the Pobeda hydrothermal fields are grouped into five main mineral microfacies: (1) isocubanite-pyrite, (2) pyrite-wurtzite-isocubanite, (3) pyrite with minor isocubanite and wurtzite-sphalerite microinclusions, (4) pyrite-rich with framboidal pyrite, and (5) marcasite-pyrite. This sequence reflects the transition from feeder zone facies to seafloor diffuser facies. Spongy, framboidal, and fine-grained pyrite varieties replaced pyrrhotite, greigite, and mackinawite “precursors”. The later coarse and fine banding oscillatory-zoned pyrite and marcasite crystals are overgrown or replaced by unzoned subhedral and euhedral pyrite. In the microfacies range, the amount of isocubanite, wurtzite, unzoned euhedral pyrite decreases versus an increasing portion of framboidal, fine-grained, and spongy pyrite and also marcasite and its colloform and radial varieties. The trace element characteristics of massive sulfides of Pobeda seafloor massive sulfide (SMS) deposit are subdivided into four associations: (1) high temperature—Cu, Se, Te, Bi, Co, and Ni; (2) mid temperature—Zn, As, Sb, and Sn; (3) low temperature—Pb, Sb, Ag, Bi, Au, Tl, and Mn; and (4) seawater—U, V, Mo, and Ni. The high contents of Cu, Co, Se, Bi, Te, and values of Co/Ni ratios decrease in the range from unzoned euhedral pyrite to oscillatory-zoned and framboidal pyrite, as well as to colloform and crystalline marcasite. The trend of Co/Ni values indicates a change from hydrothermal to hydrothermal-diagenetic crystallization of the pyrite. The concentrations of Zn, As, Sb, Pb, Ag, and Tl, as commonly observed in pyrite formed from mid- and low-temperature fluids, decline with increasing crystal size of pyrite and marcasite. Coarse oscillatory-zoned pyrite crystals contain elevated Mn compared to unzoned euhedral varieties. Framboidal pyrite hosts maximum concentrations of Mo, U, and V probably derived from ocean water mixed with hydrothermal fluids. In the Pobeda SMS deposit, the position of microfacies changes from the black smoker feeder zone at the base of the ore body, to seafloor marcasite-pyrite from diffuser fragments in sulfide breccias. We suggest that the temperatures of mineralization decreased in the same direction and determined the zonal character of deposit. Full article
Show Figures

Figure 1

Open AccessArticle
Development of Ceramic Materials for the Manufacture of Bricks with Stone Cutting Sludge From Granite
Minerals 2020, 10(7), 621; https://doi.org/10.3390/min10070621 (registering DOI) - 10 Jul 2020
Viewed by 152
Abstract
The manufacture of bricks for building purposes consumes large quantities of virgin materials, such as clay. On the other hand, the ornamental stone processing industry produces a huge amount of stone cutting sludge in its process. Therefore, this study presents the development of [...] Read more.
The manufacture of bricks for building purposes consumes large quantities of virgin materials, such as clay. On the other hand, the ornamental stone processing industry produces a huge amount of stone cutting sludge in its process. Therefore, this study presents the development of ceramic materials for the manufacture of bricks with stone cutting sludges, more specifically from granite. For this purpose, the physical properties of the stone cutting sludge and the chemical composition were mainly analyzed. Subsequently, different groups of ceramic samples were conformed and sintered with various combinations of clay and of stone cutting sludges. The conformed samples were evaluated with different physical tests and with the compressive strength test. The addition of stone cutting sludges to the ceramics reflected the creation of a material with lower density and higher porosity. The compressive strength of the different groups reflected a maximum allowable percentage of stone cutting sludges incorporation of 70%. Therefore, ceramic materials were developed with stone cutting sludges, developing a sustainable, lighter material with acceptable mechanical and physical characteristics. Avoiding the deposition of a polluting waste in a landfill and at the same time avoiding the extraction of new virgin materials. Full article
(This article belongs to the Special Issue Reutilization and Valorization of Mine Waste)
Open AccessArticle
Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco)
Minerals 2020, 10(7), 620; https://doi.org/10.3390/min10070620 (registering DOI) - 10 Jul 2020
Viewed by 155
Abstract
The giant Tizert copper deposit is considered as the largest copper resource in the western Anti-Atlas (Morocco). The site is characterized by Cu mineralization carried by malachite, chalcocite, covellite, bornite and chalcopyrite; azurite is not observed. The host rocks are mainly limestones (Formation [...] Read more.
The giant Tizert copper deposit is considered as the largest copper resource in the western Anti-Atlas (Morocco). The site is characterized by Cu mineralization carried by malachite, chalcocite, covellite, bornite and chalcopyrite; azurite is not observed. The host rocks are mainly limestones (Formation of Tamjout Dolomite) and sandstones/siltstones (Basal Series) of the Ediacaran/Cambrian transition. The supergene enrichment is most likely related to episodes of uplift/doming (last event since 30 Ma), which triggered the exhumation of primary/hypogene mineralization (chalcopyrite, pyrite, galena, chalcocite I and bornite I), generating their oxidation and the precipitation of secondary/supergene sulfides, carbonates and Fe-oxyhydroxides. The Tizert supergene deposit mainly consists of (i) a residual patchwork of laterite rich in Fe-oxyhydroxides; (ii) a saprolite rich in malachite, or “green oxide zone” where primary structures such as stratification are preserved; (iii) a cementation zone containing secondary sulfides (covellite, chalcocite II and bornite II). The abundance of Cu carbonates results from the rapid neutralization of acidic meteoric fluids, due to oxidation of primary sulfides, by carbonate host rocks. Chlorite is also involved in the neutralization processes in the sandstones/siltstones of the Basal Series, in which supergene clays, such as kaolinite and smectites, subsequently precipitated. At Tizert, as can be highlighted in other supergene Cu-deposits around the world, azurite is absent due to low pCO2 and relatively high pH conditions. In addition to copper, Ag enrichment is also observed in weathered rocks; Fe-oxyhydroxides contain high Zn, As, and Pb contents. However, these secondary enrichments are quite low compared to Cu in the whole Tizert site, which is therefore, considered as relatively homogeneous. Full article
Open AccessArticle
An Improvement on Selective Separation by Applying Ultrasound to Rougher and Re-Cleaner Stages of Copper Flotation
Minerals 2020, 10(7), 619; https://doi.org/10.3390/min10070619 - 09 Jul 2020
Viewed by 226
Abstract
It has been known that the power ultrasound is used as a pretreatment and rarely applied as a simultaneous method to improve grade and recovery during froth flotation processes. This work aimed at investigating the impact of simultaneously used ultrasonic waves under variant [...] Read more.
It has been known that the power ultrasound is used as a pretreatment and rarely applied as a simultaneous method to improve grade and recovery during froth flotation processes. This work aimed at investigating the impact of simultaneously used ultrasonic waves under variant operating configurations on the flotation of representative porphyry copper ore during rougher and re-cleaner stages. For this purpose, four different operating outlines were examined as (I) conventional flotation, (II) homogenizer, (III) ultrasonic bath, and (IV) combination of a homogenizer and an ultrasonic bath. The ultrasonic vibration was generated by the homogenizer (21 kHz, 1 kW) in the froth zone and ultrasonic bath (35 kHz, 0.3 kW) in the bulk zone. The rougher and re-cleaner flotation experiments were conducted using Denver-type mechanically agitated cells with 4.2 and 1 L capacities, respectively. The results showed that using the homogenizer (at 0.4 kW) slightly affected the selectivity separation index of chalcopyrite and pyrite, although it positively increased the grade of chalcopyrite from 21.5% to 25.7%. The ultrasonic-assisted flotation experiments with the ultrasonic bath and its combination with the homogenizer (0.4 kW) (i.e., configurations III and IV) led to an increase of approximately 16.1% and 26.9% in the chalcopyrite selectivity index compared to the conventional flotation, respectively. At the cleaning stage, a lower grade of aluminum silicate-based minerals was obtained desirably in every ultrasonic-treated configuration, which was supported with the water recoveries. Finally, applying the homogenizer and its combination with the ultrasonic bath were recommended for re-cleaner and rougher stages, respectively. Further fundamental and practical knowledge gaps required to be studied were highlighted. Full article
Show Figures

Figure 1

Open AccessArticle
Zircon U-Pb Dating and Petrogenesis of Multiple Episodes of Anatexis in the North Dabie Complex Zone, Central China
Minerals 2020, 10(7), 618; https://doi.org/10.3390/min10070618 - 09 Jul 2020
Viewed by 214
Abstract
The North Dabie complex zone (NDZ), central China, is a high-T ultrahigh-pressure (UHP) metamorphic terrane. It underwent a complex evolution comprising of multistage metamorphism and multiple anatectic events during the Mesozoic continental collision, characterized by granulite-facies overprinting and a variety of migmatites with [...] Read more.
The North Dabie complex zone (NDZ), central China, is a high-T ultrahigh-pressure (UHP) metamorphic terrane. It underwent a complex evolution comprising of multistage metamorphism and multiple anatectic events during the Mesozoic continental collision, characterized by granulite-facies overprinting and a variety of migmatites with different generations of leucosomes. In this contribution, we carried out an integrated study including field investigation, petrographic observations, zircon U-Pb dating, and whole-rock element and Sr-Nd-Pb isotope analysis for the migmatites in the NDZ and their leucosomes and melanosomes. As a result, four groups of leucosomes have been recognized: Group 1 (garnet-bearing leucosome), strongly deformed leucosomes with coarse-grained peritectic garnet; Group 2 (amphibole-rich leucosome), weakly deformed to undeformed amphibole-rich leucosomes with coarse-grained peritectic amphibole and no garnet; Group 3 (amphibole-poor leucosome), weakly deformed to undeformed amphibole-poor leucosomes with minor fine-grained amphibole; Group 4 (K-feldspar-rich leucosome), K-feldspar-rich leucosomes mainly composed of coarse-grained quartz, plagioclase and K-feldspar. Zircon SHRIMP and LA-ICPMS U-Pb dating suggest that the Group 1 leucosomes formed at 209 ± 2 Ma whereas the rest of the leucosome groups (Groups 2–4) occurred between 145–110 Ma, in response to decompression under granulite-facies conditions during the early stage of exhumation, and to heating during post-orogenic collapse, respectively. Furthermore, the garnet-bearing leucosomes were resulted from fluid-absent anatexis related to biotite dehydration melting, while the other three groups of leucosomes were formed during large-scale fluid-present partial melting and coeval migmatization. This migmatization comes from heating from the mountain-root removal and asthenosphere upwelling, together with the influx of fluids derived from country rocks at mid-upper crustal levels. However, all the leucosomes and melanosomes display Pb-isotopic compositions similar to those observed for the NDZ UHP rocks (eclogites and granitic gneisses), suggesting a common source from the Triassic subducted Neoproterozoic lower-crustal rocks. In addition, the Cretaceous partial melting and migmatization began at 143 ± 2 Ma with three age-peaks at 133 ± 3 Ma, 124 ± 3 Ma and 114 ± 7 Ma, respectively. Full article
Show Figures

Figure 1

Open AccessArticle
Experimental Procedure for the Determination of the Critical Coalescence Concentration (CCC) of Simple Frothers
Minerals 2020, 10(7), 617; https://doi.org/10.3390/min10070617 - 09 Jul 2020
Viewed by 207
Abstract
In this study, the critical coalescence concentrations (CCC) of selected commercial frother solutions, namely polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and as a reference, methyl isobutyl carbinol (MIBC), were determined using a [...] Read more.
In this study, the critical coalescence concentrations (CCC) of selected commercial frother solutions, namely polypropylene glycols (PPG 200, 400, and 600), tri propylene glycol (BTPG), triethylene glycol (BTEG), dipropylene glycol (BDPG), and as a reference, methyl isobutyl carbinol (MIBC), were determined using a bubble column based on light absorption. The results for all seven frothers showed that BTEG has the worst bubble inhibiting performance, and PPG 600 has the best bubble inhibiting performance. While critical coalescence concentration (CCC) was found as 3 ppm for PPG 600, it increased to 25 ppm for BTEG. In the case of MIBC, which was the reference point, the CCC value was found as 10 ppm, which was consistent with the literature. The surface tension isotherms of the frothers were determined and analyzed with one of the latest adsorption models. The results indicated that the polypropylene glycol frothers showed more surface activity compared to alcohol or other frothers investigated. This is due to the additional reorganization of the PPG molecules on the air/water interface, thus boosting its surface activity. Full article
(This article belongs to the Special Issue Surfactants at Interfaces and Thin Liquid Films)
Show Figures

Figure 1

Open AccessArticle
Biostratinomy and Diagenetic Impact on Exceptional Preservation of Coccospheres from Lower Oligocene Coccolith Limestones
Minerals 2020, 10(7), 616; https://doi.org/10.3390/min10070616 - 09 Jul 2020
Viewed by 194
Abstract
Lower Oligocene coccolith limestones, known as Tylawa Limestones, in the Polish part of the Outer Carpathians have been analyzed using back-scattered electron (BSE) and charge contrast imaging (CCI) techniques and X-ray diffraction. The aim of the study was to reconstruct the fossilization history [...] Read more.
Lower Oligocene coccolith limestones, known as Tylawa Limestones, in the Polish part of the Outer Carpathians have been analyzed using back-scattered electron (BSE) and charge contrast imaging (CCI) techniques and X-ray diffraction. The aim of the study was to reconstruct the fossilization history of the excellently preserved coccospheres, commonly observed in these sediments, deposited in the Paratethys basin. Multiple petrographic and geochemical analyses indicate that the exceptional preservation of coccospheres has been caused by the special coincidence of biostratinomic processes: pre- and post-depositional processes within the water–sediment interface and possible early cementation. We discuss the origin of the calcite and silica and provide some hypotheses regarding the environment and possible factors responsible for the spectacular preservation process. Based on the observed intermediate steps of calcite and silica alteration, we propose an extended model of biostratinomic processes and diagenesis. The possibility of finding exquisitely preserved coccospheres not only in soft clay-rich deposits but also in heavily lithified rocks extends the possibilities of research on the development and evolution of this group of organisms. Full article
Open AccessArticle
Influence of Seawater on the Degree of Entrainment in the Flotation of a Synthetic Copper Ore
Minerals 2020, 10(7), 615; https://doi.org/10.3390/min10070615 - 09 Jul 2020
Viewed by 203
Abstract
Froth flotation is a process in which hydrophobic particles attach to bubbles forming particle–bubble aggregates, which are transported to the top section of the cell where they overflow to form the concentrate. Particles also reach the concentrate by entrainment, which is a non-selective [...] Read more.
Froth flotation is a process in which hydrophobic particles attach to bubbles forming particle–bubble aggregates, which are transported to the top section of the cell where they overflow to form the concentrate. Particles also reach the concentrate by entrainment, which is a non-selective process that leads to low concentrate grades. The objective of this work was to study and compare the degree of entrainment measured using three methods, in fresh and seawater, and using methyl isobutyl carbinol (MIBC) and DF-250 as frothers. The experimental results indicated that the degree of entrainment decreased in seawater. Besides, water recovery was lower in the experiments with seawater regardless of the frother that was used in the experiments, which correlated with the observed low degrees of entrainment. It is proposed that the reduction of entrainment and water recovery in seawater can be explained by a reduction of air recovery and/or more bubble coalescence in the froth. It is also proposed that surfactant diffusion/convection from the lamellae to the Plateau borders in the froth is reduced in seawater, which reduces the surface tension gradients, and thus the restoring liquid flow from the Plateau borders to the lamellae. Full article
(This article belongs to the Section Mineral Processing and Metallurgy)
Show Figures

Figure 1

Open AccessArticle
Petrogenesis of the Nashwaak Granite, West-Central New Brunswick, Canada: Evidence from Trace Elements, O and Hf Isotopes of Zircon, and O Isotopes of Quartz
Minerals 2020, 10(7), 614; https://doi.org/10.3390/min10070614 (registering DOI) - 09 Jul 2020
Viewed by 164
Abstract
The petrogenesis of the Pridoli to Early Lochkovian granites in the Miramichi Highlands of New Brunswick, Canada, is controversial. This study focuses on the Pridoli Nashwaak Granite (biotite granite and two-mica granite). In situ trace elements and O and Hf isotopes in zircon, [...] Read more.
The petrogenesis of the Pridoli to Early Lochkovian granites in the Miramichi Highlands of New Brunswick, Canada, is controversial. This study focuses on the Pridoli Nashwaak Granite (biotite granite and two-mica granite). In situ trace elements and O and Hf isotopes in zircon, coupled with O isotopes in quartz, are used to reveal its magmatic sources and evolution processes. In the biotite granite, inherited zircon cores have broadly homogenous δ18OZrc ranging from +6.7 to 7.4‰, whereas magmatic zircon rims have δ18OZrc of +6.3 to 7.2‰ and εHf(t) of −0.39 to −5.10. The Hf and Yb/Gd increase with decreasing Th/U. Quartz is isotopically equilibrated with magmatic zircon rims. The biotite granite is interpreted to be solely derived by partial melting of old basement rocks of Ganderia and fractionally crystallized at the fO2 of 10−21 to 10−10 bars. The two-mica granite has heterogeneous inherited zircon cores (δ18OZrc of +5.2 to 9.9‰) and rims (δ18OZrc of +6.2 to 8.7‰), and εHf(t) of −11.7 to −1.01. The two-mica granite was derived from the same basement, but with supracrustal contamination. This open-system process is also recorded by Yb/Gd and Th/U ratios in zircon and isotopic disequilibrium between magmatic zircon rims and quartz (+10.3 ± 0.2‰). Full article
Show Figures

Figure 1

Open AccessArticle
Kinetic Study in Atmospheric Pressure Organic Acid Leaching: Shrinking Core Model versus Lump Model
Minerals 2020, 10(7), 613; https://doi.org/10.3390/min10070613 - 09 Jul 2020
Viewed by 154
Abstract
The kinetics study has an essential role in the scale-up process because it illustrates the real phenomena of a process. This study aims to develop a mathematical model that can explain the mechanism of the leaching process of laterite ore using a low [...] Read more.
The kinetics study has an essential role in the scale-up process because it illustrates the real phenomena of a process. This study aims to develop a mathematical model that can explain the mechanism of the leaching process of laterite ore using a low concentration of the citric acid solution and evaluate that model using the experimental data. As a raw material, this process used powder-shaped limonite laterite ores with a size of 125–150 µm. The leaching process is carried out using 0.1 M citric acid solution, F:S ratio of 1:20, and a leaching time of 2 h. The temperature parameter was varied at 303, 333, and 358 K. The experimental results showed that the higher the operating temperature, the higher the extracted nickel. The results of this experiment were used to evaluate the shrinking core kinetics model and the lumped model. The simulation results for both models show that the lumped model can provide better simulation results. Quantitatively, the percentage of errors from the shrinking core model is around 3.5 times greater than the percentage of errors from using the lumped model. This result shows that in this leaching process, the process mechanism that occurs involves the reactant diffusion step and the chemical reactions step; those steps run simultaneously. Full article
(This article belongs to the collection Bioleaching)
Show Figures

Figure 1

Open AccessArticle
Late Cenozoic Uguumur and Bod-Uul Volcanic Centers in Northern Mongolia: Mineralogy, Geochemistry, and Magma Sources
Minerals 2020, 10(7), 612; https://doi.org/10.3390/min10070612 - 08 Jul 2020
Viewed by 195
Abstract
The paper presents new data on mineralogy, geochemistry, and Sr-Nd-Pb isotope systematics of Late Cenozoic eruption products of Uguumur and Bod-Uul volcanoes in the Tesiingol field of Northern Mongolia, with implications for the magma generation conditions, magma sources, and geodynamic causes of volcanism. [...] Read more.
The paper presents new data on mineralogy, geochemistry, and Sr-Nd-Pb isotope systematics of Late Cenozoic eruption products of Uguumur and Bod-Uul volcanoes in the Tesiingol field of Northern Mongolia, with implications for the magma generation conditions, magma sources, and geodynamic causes of volcanism. The lavas and pyroclastics of the two volcanic centers are composed of basanite, phonotephrite, basaltic trachyandesite, and trachyandesite, which enclose spinel and garnet peridotite and garnet-bearing pyroxenite xenoliths; megacrysts of Na-sanidine, Ca-Na pyroxene, ilmenite, and almandine-grossular-pyrope garnets; and carbonate phases. The rocks are enriched in LILE and HFSE, show strongly fractioned REE spectra, and are relatively depleted in U and Th. The low contents of U and Th in Late Cenozoic volcanics from Northern and Central Mongolia represent the composition of a magma source. The presence of carbonate phases in subliquidus minerals and mantle rocks indicates that carbon-bearing fluids were important agents in metasomatism of subcontinental lithospheric mantle. The silicate-carbonate melts were apparently released from eclogitizied slabs during the Paleo-Asian and Mongol-Okhotsk subduction. The parent alkali-basaltic magma may be derived as a result from partial melting of Grt-bearing pyroxenite or eclogite-like material or carobantized peridotite. The sources of alkali-basaltic magmas from the Northern and Central Mongolia plot different isotope trends corresponding to two different provinces. The isotope signatures of megacrysts are similar to those of studied volcanic centers rocks. The P-T conditions inferred for the crystallization of pyroxene and garnet megacrysts correspond to a depth range from the Grt-Sp phase transition to the lower crust. Late Cenozoic volcanism in Northern and Central Mongolia may be a response to stress propagation and gravity instability in the mantle associated with the India-Asia collision. Full article
Open AccessTechnical Note
Valorization of Kimberlite Tailings by Carbon Capture and Utilization (CCU) Method
Minerals 2020, 10(7), 611; https://doi.org/10.3390/min10070611 - 08 Jul 2020
Viewed by 207
Abstract
In the world of construction, cement plays a vital role, but despite its reputation and affordable prices, the cement industry faces multiple challenges due to pollution and sustainability concerns. This study aimed to assess the possibility of utilizing carbonated kimberlite tailings, a waste [...] Read more.
In the world of construction, cement plays a vital role, but despite its reputation and affordable prices, the cement industry faces multiple challenges due to pollution and sustainability concerns. This study aimed to assess the possibility of utilizing carbonated kimberlite tailings, a waste product from diamond mining, as a partial cement substitute in the preparation of concrete bricks. This is a unique opportunity to help close the gap between fundamental research in mineral carbonation and its industrial implementation to generate commercial products. Kimberlite was subjected to a mild thin-film carbonation process in a CO2 incubator at varying levels of CO2 concentration (10 vol% and 20 vol% at ambient pressure), kimberlite paste moisture content (10 wt% to 20 wt%), and chamber temperature (35 and 50 °C). The formation of magnesium carbonates, in the form of nesquehonite and lansfordite, was verified by X-ray diffraction analysis, and total CO2 uptake was quantified by thermal decomposition in furnace testing. Carbonated kimberlite tailings were then used to cast bricks. Replacement of cement between 10% and 20% were tested, with a constant water-to-binder ratio of 0.6:1, and a cementitious material-to-sand ratio of 1:3. Initial water absorption and 7- and 28-days compressive strength tests were carried out. The results obtained confirm the possibility of using carbonated kimberlite to replace cement partially, and highlight the benefits of carbonating the kimberlite for such application, and recommendations for future research are suggested. This study demonstrates the potential use of mining tailings to prototype the sequestration of CO2 into sustainable building materials to positively impact the increasing demand for cement-based products. Full article
(This article belongs to the Special Issue Reutilization and Valorization of Mine Waste)
Show Figures

Figure 1

Open AccessArticle
Correlation between the Pore Structure and Water Retention of Cemented Paste Backfill Using Centrifugal and Nuclear Magnetic Resonance Methods
Minerals 2020, 10(7), 610; https://doi.org/10.3390/min10070610 - 08 Jul 2020
Viewed by 184
Abstract
This research combines a centrifugal test and nuclear magnetic resonance (NMR) technology to study the water retention capacity of the cemented paste backfill. Backfill samples with cement–tailings ratios of 1:4, 1:8, and 1:12, and solid concentrations of 71%, 74%, 77%, 80%, and 83% [...] Read more.
This research combines a centrifugal test and nuclear magnetic resonance (NMR) technology to study the water retention capacity of the cemented paste backfill. Backfill samples with cement–tailings ratios of 1:4, 1:8, and 1:12, and solid concentrations of 71%, 74%, 77%, 80%, and 83% respectively, were prepared for the test. The relative centrifugal force ( RCF ) required for accurate testing and the T2 cutoff value that characterizes the water retention capacity were obtained through an NMR test on the backfill samples after centrifugation in saturated conditions. Based on the soil–water characteristic curve (SWCC), the NMR pore water characteristic distribution model was established, and the pore size distribution and effective water retention characteristics were analyzed. This study shows that when the rotating speed is between 1500 and 4000 rpm, the R C F of the backfill ranges from 125.8 to 894.4 g/min , and the T2 cutoff value will vary from 3 to 10 ms. With an increase in solid concentration of the backfill, both the RCF and T2 cutoff value decline. The Scanning Electron Microscope (SEM) analysis confirms that an increase in the solid concentration and cement–tailings ratio will lead to obvious bimodal characteristics of the pore size distribution curve of the backfill. In addition, the porosity will decrease, the critical pore value, which represents a value to distinguish pores with different movable fluid retention capabilities and characterizes the pore size classification, will become smaller, and the pore size distribution will become more diverse. These changes indicate that a high-concentration backfill can effectively reduce the flow of a fine-grained matrix with large pores. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

Open AccessArticle
From Crystals to Color: A Compendium of Multi-Analytical Data on Mineralogical Phases in Opaque Colored Glass Mosaic Tesserae
Minerals 2020, 10(7), 609; https://doi.org/10.3390/min10070609 - 07 Jul 2020
Viewed by 189
Abstract
This study aimed at laying the groundwork for a compendium on mineralogical phases responsible for the colors and opacity of ancient glasses, with specific reference to mosaic tesserae. Based on the awareness that a comprehensive database of these phases is currently lacking in [...] Read more.
This study aimed at laying the groundwork for a compendium on mineralogical phases responsible for the colors and opacity of ancient glasses, with specific reference to mosaic tesserae. Based on the awareness that a comprehensive database of these phases is currently lacking in the available literature, this compendium foresees two main objectives. The first scope was to set the basis for a well-structured database, as a reference point for scholars from different backgrounds for comparative and methodological purposes. The second goal was to provide insights on analytical methods that could be profitably used for achieving an in-depth characterization of coloring and opacifying inclusions; a tailored multi-analytical approach based on easily accessible and widespread techniques like OM, SEM-EDS, μ-Raman, and XRPD is proposed here. Micro-structural and compositional features of glass tesserae, where different types of crystalline phases were detected (Sb-based, Sn-based, Cu-based, Ca-phosphate-based) are presented in well-structured synoptic tables, following a summary on historical–archaeological information on their use. Full article
(This article belongs to the Special Issue Minerals and Crystals in Glass)
Open AccessArticle
Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia)
Minerals 2020, 10(7), 608; https://doi.org/10.3390/min10070608 - 07 Jul 2020
Viewed by 182
Abstract
Composition variations of Cr-spinel in high-Mg rocks of the Primorsky Ridge (Western Baikal region, Russia) are reported here. A specific feature of Cr-spinels in ultramafic rocks of the Primorsky Ridge is their noticeably high Ti content (up to 6.5 wt.%) compared to spinels [...] Read more.
Composition variations of Cr-spinel in high-Mg rocks of the Primorsky Ridge (Western Baikal region, Russia) are reported here. A specific feature of Cr-spinels in ultramafic rocks of the Primorsky Ridge is their noticeably high Ti content (up to 6.5 wt.%) compared to spinels in mantle peridotites. The presence of high TiO2 content in Cr-spinels enclosed in olivine crystals may be a clear indication of the primary magmatic nature of Ti enrichment. Two types of Cr-spinel were identified in ultramafic rocks from all intrusions. Cr-spinels of Type I are enclosed in the inner part of olivine crystals and are homogeneous Al-rich chromites and Fe2+-rich chromites. They are characterized by variable content of TiO2 (1.0–5.3 wt.%), moderately high Cr# (0.7–0.83), and low Fe3+# (0.20–0.34). Cr-spinels of type II occur in the interstitial space and occur as homogeneous and zoned grains with Al-rich chromite and Fe2+-rich chromite cores. Al-rich chromite cores have a composition similar to that of the Cr-spinel enclosed in olivine crystals. Fe2+-rich chromite cores have relatively high MgO (3.8–6.2 wt.%), Al2O3 (8–9 wt.%), and TiO2 (2.6–2.8 wt.%) content, low MnO (0.34–0.52 wt.%) content, and a low Fe3+# (0.25–0.27) ratio. Full article
(This article belongs to the Special Issue Spinel Group Minerals, Volume II)
Show Figures

Figure 1

Open AccessArticle
Identification of Economic Activity in a Bronze Age Settlement in Central Russia Based on the Results of XRF Analysis of Samples of the Cultural Layer
Minerals 2020, 10(7), 607; https://doi.org/10.3390/min10070607 - 06 Jul 2020
Viewed by 238
Abstract
In central Russia, the examination of characteristics of economic activity of Bronze Age settlements and the determination of functional zones that existed in their territories in the first half of the second millennium BC based on the results of XRF (X-ray Fluorescence) analysis [...] Read more.
In central Russia, the examination of characteristics of economic activity of Bronze Age settlements and the determination of functional zones that existed in their territories in the first half of the second millennium BC based on the results of XRF (X-ray Fluorescence) analysis of samples of the cultural layer have never been done before. The data from elemental analysis of the samples of the cultural layer of the Bronze Age settlement Pesochnoe 1 from an excavation area of 126 m2 obtained via the XRF method showed significant content of copper (Cu), zinc (Zn), calcium (Ca) and phosphorus (P), several times exceeding the content of the same chemical elements in the surrounding soils. The discovered Cu can be associated with metalworking, Zn are likely from ash and the biomass of the aquatic environment, and Ca and P can be found in bone remnants. Analysis of the spatial distribution of archaeological objects with quantitative indicators of Cu, Zn, Ca, P made it possible to distinguish two functional areas in the excavation of the Bronze Age settlement. A very high concentration of Cu, Zn, Ca, P recorded in the first functional zone, in the center of which was a hearth, indicates diverse activity that took place in this territory, including the use of different organic materials (plants, bones) as fuel and melting of metal. The second functional area with high concentrations of Zn, Ca and especially P suggests it was a place where biomaterials of animal origin might have been used. Full article
(This article belongs to the Special Issue X-ray Fluorescence Spectrometry in Mineral and Glass Analysis)
Open AccessArticle
First Direct Dating of Alteration of Paleo-Oil Pools Using Rubidium-Strontium Pyrite Geochronology
Minerals 2020, 10(7), 606; https://doi.org/10.3390/min10070606 - 04 Jul 2020
Viewed by 337
Abstract
Direct dating of petroleum systems by hydrocarbon or associated authigenic minerals is crucial for petroleum system analysis and hydrocarbon exploration. The precipitation of authigenic pyrite in petroliferous basins is commonly genetically associated with hydrocarbon generation, migration, accumulation, or destruction. Pyrite rubidium-strontium (Rb-Sr) isotope [...] Read more.
Direct dating of petroleum systems by hydrocarbon or associated authigenic minerals is crucial for petroleum system analysis and hydrocarbon exploration. The precipitation of authigenic pyrite in petroliferous basins is commonly genetically associated with hydrocarbon generation, migration, accumulation, or destruction. Pyrite rubidium-strontium (Rb-Sr) isotope dilution thermal ionization mass spectrometry (ID-TIMS) is a well-developed technique, and its successful application for high-temperature ore systems suggests that this dating method has the potential to directly date key processes in the low-temperature petroleum systems. Rb-Sr data for pyrites in two Ordovician carbonate rock specimens collected from ~4952 m in the YD-2 well in the Yudong region, northern Tarim Basin (NW China), yield two identical isochron ages within analytical uncertainties: 206 ± 13 (2σ) and 224 ± 28 Ma (2σ). SEM investigations demonstrate that Rb and Sr atoms mainly reside in the crystal lattice of the pyrites due to the absence of fluid and mineral inclusions. The rigorous Rb-Sr isochron relations documented in the samples indicate that such residency can result in sufficient Rb/Sr fractionation and initial Sr isotopic homogenization for geochronology. In addition, the closure temperature (227–320 °C) for the Rb-Sr isotope system in pyrite is higher than the precipitation temperature for pyrite in petroleum-related environments (below 200 °C), suggesting that the Rb-Sr age of pyrite was not overprinted by post-precipitation alteration. Integrating the lead-strontium-sulfur isotopes of the pyrites with burial history analysis, the ages are interpreted as the timing of alteration of the paleo-oil pool by a hydrothermally-triggered thermochemical sulfate reduction process. This study, for the first time, demonstrates that Rb-Sr pyrite geochronology, combined with radiogenic and stable isotopic analyses, can be a useful tool to evaluate the temporal evolution of oil pools. This approach bears great potential for dating of petroleum systems anywhere else in the world. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Open AccessArticle
Tracking Organomineralization Processes from Living Microbial Mats to Fossil Microbialites
Minerals 2020, 10(7), 605; https://doi.org/10.3390/min10070605 - 04 Jul 2020
Viewed by 266
Abstract
Geneses of microbialites and, more precisely, lithification of microbial mats have been studied in different settings to improve the recognition of biogenicity in the fossil record. Living microbial mats and fossil microbialites associated with older paleoshorelines have been studied in the continental Maquinchao [...] Read more.
Geneses of microbialites and, more precisely, lithification of microbial mats have been studied in different settings to improve the recognition of biogenicity in the fossil record. Living microbial mats and fossil microbialites associated with older paleoshorelines have been studied in the continental Maquinchao Basin in southernmost South America. Here, we investigate carbonate crusts from a former pond where active mineralizing microbial mats have been previously studied. Petrographic observations revealed the presence of abundant erect and nonerect microfilaments and molds with diameters varying from 6 to 8 micrometers. Additionally, smaller pores and organic matter (OM) remains have been identified in areas containing less filaments and being dominated by carbonate. A Mg, Al and Si-rich phase has also been identified in the carbonate matrix associated with the dominant micritic calcite. Moreover, mineralized sheaths contain mixed carbonate (calcite) with Mg, Al and Si, where the latter elements are associated with authigenic clays. The presence of mineralized sheaths further attests to biologically induced processes during the uptake of CO2 by photosynthetic microorganisms. Additionally, the high density of the micritic phase supports the subsequent mineralization by nonphotosynthetic microorganisms and/or physicochemical processes, such as evaporation. Since the micritic filament microstructure of these recent crusts is very similar to that observed in fossil microbialites, they can be used to bridge the gap between living mats and fossil buildups. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

Open AccessArticle
Assessment of the Supply Chain under Uncertainty: The Case of Lithium
Minerals 2020, 10(7), 604; https://doi.org/10.3390/min10070604 - 03 Jul 2020
Viewed by 229
Abstract
Modeling the global markets is complicated due to the existence of uncertainty in the information available. In addition, the lithium supply chain presents a complex network due to interconnections that it presents and the interdependencies among its elements. This complex supply chain has [...] Read more.
Modeling the global markets is complicated due to the existence of uncertainty in the information available. In addition, the lithium supply chain presents a complex network due to interconnections that it presents and the interdependencies among its elements. This complex supply chain has one large market, electric vehicles (EVs). EV production is increasing the global demand for lithium; in terms of the lithium supply chain, an EV requires lithium-ion batteries, and lithium-ion batteries require lithium carbonate and lithium hydroxide. Realistically, the mass balance in the global lithium supply chain involves more elements and more markets, and together with the assortment of databases in the literature, make the modeling through deterministic models difficult. Modeling the global supply chain under uncertainty could facilitate an assessment of the lithium supply chain between production and demand, and therefore could help to determine the distribution of materials for identifying the variables with the highest importance in an undersupply scenario. In the literature, deterministic models are commonly used to model the lithium supply chain but do not simultaneously consider the variation of data among databases for the lithium supply chain. This study performs stochastic modeling of the lithium supply chain by combining a material flow analysis with an uncertainty analysis and global sensitivity analysis. The combination of these methods evaluates an undersupply scenario. The stochastic model simulations allow a comparison between the known demand and the supply calculated under uncertainty, in order to identify the most important variables affecting lithium distribution. The dynamic simulations show that the most probable scenario is one where supply does not cover the increasing demand, and the stochastic modeling classifies the variables by their importance and sensibility. In conclusion, the most important variables in a scenario of EV undersupply are the lithium hydroxide produced from lithium carbonate, the lithium hydroxide produced from solid rock, and the production of traditional batteries. The global sensitivity analysis indicates that the critical variables which affect the uncertainty in EV production change with time. Full article
(This article belongs to the Special Issue Battery Minerals)
Show Figures

Figure 1

Open AccessEditorial
Editorial for Special Issue “Geological and Mineralogical Sequestration of CO2
Minerals 2020, 10(7), 603; https://doi.org/10.3390/min10070603 - 02 Jul 2020
Viewed by 233
Abstract
Carbon Capture Utilization and Storage (CCUS) has been substantiated by the International Panel on Climate Change (IPCC) [...] Full article
(This article belongs to the Special Issue Geological and Mineralogical Sequestration of CO2)
Open AccessArticle
Influence of Genetic Processes on Geochemistry of Fe-oxy-hydroxides in Supergene Zn Non-Sulfide Deposits
Minerals 2020, 10(7), 602; https://doi.org/10.3390/min10070602 - 01 Jul 2020
Viewed by 260
Abstract
In supergene Zn non-sulfide deposits, the Fe-oxy-hydroxides (FeO/OH) are mainly concentrated in the residual zones (gossan) on top of the oxidized ore bodies, although they can also be found throughout the whole weathering profile coexisting with the primary and secondary ore assemblages. Fe-oxy-hydroxides [...] Read more.
In supergene Zn non-sulfide deposits, the Fe-oxy-hydroxides (FeO/OH) are mainly concentrated in the residual zones (gossan) on top of the oxidized ore bodies, although they can also be found throughout the whole weathering profile coexisting with the primary and secondary ore assemblages. Fe-oxy-hydroxides are rarely pure as they form in systems where a wide range of metals, most of them of economic importance (e.g., Zn, Pb, Co, REE, Sc, Ga, Ge, V, etc.), freely circulate and can be “captured” under specific conditions. Although their occurrence can be widespread, and they have a potential to scavenge and accumulate critical metals, FeO/OH are considered gangue phases during the existing processing routes of Zn non-sulfide ores. Moreover, very little is known about the role of the deposit type on the geochemistry of FeO/OH formed in a specific association. Therefore, this paper provides a comprehensive assessment of the trace element footprint of FeO/OH from a number of Zn non-sulfide deposits, in order to define parameters controlling the metals’ enrichment process in the mineral phase. To achieve this, we selected FeO/OH-bearing mineralized samples from four supergene Zn non-sulfide ores in diverse settings, namely Hakkari (Turkey), Jabali (Yemen), Cristal (Peru) and Kabwe (Zambia). The petrography of FeO/OH was investigated by means of scanning electron microscope energy dispersive analysis (SEM-EDS), while the trace element composition was assessed using laser ablation-ICP-MS (LA-ICP-MS). Statistical analyses performed on LA-ICP-MS data defined several interelement associations, which can be ascribed to the different nature of the studied deposits, the dominant ore-formation process and subsequent evolution of the deposits and the environmental conditions under which FeO/OH phases were formed. Based on our results, the main new inferences are: (A) Zinc, Si, Pb, Ga and Ge enrichment in FeO/OH is favored in ores where the direct replacement of sulfides is the dominant process and/or where the pyrite is abundant (e.g., Cristal and Hakkari). (B) When the dissolution of the host-rock is a key process during the supergene ore formation (i.e., Jabali), the buffering toward basic pH of the solutions favors the uptake in FeO/OH of elements leached from the host carbonate rock (i.e., Mn), whilst restricting the uptake of elements derived from the dissolution of sulfides (i.e., Zn, Pb, Ga and Ge), as well as silica. (C) The input of exotic phases can produce significant enrichment in “unconventional” metals in FeO/OH (i.e., Cr and Co at Kabwe; Y at Cristal) depending on whether the optimal pH-Eh conditions are attained. (D) In the Kabwe deposit, FeO/OH records heterogeneous geochemical conditions within the system: where locally basic conditions prevailed during the alteration process, the V and U concentration in FeO/OH is favored; yet conversely, more acidic weathering produced Zn- and Si-bearing FeO/OH. Full article
Show Figures

Figure 1

Open AccessArticle
Imaging Karatungk Cu-Ni Mine in Xinjiang, Western China with a Passive Seismic Array
Minerals 2020, 10(7), 601; https://doi.org/10.3390/min10070601 - 01 Jul 2020
Viewed by 238
Abstract
Karatungk Mine is the second-largest Cu-Ni sulfide mine in China. However, the detailed structure beneath the mine remains unclear. Using continuous waveforms recorded by a dense temporary seismic array, here we apply ambient noise tomography to study the shallow crustal structure of Karatungk [...] Read more.
Karatungk Mine is the second-largest Cu-Ni sulfide mine in China. However, the detailed structure beneath the mine remains unclear. Using continuous waveforms recorded by a dense temporary seismic array, here we apply ambient noise tomography to study the shallow crustal structure of Karatungk Mine down to ~1.3 km depth. We obtain surface-wave dispersions at 0.1–1.5 s by calculating cross-correlation functions, which are inverted for 3D shear-wave structure at the top-most (0–1.3 km) crust by a joint inversion of group and phase dispersions. Our results show that low-velocity zones beneath Y1 ore-hosting intrusion (hereafter called Y1) at 0–0.5 km depth and northwest of the Y2 ore-hosting intrusion (hereafter called Y2) at 0–0.6 km depth are consistent with highly mineralized areas. A relatively high-velocity zone is connected with a weakly mineralized area located to the southeast of Y2 and Y3 (hereafter called Y3) ore-hosting intrusions. Two high-velocity zones, distributed at 0.7–1.3 km depth in the northernmost and southernmost parts of the study area respectively, are interpreted to be igneous rocks related to early magma intrusion. Furthermore, the low-velocity zone at 0.7–1.3 km depth in the middle of the study area may be related to: a possible channel related to initial magma transport; mine strata or a potentially mineralized area. This study demonstrates a new application of dense-array ambient noise tomography to a mining area that may guide future studies of mineralized regions. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume II)
Show Figures

Figure 1

Open AccessArticle
The Influence of Selected Properties of Particles in the Jigging Process of Aggregates on an Example of Chalcedonite
Minerals 2020, 10(7), 600; https://doi.org/10.3390/min10070600 - 30 Jun 2020
Viewed by 235
Abstract
The influence of the physical, geometric and chemical properties of particles on the results of aggregate separation by means of a laboratory ring jig is presented in this paper. The experiment was based on separation of chalcedonite particles in a narrow particle size [...] Read more.
The influence of the physical, geometric and chemical properties of particles on the results of aggregate separation by means of a laboratory ring jig is presented in this paper. The experiment was based on separation of chalcedonite particles in a narrow particle size fraction composed separately of regular and irregular particles, which was prepared in accordance with patent inventions. On its basis, the geometric properties—projection diameter and (volumetric and dynamic) shape coefficients—as well as physical properties—particle density—were determined in products of the regular and irregular particles. The terminal settling velocities of the regular and irregular particles were calculated for a randomly selected sample of particles in each obtained separation product. The statistical analysis of the geometric properties of the particles allowed to evaluate the influence of these parameters on aggregate processing with respect to selection of particles homogenous in terms of their shapes. The comparison of the particle shapes’ influence on the chalcedonite feed separation effects was made by the means of the values of the shape coefficients: the dynamic and volumetric ones. Additionally, tests were carried out using Raman spectroscopy in order to determine the mechanisms of density change in the aggregate. The research goal was realised through detecting and analysing the polymorphic forms of the silica and allogenic minerals precipitated on the surface and inside the chalcedonite particles. Full article
(This article belongs to the Section Mineral Processing and Metallurgy)
Show Figures

Figure 1

Open AccessArticle
Brucite-Aragonite Precipitates as Weathering Products of Historic Non-MgO-Based Geomaterials
Minerals 2020, 10(7), 599; https://doi.org/10.3390/min10070599 - 30 Jun 2020
Viewed by 248
Abstract
This paper analyses the mineralogical composition, texture, and structure of a stalactite sampled from the city-wall storerooms of the Nueva Tabarca fortress (southeast Spain). This speleothem presents an uncommon mineral assemblage: aragonite, brucite, gypsum, silica, and halite. Internally, it shows complex structure: (1) [...] Read more.
This paper analyses the mineralogical composition, texture, and structure of a stalactite sampled from the city-wall storerooms of the Nueva Tabarca fortress (southeast Spain). This speleothem presents an uncommon mineral assemblage: aragonite, brucite, gypsum, silica, and halite. Internally, it shows complex structure: (1) a central soda-straw composed by aragonite; (2) an external puff-pastry cone-crust formed preferentially by aragonite and brucite; and (3) an internal branching of coralloids, showing a subtle layering between brucite and aragonite. Gypsum, halite, and silica locate in the outer coating of the cone-crust. The sequent mineral precipitation sequence has been established: aragonite > brucite > gypsum/silica > halite. Speleothem formation is directly related to the chemical weathering of the rocks and mortars used as building materials of the city-wall. Brucite precipitates has been always linked to the presence of MgO-based geomaterials. However, the lack of these compounds as building materials in Nueva Tabarca fortress makes this investigation a unique example of brucite precipitation. PHREEQC calculations showed that interaction between pore waters and the minerals of mortar aggregates (dolomite, pyroxene, and amphibole) leads to rich-magnesium solutions. Evaporation modelling of lixiviated waters describes the precipitation of the mineral assemblage of the brucite-aragonite speleothems. Full article
(This article belongs to the Special Issue Minerals and Other Phases in Constructional Geomaterials)
Show Figures

Figure 1

Open AccessArticle
The Evolution of Pollutant Concentrations in a River Severely Affected by Acid Mine Drainage: Río Tinto (SW Spain)
Minerals 2020, 10(7), 598; https://doi.org/10.3390/min10070598 - 30 Jun 2020
Viewed by 336
Abstract
The Río Tinto, located in the Iberian Pyrite Belt (SW Spain), constitutes an extreme case of pollution by acid mine drainage. Mining in the area dates back to the Copper Age, although large-scale mining of massive sulfide deposits did not start until the [...] Read more.
The Río Tinto, located in the Iberian Pyrite Belt (SW Spain), constitutes an extreme case of pollution by acid mine drainage. Mining in the area dates back to the Copper Age, although large-scale mining of massive sulfide deposits did not start until the second half of the 19th century. Due to acidic mining discharges, the Río Tinto usually maintains a pH close to 2.5 and high concentrations of pollutants along its course. From a detailed sampling during the hydrological year 2017/18, it was observed that most pollutants followed a similar seasonal pattern, with maximum concentrations during autumn due to the washout of secondary soluble sulfate salts and minimum values during large flood events. Nevertheless, As and Pb showed different behavior, with delayed concentration peaks. The dissolved pollutant load throughout the monitored year reached 5000 tons of Fe, 2600 tons of Al, 680 tons of Zn, and so on. While most elements were transported almost exclusively in the dissolved phase, Fe, Pb, Cr, and, above all, As showed high values associated with particulate matter. River water quality data from 1969 to 2019 showed a sharp worsening in 2000, immediately after the mine closure. From 2001 on, an improvement was observed. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Graphical abstract

Open AccessReview
Ruby Deposits: A Review and Geological Classification
Minerals 2020, 10(7), 597; https://doi.org/10.3390/min10070597 - 30 Jun 2020
Viewed by 639
Abstract
Corundum is not uncommon on Earth but the gem varieties of ruby and sapphire are relatively rare. Gem corundum deposits are classified as primary and secondary deposits. Primary deposits contain corundum either in the rocks where it crystallized or as xenocrysts and xenoliths [...] Read more.
Corundum is not uncommon on Earth but the gem varieties of ruby and sapphire are relatively rare. Gem corundum deposits are classified as primary and secondary deposits. Primary deposits contain corundum either in the rocks where it crystallized or as xenocrysts and xenoliths carried by magmas to the Earth’s surface. Classification systems for corundum deposits are based on different mineralogical and geological features. An up-to-date classification scheme for ruby deposits is described in the present paper. Ruby forms in mafic or felsic geological environments, or in metamorphosed carbonate platforms but it is always associated with rocks depleted in silica and enriched in alumina. Two major geological environments are favorable for the presence of ruby: (1) amphibolite to medium pressure granulite facies metamorphic belts and (2) alkaline basaltic volcanism in continental rifting environments. Primary ruby deposits formed from the Archean (2.71 Ga) in Greenland to the Pliocene (5 Ma) in Nepal. Secondary ruby deposits have formed at various times from the erosion of metamorphic belts (since the Precambrian) and alkali basalts (from the Cenozoic to the Quaternary). Primary ruby deposits are subdivided into two types based on their geological environment of formation: (Type I) magmatic-related and (Type II) metamorphic-related. Type I is characterized by two sub-types, specifically Type IA where xenocrysts or xenoliths of gem ruby of metamorphic (sometimes magmatic) origin are hosted by alkali basalts (Madagascar and others), and Type IB corresponding to xenocrysts of ruby in kimberlite (Democratic Republic of Congo). Type II also has two sub-types; metamorphic deposits sensu stricto (Type IIA) that formed in amphibolite to granulite facies environments, and metamorphic-metasomatic deposits (Type IIB) formed via high fluid–rock interaction and metasomatism. Secondary ruby deposits, i.e., placers are termed sedimentary-related (Type III). These placers are hosted in sedimentary rocks (soil, rudite, arenite, and silt) that formed via erosion, gravity effect, mechanical transport, and sedimentation along slopes or basins related to neotectonic motions and deformation. Full article
(This article belongs to the Special Issue Mineralogy and Geochemistry of Ruby)
Show Figures

Figure 1

Open AccessArticle
Hydrogeochemical Behavior of Reclaimed Highly Reactive Tailings, Part 1: Characterization of Reclamation Materials
Minerals 2020, 10(7), 596; https://doi.org/10.3390/min10070596 - 30 Jun 2020
Viewed by 201
Abstract
The production of solid mine wastes is an integral part of the extraction and metallurgical processing of ores. The reclamation of highly reactive mine waste, with low neutralizing potential, is still a significant challenge for the mining industry, particularly when natural soils are [...] Read more.
The production of solid mine wastes is an integral part of the extraction and metallurgical processing of ores. The reclamation of highly reactive mine waste, with low neutralizing potential, is still a significant challenge for the mining industry, particularly when natural soils are not available close to the site. Some solid mine wastes present interesting hydro-geotechnical properties which can be taken advantage of, particularly for being used in reclamation covers to control acid mine drainage. The main objective of this research was to evaluate the use of mining materials (i.e., tailings and waste rock) in a cover with capillary barrier effects (CCBE) to prevent acid mine drainage (AMD) from highly reactive tailings. The first part of the project reproduced in this article involves context and laboratory validation of mining materials as suitable for a CCBE, while the companion paper reports laboratory and field results of cover systems made with mining materials. The main conclusions of the Part 1 of this study were that the materials studied (low sulfide tailings and waste rocks) had the appropriate geochemical and hydrogeological properties for use as cover materials in a CCBE. Results also showed that the cover mining materials are not acid-generating and that the LaRonde tailings are highly reactive with pH close to 2, with high concentrations of metals and sulfates. Full article
(This article belongs to the Special Issue Reutilization and Valorization of Mine Waste)
Show Figures

Figure 1

Previous Issue
Back to TopTop